dc.contributor.author |
Senol Kartal |
|
dc.contributor.author |
Gurcan Fuat |
|
dc.date.accessioned |
2021-06-01T11:35:45Z |
|
dc.date.available |
2021-06-01T11:35:45Z |
|
dc.date.issued |
2015-08-01 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.11787/1953 |
|
dc.description.abstract |
The present study deals with the analysis of a predator–prey like model consisting of system of differential equations with piecewise constant arguments. A solution of the system with piecewise constant arguments leads to a system of difference equations which is examined to study boundedness, local and global asymptotic behaviour of the positive solutions. Using Schur–Cohn criterion and a Lyapunov function, we derive sufficient conditions under which the positive equilibrium point is local and global asymptotically stable. Moreover, we show numerically that periodic solutions arise as a consequence of Neimark-Sacker bifurcation of a limit cycle. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
TAYLOR & FRANCIS AS |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Piecewise constant arguments |
tr_TR |
dc.subject |
Difference equation |
tr_TR |
dc.subject |
Stability |
tr_TR |
dc.subject |
Bifurcation |
tr_TR |
dc.title |
Global behaviour of a predator-prey like model with piecewise constant arguments |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Journal of bıologıcal dynamıcs |
tr_TR |
dc.contributor.department |
Nevşehir Hacı Bektaş Veli Üniversitesi/eğitim fakültesi/matematik ve fen bilimleri eğitimi bölümü/matematik eğitimi anabilim dalı |
tr_TR |
dc.contributor.authorID |
48727 |
tr_TR |
dc.identifier.volume |
9 |
tr_TR |
dc.identifier.issue |
1 |
tr_TR |
dc.identifier.startpage |
159 |
tr_TR |
dc.identifier.endpage |
171 |
tr_TR |