Q-Analogues of biperiodic fibonacci and lucas sedenions

Basit öğe kaydını göster

dc.contributor.author Köme, Sure
dc.contributor.author Gün, Hafize
dc.date.accessioned 2021-09-30T06:08:03Z
dc.date.available 2021-09-30T06:08:03Z
dc.date.issued 2021-04-12
dc.identifier.uri https://www.ubaksymposium.org/Upload/editor/files/10_%20ubak%20fen%20%C3%B6zet(14).pdf
dc.identifier.uri http://hdl.handle.net/20.500.11787/5393
dc.description.abstract Quantum calculus has an important areas in many areas such as number theory, physics and mathematics. In this paper, by taking some useful notations from quantum calculus, we define the biperiodic Fibonacci and Lucas sedenions based on a q-parameter. There are many studies in the literature on the biperiodic Fibonacci and Lucas sequences. Apart from the earlier studies, we define q-analogues of the biperiodic Fibonacci and Lucas sequences. Then, we present qanalogues of the biperiodic Fibonacci and Lucas sedenions. We also investigate the generating functions and the Binet formulas of these sedenions. In addition, we give Catalan identity, Cassini identity, d'Ocagne identity and sum binomial formulas of the biperiodic q-Fibonacci and q-Lucas sedenions. Since this study covers the previous studies on Fibonacci and Lucas sequences, it deals with the subject from a wider perspective. tr_TR
dc.description.sponsorship Nevşehir Hacı Bektaş Veli Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tr_TR
dc.language.iso eng tr_TR
dc.publisher The 10th International Scientific Research Congress (UBAK) tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Biperiodic fibonacci sequence tr_TR
dc.subject Biperiodic lucas sequence tr_TR
dc.subject Sedenions tr_TR
dc.subject Q-analogues tr_TR
dc.subject Generating function tr_TR
dc.subject Binet formula tr_TR
dc.title Q-Analogues of biperiodic fibonacci and lucas sedenions tr_TR
dc.type conferenceObject tr_TR
dc.relation.journal The 10th International Scientific Research Congress (UBAK) tr_TR
dc.contributor.department Nevşehir Hacı Bektaş Veli Üniversitesi/fen-edebiyat fakültesi/matematik bölümü/uygulamalı matematik anabilim dalı tr_TR
dc.contributor.authorID 274360 tr_TR


Bu öğenin dosyaları

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster