Stability and bifurcations analysis of a competition model with piecewise constant arguments

Basit öğe kaydını göster

dc.contributor.author Senol Kartal
dc.contributor.author Fuat Gurcan
dc.date.accessioned 2021-06-01T11:38:19Z
dc.date.available 2021-06-01T11:38:19Z
dc.date.issued 2015-12-12
dc.identifier.uri http://hdl.handle.net/20.500.11787/1954
dc.description.abstract In this paper, we investigate local and global asymptotic stability of a positive equilibrium point of system of differential equations where t ≥ 0, the parameters r1, k1, α1, α2, r2, k2, and d1 are positive, and [t] denotes the integer part of t ∈ [0, ∞ ). x(t) and y(t) represent population density for related species. Sufficient conditions are obtained for the local and global stability of the positive equilibrium point of the corresponding difference system. We show through numerical simulations that periodic solutions arise through Neimark–Sacker bifurcation. tr_TR
dc.language.iso eng tr_TR
dc.publisher Wİley-blackwell tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Logistic equations tr_TR
dc.subject Piecewise constant arguments tr_TR
dc.subject Stability tr_TR
dc.subject Bifurcation tr_TR
dc.title Stability and bifurcations analysis of a competition model with piecewise constant arguments tr_TR
dc.type article tr_TR
dc.contributor.department Nevşehir Hacı Bektaş Veli Üniversitesi/eğitim fakültesi/matematik ve fen bilimleri eğitimi bölümü/matematik eğitimi anabilim dalı tr_TR
dc.contributor.authorID 48727 tr_TR
dc.identifier.volume 38 tr_TR
dc.identifier.issue 9 tr_TR
dc.identifier.startpage 1855 tr_TR
dc.identifier.endpage 1866 tr_TR


Bu öğenin dosyaları

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster