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Abstract 

Microplastics are less than 5 mm in length and are polymer chains containing 

carbon and hydrogen atoms. It poses a direct and indirect danger to all living things 

in the ecosystem. It is found in products such as microplastics, synthetic clothes, 

plastic bags and bottles, some cleaners, health and beauty products, toothpaste and 

causes both soil and water pollution from wastewater systems and solid waste. This 

situation not only threatens the life of creatures living in aquatic ecosystems such 

as rivers, lakes, seas, and oceans but also penetrates the human body through the 

food chain, causing various health problems, especially cancer. As with all 

environmental pollutants, microplastics need to reduce pollution at the source. In 

this research, treatment methods applied to remove microplastics that cannot be 

prevented at source from the water ecosystem were investigated and evaluated. 

According to the results, in wastewater treatment plants, the highest efficiency of 

microplastic removal is provided by membrane bioreactors. However, by imitating 

the microplastic removal capabilities and structures of living things in nature, 

studies on the discovery of new methods of microplastic removal can also be 

conducted. 

 Keywords: Activated sludge, Sand filter, Membrane bioreactor, Microplastics 

1. Introduction  

Plastics are synthetic or semi-synthetic organic components that we encounter at every point of our daily life 

from textiles to cosmetics, from furniture to packaging [1]. It poses a problem both physically and toxic for the 

environment and living things as it contains phthalate, bisphenol A and polybrominated diphenyl ether. 

However, microplastics (MPs) formed by breaking down smaller sized plastics by different methods can create 

bigger problems for living things such as accumulation, immune response, respiratory problems and chemical 

leaching [2]. Besides, they cause slow growth and reproduction of algae in aquatic environments, structural 

deformation of water fleas, and obstruction of the respiratory tract of gill marine creatures. 

MPs can be of different sizes, different types, and different densities. The transformation of plastics into MPs 

takes place with anthropogenic effects, natural effects such as water, air, wind, sun (UV). As they can be in a 

primary form such as direct use (personal care products (1 mm - 4 mm microbeads), scrubs, toothpaste, 

industrial raw materials) or indirect use (pellets); it can also be in secondary forms such as car tires, boat paint, 

etc. formed by fragmentation of larger plastic items, fibers from washing machines. 

MPs are pollutants that degrade slowly in water and soil. It has a long residence time, high stability, high 

disintegration potential in their environment, and can adsorb other pollutants [3]. Since their density is less than 

water, they move on the water surface. It has been stated that in deep-sea sediments there is 1 MP in every 25 

mL, microplastics are found even at a depth of 1176 - 2843 m [4]. The fact that MPs consist of smaller particles 

creates a disadvantage in removal. Also, it is not possible to see colorless transparent MPs in the aquatic 

environment unless they are looked at carefully. However, MPs can be transported from one end of the world 
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to the other by winds and ocean currents. As a result of not disposing of wastes by appropriate methods such as 

landfills, MPs spread to soil and water resources. They pose a higher risk of adding to the food chain than plastic 

materials. It is an important problem that it is taken into the organism voluntarily or unintentionally by aquatic 

creatures by mixing with the soil structure and the water environment. Living things that feed on very small 

pieces of food, feel their stomachs full and die as a result of malnutrition [5].   In addition to breaking down 

plastics, resins in the form of pellets are produced as industrial raw materials. Pellets are melted in industrial 

facilities and transformed into products such as plastic bottles, caps, bags and packaging. Production debris that 

may occur during the transport and processing of these pellets is also a source of MP pollution. These 

microplastics are also mixed into the food chain by passing into the water environment through the sewage 

system. MPs are found in nature as primary MPs as household personal care products and industrial raw 

materials and secondary MPs by degrading by physical, chemical and biological processes in the environment 

[6].  

In this study, the number of microplastics found in wastewater treatment plants and the treatment methods used 

to remove microplastics in the literature were investigated and some methods used in microplastic 

characterization were mentioned. 

2. Microplastics 

2.1. Classification of microplastics 

MPs are classified according to their physical and chemical characters. Physical characterization gives size 

distribution and shows shape and color properties. Chemical characterization allows us to discover the 

composition of MPs [7]. 

According to their dimensions, they are divided into three classes as nano plastics (<1 µm), microplastics (<5 

mm) and mesoplastics (> 5 mm) [8]. According to their shapes, they are divided into six classes as a particle 

(hard and sharp plastic particles), film (thin and light surface particles), foam (thin and light foam plastic 

particles), fiber (thin and light plastic particles), yarn (fine and durable fiber particles), pellet (hard and round 

plastic particles) [9], [10]. The size of MPs is important in terms of their removal from wastewater treatment 

plants. While plastic wastes are removed from the wastewater with coarse filters, MPs with a size smaller than 

5 mm can be discharged into aquatic environments by passing through the treatment unit. However, MPs, which 

are formed as a result of the breakdown of colorless plastics, are difficult to detect compared to colored MPs, 

since they are invisible in an aquatic environment, requiring first filtering using a very fine sieve and then 

classifying shape, color and size with a microscope [10]. Advanced treatment methods should be determined 

according to the results obtained. 

3. Removal methods of MPs 

3.1. Natural removal of MPs in nature 

MPs can be kept naturally by the creatures in the water and removed from the water environment. The method 

of removal carried out in this way is called sorption. The biological treatment of MPs is based on sludge 

consumption by microorganisms. It exhibits sludge hydrolysis, acetic acid accumulation, hydrogen production 

and methane production. 

Studies have shown that a microalga called Fucus Vesiculosus holds microplastics of about 20 µm in size. This 

adhesion was achieved with alginate compounds released from cell walls [11]. Alginate, an anionic 

polysaccharide substance, enables polystyrene type MPs to stick to the seaweed surface. Pseudokirchneriella 

Subcapitata, another green alga, keeps positively charged microplastics on its surface [12]. This adhesion 

depends on the surface load of the particles attached to the algae. If MPs are positively charged, they provide 

more effective adhesion depending on the presence of anionic polysaccharides in algae chemical structure. 

Ingestion of MPs by organisms is still not considered a disposal strategy, but Red Sea giant oysters allow MPs 

to be absorbed in shells as well as degradation in the digestive system [3]. 

3.2. MPs in wastewater treatment plants 

Since MPs are small in size and their types vary, it is not possible to purify only from a coarse filter in wastewater 

treatment plants (WWTP). Therefore, advanced technologies are needed in treatment. However, MPs constitute 

a large part of the wastes in WWTP [13], [14]. 30 types of MPs have been identified in WWTP so far. The most 

detected type is polyethylene sulfone (PES) with 89% (Table 1) [10]. 
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Table 1. According to the results of 42 studies, the most common types of MPs in the aquatic environment 

[10] 

Polymer type % of studies (n) 

Polyethylene (PE) 79 (33) 

Polypropylene (PP) 64 (27) 

Polystyrene (PS) 40 (17) 

Polyamide (nylon) (PA) 17 (7) 

Polyester (PES) 10 (4) 

Acrylic (AC) 10 (4) 

Polyoxymethylene (POM) 10 (4) 

Polyvinyl alcohol (PVA) 7 (3) 

Polyvinyl chloride (PVC) 5 (2) 

Polymethyl acrylate (PMA) 5 (2) 

Polyethylene terephthalate (PET) 2 (1) 

Alkyd (AKD) 2 (1) 

Polyurethane (PU) 2 (1) 

 

Physical treatment methods such as advanced filtration, biological treatment and chemical treatment methods 

are applied for the removal of microplastics in wastewater. In the physical treatment, aeration tank [3], [15], 

sedimentation tank [3], [15], [16], flotation [3] and filtration [3] methods; in the chemical treatment, coagulation 

and agglomeration using Fe3+ and Al3+ ions [17], [18], TiO2, ZnO, NaI ve ZnCl ions [7]; in the biological 

treatment, conventional active sludge, A2O (anoxic, aerobic, anaerobic) methods [16], [19] and in advanced 

treatment, denitrification, ultrafiltration, ozone and UV methods [16], [18], [19] were used frequently. In a 

wastewater treatment plant study, consisting of influent, grit and grease removal unit, primary settling tank and 

aeration basin, clarification and outfall units, respectively, the daily and annual microplastic amounts from each 

unit and the percentage MP removal rates from each unit are given in Table 2. 

Table 2. MP removal amounts and rates in a wastewater treatment plant [20] 

Units MP/L Million MP/Day Million MP/Year %Removal 

Influent 15.70 4,097 1,495,397 0.00 

Grit and grease removal 8.70 2,270 828,559 44.59 

Primary settling tank 3.40 887 323,844 78.34 

Aeration basin+ clarification + outfall 0.25 65 23,812 98.41 

 

In another study by Talvitie et al. conducted the rate of MPs removed in each unit is given in Table 3 [19]. 

