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Stability and bifurcations analysis of a
competition model with piecewise
constant arguments

S. Kartala*† and F. Gurcanb,c

Communicated by E. Venturino

In this paper, we investigate local and global asymptotic stability of a positive equilibrium point of system of differential
equations
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where t � 0, the parameters r1, k1,’1,’2, r2, k2, and d1 are positive, and Œt� denotes the integer part of t 2 Œ0,1/. x.t/ and
y.t/ represent population density for related species. Sufficient conditions are obtained for the local and global stability
of the positive equilibrium point of the corresponding difference system. We show through numerical simulations that
periodic solutions arise through Neimark–Sacker bifurcation. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

Modeling a population growth, which refers to how the number of individuals in a population increases (or decreases) with time, has
a long history. One common mathematical model is the exponential growth model (or Malthusian growth model) where the growth
rate is proportional to the size of the population [1]. Because exponential growth model is unrealistic, Verhulst developed a more
realistic population model, namely, logistic growth model [2]. On the basis of the logistic model, Lotka and Volterra presented a more
general model for competition, predation, and parasitism interactions between species [3]. In the literature, there are many versions of
Lotka-Volterra models including differential equations or difference equations [1–6].

Recently, it has been developed a new concept for modeling a population growth using differential equation with piecewise con-
stant arguments, and these equations have attracted great attention from the researchers in mathematics and biology. Differential
equations with piecewise constant arguments describe hybrid dynamical systems and combine properties of both differential and dif-
ference equations and have applications in widely expanded areas such as biomedicine, chemistry, mechanical engineering, physics,
civil engineering, aerodynamical engineering, and population dynamics.

In population dynamics, a first model including piecewise constant argument was constructed by Busenberg and Cooke [7] to inves-
tigate vertically transmitted diseases. Following this work, several authors have investigated the stability and oscillatory characteristics
of difference solutions of logistic differential equations with piecewise constant arguments [8–18]. May [8] and May and Oster [9] have
considered a simple logistic equation for a single species such as
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dN.t/

dt
D rN.t/

�
1 �

N.Œt�/

K

�
, (1.1)

where r is intrinsic growth rate and K is maximum carrying capacity. They have showed that the difference solutions of the model can
be complex and chaotic for certain parameter values of r. Gopalsamy and Liu [10] have considered the differential equation

dN.t/

dt
D rN.t/f1 � aN.t/ � bN.Œt�/g, (1.2)

where N.t/ represents the population density, r, a, and b are positive numbers, and Œt� is the integer part of t 2 .0,1/ The right hand
side includes both regular and piecewise constant arguments, the second one estimates of the population growth performed at equally
spaced time intervals. They have obtained sufficient conditions for all positive solutions of the corresponding discrete dynamic system
to converge eventually to the positive equilibrium.

A more general logistic equation with piecewise constant argument

dx.t/

dt
D rx.t/

n
1 � ax.t/ � b

Xm

jD0
cjx.Œt � j�/

o
, t � 0 (1.3)

has been investigated by Liu and Gopalsamy [11]. They have shown that for certain special cases, solutions of the equations can have
chaotic behavior through period doubling bifurcations.

In modeling a population density of a bacteria species in a microcosm, Ozturk et al. [12] have used the differential equation

dx.t/

dt
D rx.t/f1 � ’x.t/ � “0x.Œt�/ � “1x.Œt � 1�/g (1.4)

where the parameter r is the population growth rate of the bacteria population, ’, “0, and “1 are coefficients that each represents the
irregular environmental carrying capacity for a logistic population model.

Besides the aforementioned biological models, differential equations with piecewise constant arguments have also been used for
modeling tumor growth because tumor population has different dynamics properties that can be described using both differential
and difference equations. For example, proliferation of the tumor cells is arranged mitosis and needs a discrete time where tumor cells
have resting time and then again begin to proliferate. On the other hand, the growth and death of the population require a time-
continuity. From this point of view, Bozkurt [13] has modeled an early brain tumor growth using the differential equation with piecewise
constant arguments

dx.t/

dt
D x.t/fr.1 � ’x.t/ � “0x.Œt�/ � “1x.Œt � 1�//C ”1x.Œt�/C ”2x.Œt � 1�/g (1.5)

and has obtained stable interval for the growth rate of tumor population, where the parameter r is the population growth rate of tumor,
’, “0, and “1 are rates for the delayed tumor volume, ”1 is the drug effect on the tumor, and ”2 is a negative effect by the immune
system on the tumor population.

