Hyperparameter tuning in random forest and neural network classification: an application to predict health expenditure per capita

Basit öğe kaydını göster

dc.contributor.author Çalışkan, Gülçin
dc.contributor.author Çınaroğlu, Songül
dc.date.accessioned 2023-11-15T10:56:34Z
dc.date.available 2023-11-15T10:56:34Z
dc.date.issued 2022-12-03
dc.identifier.citation Caliskan, G., Cinaroglu, S. (2023). Hyperparameter Tuning in Random Forest and Neural Network Classification: An Application to Predict Health Expenditure Per Capita. In: Jacob, I.J., Kolandapalayam Shanmugam, S., Izonin, I. (eds) Data Intelligence and Cognitive Informatics. Algorithms for Intelligent Systems. Springer, Singapore. tr_TR
dc.identifier.uri https://link.springer.com/chapter/10.1007/978-981-19-6004-8_62
dc.identifier.uri http://hdl.handle.net/20.500.11787/8321
dc.description.abstract There is a lack of literature about the classification performance improvement effect of hyperparameter tuning to predict health expenditure per capita (HE). In this study, the effect of hyperparameter tuning on classification performances of random forest (RF) and neural network (NN) classification tasks is compared for grouping member of World Bank (WB) countries in terms of HE. Data gathered from 188 member countries of WB for the year 2019. GDP per capita, mortality, life expectancy at birth and population aged 65 years and over are used as predictors. Number of trees and neurons in hidden layer are changed from 5 to 100 for RF and NN by changing k-fold parameter from 2 to 20. The dependent HE variable is transformed into binary categories, and the categories are well balanced (%50–%50). Classification performances of learning techniques are good (AUC > 0.95). RF (AUC = 0.9609) is superior to NN (AUC = 0.9596) in terms of average AUC values generated by hyperparameter tuning. tr_TR
dc.language.iso eng tr_TR
dc.publisher Springer tr_TR
dc.relation.isversionof 10.1007/978-981-19-6004-8_62 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Random forest Neural network Hyperparameter tuning Cross validation Health expenditure per capita tr_TR
dc.subject Sağlık harcaması tr_TR
dc.title Hyperparameter tuning in random forest and neural network classification: an application to predict health expenditure per capita tr_TR
dc.type bookPart tr_TR
dc.relation.journal Data Intelligence and Cognitive Informatics, Springer tr_TR
dc.contributor.department Nevşehir Hacı Bektaş Veli Üniversitesi,Sağlık Hizmetleri Meslek Yüksekokulu, Yönetim ve Organizasyon Bölümü tr_TR
dc.contributor.authorID 310623 tr_TR
dc.contributor.authorID 170513 tr_TR
dc.identifier.startpage 825 tr_TR
dc.identifier.endpage 836 tr_TR


Bu öğenin dosyaları

Dosyalar Boyut Biçim Göster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster