Bu tez altı bölümden oluşmaktadır. İlk bölümde giriş kısmı bulunmaktadır. İkinci bölümde sırasıyla 3 boyutlu Öklid uzayında, 3 boyutlu Lorentz uzayında ve 3 boyutlu Galile uzayında temel tanım ve teoremler yer almaktadır. Üçüncü bölümde 3 boyutlu Öklid uzayında aynı Frenet düzlemlerini paylaşan eğrilerin varlığı için gerekli şartlar araştırılmış ve bazı teoremlere yer verilmiştir. Dördüncü bölümde 3 boyutlu Lorentz uzayında ortak timelike Frenet düzlemlerine sahip eğriler araştırılmış, daha sonra ise aynı lightlike Frenet düzlemlerini paylaşan eğrilerin varlığı için gerekli koşullar incelenmiştir. Beşinci bölümde 3 boyutlu Galile uzayında verilen bir eğrinin Frenet düzlemlerinden birinin bu uzayda başka bir eğrinin Frenet düzlemi olup olamayacağı araştırılmış ve sonuçlar verilmiştir. Son olarak altıncı bölüm tartışma ve sonuçlara ayrılmıştır.
This thesis consists of five chapters. The first chapter is devoted to the introduction. In the second chapter, 3 dimesional Euclidean space, Lorentz 3-space, Galilean 3-space and their properties are mentioned respectively. In the third chapter, necessary conditions for the existence of curves that share the same Frenet planes are investigated and some theorems are given in Euclidean 3-space. In the fourth chapter, curves with common timelike Frenet planes are investigated and then necessary conditions for the existence of curves sharing the same lightlike Frenet planes investigated. In the fifth chapter, it is investigated whether one of the Frenet planes of a given curve, can be the Frenet plane of another curve in Galilean 3-space and some results are given. Finally the sixth chapter is devoted to the discussion and conclusion.