In modeling the growth of tumor, Gatenby [19] has used the Lotka–Volterra equations as

8̂̂
<
ˆ̂:
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�
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k2

�
�

r2’21

k2
N1N2,

(1.6)

where N1 is the tumor population and N2 is the population of normal cells from which the tumor arises. In the study of Gatenby, tumor
cells compete with normal cells for space and other resources in an arbitrarily small volume of tissue within an organ.

In the present paper, we have extended model (1.6) including discrete and continuous time situations with some extra terms to study
the global dynamics of the system of differential equations with piecewise constant arguments such as

8̂̂<
ˆ̂:

dx

dt
D r1x.t/

�
1 �

x.t/

k1

�
� ’1x.t/y.Œt � 1�/C ’2x.t/y.Œt�/,

dy

dt
D r2y.t/

�
1 �

y.t/

k2

�
C ’1y.t/x.Œt � 1�/ � ’2y.t/x.Œt�/ � d1y.t/,

(1.7)

where t � 0, the parameters r1, k1, ’1, ’2, r2, k2, and d1 are positive, and Œt� denotes the integer part of t 2 Œ0,1/. x.t/ and y.t/
represent population density for related species. The system is based on Lotka–Volterra competition-like model that is often used in
population dynamics.

The paper is organized as follows. In Section 2, we investigate discrete solutions of the system and obtain second-order discrete
dynamical system. To obtain sufficient conditions for the local and global stability of the system, we use Schur–Cohn criterion and a
Lyapunov function. In Section 3, we determine the Neimark–Sacker bifurcation point for the system using Schur–Cohn criterion.
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2. Local and global stability analysis

We can write system (1.7) on an interval of the form t 2 Œn, nC 1/ as follows

8̂<
:̂

dx

dt
� fr1 � ’1y.n � 1/C ’2y.n/gx.t/ D �r1K1.x.t//

2,

dy

dt
� fr2 C ’1x.n � 1/ � ’2x.n/ � d1gy.t/ D �r2K2.y.t//

2,
(2.1)

where 1
k1
D K1, 1

k2
D K2. By solving each equation of the system (2.1), which is a Bernoulli differential equation, and letting t! nC 1,

we obtain a system of second-order difference equations as

8̂̂<
ˆ̂:

x.nC 1/ D
x.n/.r1 � ’1y.n � 1/C ’2y.n//

.r1 � ’1y.n � 1/C ’2y.n/ � r1K1x.n//e�.r1�’1y.n�1/C’2y.n// C r1K1x.n/
,

y.nC 1/ D
y.n/.r2 C ’1x.n � 1/ � ’2x.n/ � d1/

.r2 C ’1x.n � 1/ � ’2x.n/ � d1 � r2K2y.n//e�.r2C’1x.n�1/�’2x.n/�d1/ C r2K2y.n/
.

(2.2)

Now, we need to determine an equilibrium point to investigate global behavior of the difference system. If

’1 > ’2, r2 > d1 and r1 >
.’1 � ’2/.r2 � d1/

K2r2
, (2.3)

then we get a positive equilibrium point of system (2.2) such as

.Nx, Ny/ D

�
K2r1r2 C .’2 � ’1/.r2 � d1/

K1K2r1r2 C .’1 � ’2/2
,

K1r1.r2 � d1/C r1.’1 � ’2/

K1K2r1r2 C .’1 � ’2/2

�
. (2.4)

The linearized system of (2.2) about .Nx, Ny/ is w.nC 1/ D Bw.n/where B is a matrix

B D

0
BBBBBB@

e�K1r1Nx 0

�
1 � e�K1r1Nx

�
’2

K1r1
�

�
1 � e�K1r1Nx

�
’1

K1r1
1 0 0 0

�

�
1 � e�K2r2Ny

�
’2

K2r2

�
1 � e�K2r2Ny

�
’1

K2r2
e�K2r2Ny 0

0 0 1 0

1
CCCCCCA

.

The characteristic equation of the matrix B is

p.œ/ D œ4 C œ3
�
�e�K1r1Nx � e�K2r2Ny

	
C œ2

�
e�K2r2Ny�K1r1Nx C

’2
2

K1r1K2r2

�
1 � e�K1r1Nx

	 �
1 � e�K2r2Ny

	�

C œ

�
�2’1’2

K1r1K2r2

�
1 � e�K1r1Nx

	 �
1 � e�K2r2Ny

	�
C
�

1 � e�K1r1Nx
	 �

1 � e�K2r2Ny
	 ’2

1

K1r1K2r2
.

(2.5)

To determine stability conditions of discrete system, we can use the following Schur–Cohn criterion.

Theorem A ([20])
The characteristic polynomial

p.œ/ D œ4 C p3œ
3 C p2œ

2 C p1œC p0,

has all its roots inside the unit open disk .jœj < 1/ if and only if

(a) p.1/ > 0 and p.�1/ > 0,
(b) DC1 D 1C p0 > 0 and D�1 D 1 � p0 > 0,
(c) DC3 D .1 � p0/.1C p0/.p2 C 1C p0/C .p0p3 � p1/.p3 C p1/ > 0,
(d) D�3 D .1 � p0/

2.1C p0 � p2/C .p0p3 � p1/.p1 � p3/ > 0.

Theorem 2.1
Let .Nx, Ny/ the positive equilibrium point of system (2.2) and

2’2 < ’1, d1 < r2,
.’1 � ’2/.r2 � d1/

r2
2

< K2 <
.’1 � ’2/

r2
.
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The positive equilibrium point of the system is local asymptotically stable if

r2 < r1 < ln

�
’1

2’2

�
and

’2
1 .2er1 C 1/ .er1 � 1/

r1K2r2e2r1
< K1 <

’1 � ’2

r1
.

Proof
From characteristic equation (2.5), we can write

p3 D �e�K1r1Nx � e�K2r2Ny, p2 D e�K2r2Ny�K1r1Nx C
�

1 � e�K1r1Nx
	 �

1 � e�K2r2Ny
	 ’2

2

K1r1K2r2
,

p1 D
�

1 � e�K1r1Nx
	 �

1 � e�K2r2Ny
	 �2’1’2

K1r1K2r2
, p0 D

�
1 � e�K1r1Nx

	 �
1 � e�K2r2Ny

	 ’2
1

K1r1K2r2
.

By Theorem A(a), we have

p.1/ D
�

1 � e�K1r1Nx
	 �

1 � e�K2r2Ny
	� .’1 � ’2/

2

K1r1K2r2
C 1

�
> 0,

p.�1/ D
�

1 � e�K1r1Nx
	 �

1 � e�K2r2Ny
	� .’1 C ’2/

2

K1r1K2r2

�
C
�

1C e�K1r1Nx
	 �

1C e�K2r2Ny
	
> 0.

It can be easily seen that (a) always holds. Analyzing Theorem A(b), we get

DC1 D 1C
�

1 � e�K1r1Nx
	 �

1 � e�K2r2Ny
	 ’2

1

K1r1K2r2
> 0, (2.6)

D�1 D 1 �
�

1 � e�K1r1Nx
	 �

1 � e�K2r2Ny
	 ’2

1

K1r1K2r2
> 0. (2.7)

It is obvious that equation (2.6) always exists. If

eK2r2Ny <
’2

1

’2
1 � K1r1K2r2

, (2.8)

then (2.7) holds, where

K1 <
’2

1

r1K2r2
. (2.9)

From Theorem A(c), we hold

DC3 D

�
1C

�
1 � e�K1r1Nx

	 �
1 � e�K2r2Ny

	 ’2
1

K1r1K2r2

��
1 �

�
1 � e�K1r1Nx

	 �
1 � e�K2r2Ny

	 ’2
1

K1r1K2r2

�

�

�
1C e�K2r2Ny�K1r1Nx C

�
1 � e�K1r1Nx

	 �
1 � e�K2r2Ny

	� ’2
2 C ’

2
1

K1r1K2r2

��

C

 �
1 � e�K1r1Nx

	 �
1 � e�K2r2Ny

	 ’2
1e�K1r1Nx � 2’1’2 C ’

2
1e�K2r2Ny

K1r1K2r2

!!

�

�
e�K1r1Nx C e�K2r2Ny C

�
1 � e�K1r1Nx

	 �
1 � e�K2r2Ny

	 2’1’2

K1r1K2r2

�
> 0.

(2.10)

It is shown that (2.10) holds if

’2
1e�K1r1Nx � 2’1’2 > 0. (2.11)

If we consider (2.11) with ’1 > 2’2, then we have

r1 < ln

�
’1

2’2

�
. (2.12)
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Analyzing (d) of Theorem A, we have

D�3 D

�
1 �

�
1 � e�K1r1Nx

	 �
1 � e�K2r2Ny

	 2’2
1

K1r1K2r2

��
1 � e�K2r2Ny�K1r1Nx

	

�

 �
1 � e�K2r2Ny

	 ’2
1

�
e�K1r1Nx C e�K2r2Ny

�
� 2’1’2

K1r1K2r2

!�
1 � e�K1r1Nx

	 �
e�K1r1Nx C e�K2r2Ny

	

C

 �
1 � e�K1r1Nx

	2 �
1 � e�K2r2Ny

	2
�

’2
1

K1r1K2r2

�2
!�

1 � e�K2r2Ny�K1r1Nx
	

C

�
1 �

�
1 � e�K1r1Nx

	 �
1 � e�K2r2Ny

	 ’2
1

K1r1K2r2

�2 ��
1 � e�K1r1Nx

	 �
1 � e�K2r2Ny

	� ’2
1 � ’

2
2

K1r1K2r2

��

C

 �
1 � e�K1r1Nx

	2 �
1 � e�K2r2Ny

	2 ’2
1

�
e�K1r1Nx C e�K2r2Ny

�
� 2’1’2

K1r1K2r2

2’1’2

K1r1K2r2

!
> 0.

(2.13)

If

1 �
�

1 � e�K1r1Nx
	 �

1 � e�K2r2Ny
	 2’2

1

K1r1K2r2
> 0, (2.14)

1 �
�

1 � e�K1r1Nx
	 �

1 � e�K2r2Ny
	 2’2

1

K1r1K2r2
>
�

1 � e�K2r2Ny
	 ’2

1

�
e�K1r1Nx C e�K2r2Ny

�
� 2’1’2

K1r1K2r2
(2.15)

and

1 � e�K2r2Ny�K1r1Nx >
�

1 � e�K1r1Nx
	 �

e�K1r1Nx C e�K2r2Ny
	

, (2.16)

then (2.13) holds. Computing (2.8), (2.14), (2.15), and (2.16) with the fact r1 > r2, we get

eK2r2Ny <
2’1q

9’2
1 � 4K1r1K2r2 � ’1

<
2’2

1

2’2
1 � K1r1K2r2

<
’2

1

’2
1 � K1r1K2r2

, (2.17)

which reveal that

K1 >
’2

1 .2er1 C 1/ .er1 � 1/

r1K2r2e2r1
, (2.18)

and

K2 <
’1 � ’2

r2
. (2.19)

Under the conditions

.’1 � ’2/.r2 � d1/

r2
2

< K2 <
’1 � ’2

r2
,

we can write

.’1 � ’2/.r2 � d1/

r2K2
< r2 < r1 < ln



’1

2’2

�
.

By (2.18) and (2.9), we have

’2
1 .2er1 C 1/ .er1 � 1/

r1K2r2e2r1
< K1 <

.’1 � ’2/

r1
, (2.20)

where

K1 <
.’1 � ’2/

r1
<

’2
1

r1K2r2
.

This completes the proof.
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Figure 1. Graph of the iteration solution of x.n/ and y.n/.

Example 1
In order to determine parameter values with the biological facts, we consider a mathematical model given in [21, 22] for describing
tumor and cytotoxic T lymphocytes (CTLs), which are main struggle cells of the immune system. To test the conditions of Theorem 2.1,
most of the parameter values are taken from the study [21] as r1 D 0.18 day�1, r2 D 0.1045 day�1, k1 D 5x106 cells, k2 D 3x106 cells,
d1 D 0.0412 day�1, ’2 D 3.422x10�9 cells�1day�1, and ’1 is estimated as 4.65x10�8 cells�1day�1. Here, r1 and k1 represent growth
rate and carrying capacity of tumor cells respectively. r2, k2, and d1 are growth rate, carrying capacity, and death rate of CTLs respec-
tively. The parameter ’1 denotes decay rate of tumor cells by CTLs, and parameter ’2 represents decay rate of CTLs by tumor cells.
Using these parameter values and initial conditions x.1/ D 1x106, x.2/ D 1.25x106, y.1/ D 3.1x106, and y.2/ D 3.3x106, the equilib-
rium point .Nx, Ny/ D .1.13938x106, 3.22629x106/ is local asymptotically stable where x.n/ and y.n/ represent tumor and CTLs population
density respectively (Figure 1).

Theorem 2.2
Let fx.n/, y.n/g1nD�1 be a positive solution of system (2.2). Suppose that 0 < r1 � ’1y.n � 1/ C ’2y.n/ < 1 < r1K1x.n/ and 0 <

r2 C ’1x.n � 1/ � ’2x.n/�d1 < 1 < r2K2y.n/ for n D 0, 1, 2, 3 : : :. Then, every solution of (2.2) is bounded, that is,

x.n/ 2

�
0,

1

r1K1.1 � e�1/

�
and y.n/ 2

�
0,

1

r2K2.1 � e�1/

�
.

Proof
Because fx.n/, y.n/g1nD�1 > 0 and 0 < r1 � ’1y.n � 1/C ’2y.n/ < 1, it follows that

e�1 < e�.r1�’1y.n�1/C’2y.n// < 1. (2.21)

Furthermore, we have

� r1K1x.n/ < r1 � ’1y.n � 1/C ’2y.n/ � r1K1x.n/ < 0. (2.22)

Considering both (2.21) and (2.22), we get

x.nC 1/ D
x.n/.r1 � ’1y.n � 1/C ’2y.n//

.r1 � ’1y.n � 1/C ’2y.n/ � r1K1x.n//e�.r1�’1y.n�1/C’2y.n// C r1K1x.n/

<
x.n/

.r1 � ’1y.n � 1/C ’2y.n/ � r1K1x.n//e�.r1�’1y.n�1/C’2y.n// C r1K1x.n/

<
x.n/

.r1 � ’1y.n � 1/C ’2y.n/ � r1K1x.n//e�1 C r1K1x.n/

<
x.n/

�r1K1x.n/e�1 C r1K1x.n/

D
1

r1K1.1 � e�1/
.

Likewise, it can be shown that y.n/ 2
�

0, 1
r2K2.1�e�1/

	
.
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Theorem 2.3
Let fx.n/, y.n/g1nD�1 be a positive solution of system (2.2). The following statements are true.

(i) If r1 � ’1y.n � 1/C ’2y.n/ < 0 and r2 C ’1x.n � 1/ � ’2x.n/ � d1 < 0 for n D 0, 1, 2, 3 : : : , then the solutions of system (2.2)
decrease monotonically to the positive equilibrium point.

(ii) If r1 � ’1y.n � 1/ C ’2y.n/ > r1K1x.n/ > 0 and r2 C ’1x.n � 1/ � ’2x.n/ � d1 > r2K2y.n/ > 0 for n D 0, 1, 2, 3 : : :, then the
solutions of system (2.2) increase monotonically to the positive equilibrium point.

Proof

(i) From the first equation in (2.2), we can write

x.nC 1/

x.n/
D

A

.A � r1K1x.n//e�A C r1K1x.n/
,

where A D r1 � ’1y.n � 1/C ’2y.n/ < 0. Because Ae�A C r1K1x.n/.1 � e�A/ < 0, we get

.�AC r1K1x.n//e�A � r1K1x.n/C A D .e�A � 1/.r1K1x.n/ � A/ > 0.

This implies that x.nC 1/ < x.n/ Similarly, It can be easily seen that if r2 C ’1x.n � 1/ � ’2x.n/ � d1 < 0, then y.nC 1/ < y.n/.
(ii) The proof is similar with (i) and will be omitted.

Theorem 2.4
Let the conditions of Theorem 2.1 hold. Moreover, assume that

r1 � ’1y.n � 1/C ’2y.n/ > 0 and r2 C ’1x.n � 1/ � ’2x.n/ � d1 > 0.

If

r1K1x.n/ < r1 � ’1y.n � 1/C ’2y.n/ < ln

�
2Nx � x.n/

x.n/

�
,

r2K2y.n/ < r2 C ’1x.n � 1/ � ’2x.n/ � d1 < ln

�
2Ny � y.n/

y.n/

�
,

and

x.n/ < Nx, y.n/ < Ny

then the positive equilibrium point system (2.2) is global asymptotically stable.

