dc.contributor.author |
Lopez, Rafael |
|
dc.contributor.author |
Demir, Esma |
|
dc.date.accessioned |
2021-09-27T08:22:34Z |
|
dc.date.available |
2021-09-27T08:22:34Z |
|
dc.date.issued |
2014 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.11787/5277 |
|
dc.description.abstract |
We classify all helicoidal non-degenerate surfaces in Minkowski space with constant mean curvature and constant Gauss curvature whose generating curve is a graph of a polynomial or a Lorentzian circle. In the first case we prove that the degree of the polynomial is 0 or 1 and the surface is ruled. If the generating curve is a Lorentzian circle, we prove that the only possibility is that the axis is spacelike and the center of the circle lies on the axis. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
De Gruyter |
tr_TR |
dc.relation.isversionof |
10.2478/s11533-014-0415-0 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Minkowski space |
tr_TR |
dc.subject |
Helicoidal surface |
tr_TR |
dc.subject |
Mean curvature |
tr_TR |
dc.subject |
Gauss curvature |
tr_TR |
dc.title |
Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature |
tr_TR |
dc.type |
article |
tr_TR |
dc.contributor.department |
Nevşehir Hacı Bektaş Veli Üniversitesi/fen-edebiyat fakültesi/matematik bölümü/geometri anabilim dalı |
tr_TR |
dc.contributor.authorID |
171848 |
tr_TR |
dc.identifier.volume |
12 |
tr_TR |
dc.identifier.issue |
9 |
tr_TR |
dc.identifier.startpage |
1349 |
tr_TR |
dc.identifier.endpage |
1361 |
tr_TR |