dc.contributor.author |
Senol Kartal |
|
dc.contributor.author |
Fuat Gurcan |
|
dc.date.accessioned |
2021-06-01T11:38:19Z |
|
dc.date.available |
2021-06-01T11:38:19Z |
|
dc.date.issued |
2015-12-12 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.11787/1954 |
|
dc.description.abstract |
In this paper, we investigate local and global asymptotic stability of a positive equilibrium point of system of differential equations
where t ≥ 0, the parameters r1, k1, α1, α2, r2, k2, and d1 are positive, and [t] denotes the integer part of t ∈ [0, ∞ ). x(t) and y(t) represent population density for related species. Sufficient conditions are obtained for the local and global stability of the positive equilibrium point of the corresponding difference system. We show through numerical simulations that periodic solutions arise through Neimark–Sacker bifurcation. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Wİley-blackwell |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Logistic equations |
tr_TR |
dc.subject |
Piecewise constant arguments |
tr_TR |
dc.subject |
Stability |
tr_TR |
dc.subject |
Bifurcation |
tr_TR |
dc.title |
Stability and bifurcations analysis of a competition model with piecewise constant arguments |
tr_TR |
dc.type |
article |
tr_TR |
dc.contributor.department |
Nevşehir Hacı Bektaş Veli Üniversitesi/eğitim fakültesi/matematik ve fen bilimleri eğitimi bölümü/matematik eğitimi anabilim dalı |
tr_TR |
dc.contributor.authorID |
48727 |
tr_TR |
dc.identifier.volume |
38 |
tr_TR |
dc.identifier.issue |
9 |
tr_TR |
dc.identifier.startpage |
1855 |
tr_TR |
dc.identifier.endpage |
1866 |
tr_TR |