Proof
Let Nz D .Nx, Ny/ is positive equilibrium point system (2.2), and we consider a Lyapunov function V.n/ defined by

V.n/ D .Z.n/ � Nz/2 n D 0, 1, 2 : : :

The change along the solutions of the system is

�V.n/ D V.nC 1/ � V.n/

D fZ.nC 1/ � Z.n/g fZ.nC 1/C Z.n/ � 2Nzg .

From the first equation in (2.2), we get

�V1.n/ D fx.nC 1/ � x.n/g fx.nC 1/C x.n/ � 2Nxg

D x.n/.A1 � r1K1x.n//
�
1 � e�A1

�� ˚
A1

�
x.n/C x.n/e�A1 � 2Nxe�A1

�
C r1K1x.n/ .x.n/ � 2Nx/

�
1 � e�A1

��
,

(2.23)

where A1 D r1 � ’1y.n � 1/C ’2y.n/ > 0.
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Under the following conditions,

A1 > r1K1x.n/, x.n/ < 2Nx (2.24)

and

A1 < ln

�
2Nx � x.n/

x.n/

�
, (2.25)

we have�V1.n/ < 0, where x.n/ < Nx. Similarly, it can be shown that

�V2.n/ D fy.nC 1/ � y.n/g fy.nC 1/C y.n/ � 2Nyg < 0.

As a result, we obtain�V.n/ D .�V1.n/�V2.n// < 0.

Example 2
From Theorem 2.4, we can use the parameter values in Example 1 and x.1/ D 1x105, x.2/ D 1x105, y.1/ D 2x106, y.2/ D 2x106. The
graph of the first 200 iterations of system (2.2) is given in Figure 2. It can be shown that under the conditions given in Theorem 2.4, the
equilibrium point .Nx, Ny/ D .1.13938x106, 3.22629x106/ is global asymptotically stable.
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Figure 2. Graph of the iteration solution of x.n/ and y.n/. Parameter values are taken from Example 1.
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Figure 3. Graph of Neimark–Sacker bifurcation of system (2.2) for (a) r11 D 0.745271, (b) r12 D 1.86297, where k1 D 5x107, x.1/ D 3.3x106, x.2/ D 3.4x106,
y.1/ D 5x106, y.2/ D 5.1x106, and the other parameters are taken from Example 1.
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3. Neimark–Sacker bifurcation analysis

The Neimark–Sacker bifurcation is extremely important in the context of discrete biological models because periodic or quasi-periodic
solutions commonly arise as a consequence of this bifurcation of a limit cycle. For this bifurcation, characteristic equation has a pair of
complex conjugate eigenvalues on the unit circle, and all other eigenvalues are inside the circle. The following theorem that is called
Schur–Cohn criterion gives necessary and sufficient conditions of Neimark–Sacker bifurcation for the characteristic equation (2.5).

Theorem B ([20])
A pair of complex conjugate roots of p.œ/ lie on the unit circle and the other roots of p.œ/ all lie inside the unit circle if and only if

(a) p.1/ > 0 and p.�1/ > 0,
(b) DC1 D 1C p0 > 0 and D�1 D 1 � p0 > 0,
(c) DC3 D .1 � p0/.1C p0/.p2 C 1C p0/C .p0p3 � p1/.p3 C p1/ > 0,
(d) D�3 D .1 � p0/

2.1C p0 � p2/C .p0p3 � p1/.p1 � p3/ D 0.

We have already seen that conditions of Theorem B(a) and DC1 > 0 of Theorem B(b) are always satisfied in the local stability analysis.
The other conditions are analyzed numerically for different values of k1 in the following examples.
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Figure 4. Bifurcation diagram of the system for k1 D 5x107. The other parameters and initial conditions are the same as those in Figure 3.
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Figure 5. Graph of iteration solution of the system for r1 D 0.52, where k1 D 5x107. The other parameters and initial conditions are the same as those in Figure 3.
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Figure 6. Graph of Neimark-Sacker bifurcation of system (2.2) for r1 D 0.44783, where k1 D 5x108. The other parameters and initial conditions are the same as
those in Figure 3.
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Figure 7. Bifurcation diagram of the system for k1 D 5x108. The other parameters and initial conditions are the same as those in Figure 3.

Example 3
Solving D�3 D 0 for k1 D 5x107, we have two values of r1, that is, r11 D 0.745271 and r12 D 1.86297. Furthermore, we have also
D�1 D 0.782941 > 0, DC3 D 2.10588 > 0 for r11 and D�1 D 0.481273 > 0, DC3 D 1.61757 > 0 for r12 . Figure 3a and b shows that r11 is
the Neimark–Sacker bifurcation point of the system with the complex eigenvalues jœ1,2j D j � 0.184778˙ 0.427687ij D 0.465896 < 1,
jœ3,4j D j0.924869 ˙ 0.380286ij D 1, and r12 is the another Neimark-Sacker bifurcation point with the complex eigenvalues jœ1,2j D

j � 0.395606˙ 0.601849ij D 0.720227 < 1, jœ3,4j D j0.836241˙ 0.548363ij D 1 respectively.
The behavior of model before a Neimark–Sacker bifurcation at r1 D 0.52 is shown in Figure 5. From Figure 5, we deduce

that solutions of the system have damped oscillations and the positive equilibrium point is local asymptotically stable. These
damped oscillations persist up to r1 D r11 D 0.745271. If r1 is increased beyond this value, the norm of dominant eigenval-
ues of the system is greater than 1 for 0.745271 < r1 < 1.86297 (Figure 4). This shows that the positive equilibrium point of
the system is unstable for this region. For r1 > r12 D 1.86297, norm of this eigenvalues again are less than 1, and the system
becomes stable.

Now, we compute a bifurcation point of system for k1 D 5x108 in the following example.
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Example 4
For k1 D 5x108, if we solve D�3 D 0, then we have r1 D 0.44783. Clearly, for this r1, we have also D�1 D 0.873197 > 0 and DC3 D
2.12931 > 0. Figure 6 shows that r1 is the Neimark–Sacker bifurcation point of the system with the complex eigenvalues jœ1,2j D

j � 0.11228˙ 0.337929ij D 0.356094 < 1, jœ3,4j D j0.959058˙ 0.283211ij D 1.
After the bifurcation point, the system bifurcates to unstable situation, and no more stable dynamics or stable periodic orbits are

available (Figure 7).

4. Results and discussion

In this paper, we consider a system of differential equations with piecewise constant arguments that is based on Lotka–Volterra
competition-like model. Using Schur–Cohn criterion, we give some specific conditions for local asymptotic stability of the positive
equilibrium point of the system in Theorem 2.1. To test these conditions, parameter values are taken from a mathematical model given
in [21] for describing competition between tumor and CTLs, which are major cells of the immune system. Under the conditions of
Theorem 2.1, it is observed that tumor cell .x.n// and CTLs .y.n// populations coexist as a stable steady state (Figure 1). Moreover,
it is shown that the global stability of the system depends on initial cell density of the tumor and CTLs populations in conditions of
Theorem 2.4 (Figure 2).

Because the parameter k1 (carrying capacity of tumor population) and parameter r1 (growth rate of tumor population) have a strong
effect on the stability of the system, we choose parameter r1 as a bifurcation parameter and investigate Neimark–Sacker bifurcation
point of the system for different values of k1. For k1 D 5x107, bifurcation points of the system are obtained as r11 D 0.745271 and
r12 D 1.86297 (Figures 3 and 4). In the region r1 < r11, the solutions of the system have damped oscillations that give way to a
stable spiral (Figure 5). If growth rate of tumor population .r1/ is increased beyond the bifurcation point, then the positive equilibrium
point of system (2.2) is unstable until r1 D r12 D 1.86297. For r1 > r12, the system again tends to stable situation as a result of
competition between tumor and CTLs populations (Figure 4). On the other hand, for k1 D 5x108, the solutions of the system exhibit
different dynamic behaviors where the system bifurcates to unstable situation at the Neimark–Sacker bifurcation point r1 D 0.44783
(Figure 6). If r1 is increased beyond this value, the system has chaotic behavior, which means that the population behavior cannot be
predicted (Figure 7).

As seen from the aforementioned theoretical and numerical results, the parameters r1 and k1 play a key role on the dynamics of the
system. As the growth rate of tumor increases, tumor cells need more space and will want to increase carrying capacity .k1/. When k1

reaches from 5x106 to 5x107, CTLs can suppress tumor populations, and the system tends to stable situation as a result of interaction
between two populations (Figure 4). On the other hand, if k1 reaches to 5x108, CTLs cannot suppress tumor populations in the interval
r1 > 0.44783, and chaotic behavior occurs for the system (Figure 7).
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