According to Table 3, MP removal efficiency in wastewater treated separately from disc filters, rapid sand filter, 

dissolved air flotation and membrane bioreactor has reached up to 99.9% in treatment with membrane bioreactor 

(MBR). In another study, a dynamic membrane was used for the removal of MPs, but it was stated that new 

methods should be developed in terms of energy [21]. 

Table 3. MP removal amounts and rates in a WWTP [19] 

Treatment Effluent type Before (MP/L) After (MP/L) Removal (%) 

Disk filter 10a Secondary 0.5 0.3 40.0 

Disk filter 20a Secondary 2.0 0.03 98.5 

Rapid sand filter Secondary 0.7 0.02 97.1 

Dissolved air flotation Secondary 2.0 0.1 95.0 

Membrane bioreactor Primary 6.9 0.005 99.9 

  Data are given in the number of microplastics per liter of effluent 
  aPore size in µm 
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Figure 1. Comparison of removal of MPs in different wastewater treatment units 

In a study by Gurung et al. conducted by wastewater regarding the removal of MPs from wastewater, removal 

efficiency of 98.3% was determined when the last treatment unit was conventional active sludge, while this 

removal efficiency increased to 99.4% when the last unit was MBR (Figure 1) [15].  

In China, 90% of MPs removal was achieved when flotation and sedimentation + filtration were applied. The 

removal efficiency at the exit of the facility has been determined as 97.15%. The most removed MPs were 

determined as fiber rayon and polyethylene terephthalate [3]. 

In another MP treatment study in China, with the aerated grit chamber, primary and secondary precipitation 

such as anaerobic, anoxic and aerobic treatment following A2O treatment were used. Finally, MP removal and 

the cycle is completed with advanced treatment technologies including denitrification, ultrafiltration, ozonation 

and UV. The most abundant MP in wastewater was determined as polyethylene terephthalate with 42.26%. 

While 58.84% MP was removed in the first treatment step in the aerated sand chamber, this rate reached 71.67% 

in further treatment [16]. This rate has been determined as 95.16% in WWTP and 99.9% after the MBR unit 

[22].  

In a study conducted by Ma et al, chemical treatment of MPs was carried out using Al3+ and Fe3+ salts. 

Polyacrylamide (PAM) was also added in the treatment unit and it was observed that the treatment efficiency 

was enhanced. However, it was found that Al3+ ions are more effective than Fe3+ ions [3], [18]. It was seen that 

removal efficiency was affected by factors such as coagulant type, pH, chemical composition and concentration. 

In another study, MPs are separated from synthetic wastewater by membranes. The membrane pore diameter 

was 90 µm. The turbidity of wastewater has been reduced from 195 NTU to less than 1 NTU in 20 minutes [3]. 

However, MBRs provide higher removal capacity. 99.9% removal efficiency has been achieved with the 

combination of the porous membrane. 

4. MPs analysis methods in wastewater 

FTIR is the most widely used method for MPs characterization in WWTPs. It gives an idea of MP composition 

through to its wavelength. FTIR and electron microscopy analyzes are widely used to illuminate any structural 

changes during the degradation process. The observation of hydroperoxide and hydroxyl groups, carbonyl 

groups and double bond characteristic bands in FTIR models of treated MPs suggests the oxidative mechanism 

for biological removal [1]. 

Raman Spectroscopy, one of the most frequently used methods in MP characterization, provides information in 

the form of a vibration spectrum with molecular vibrations in the structure of MP [23]. Raman Spectroscopy 

can be applied to a wide variety of particle sizes up to 1 mm with existing instrumentation and provides a robust 

method for describing chemical composition. Also, Raman Spectroscopy-based microscopy techniques offer 

the possibility to place MPs even at the subcellular level in living organisms [1]. However, the requirement to 
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purify the samples poses a disadvantage for Raman Spectroscopy. 

Another method is Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) analysis. 

It can be used to provide information about the surface morphology of MPs and determine the basic composition 

of polymers based on the radiation diffraction and reflection emitted from the MP surface. SEM-EDS has 

become an indispensable tool for the identification and characterization of MP particles. This powerful 

technique has led researchers to conclude that the early stages of plastic debris degradation progress quite 

rapidly to the production of microplastic particles, with the resulting pollutants, clearly threatening biota life 

[1]. 

5. Conclusion 

When sorption and filtration are combined with MBR, a high rate of purification is provided. Conventional 

activated sludge provides lower purification than MBR. However, the energy requirement for MBR leads to the 

investigation of alternative methods. Electrocoagulation and agglomeration are also reliable methods for easy 

separation but must have a filtration treatment. Alternative treatment methods for MPs removal can be 

determined by examining the mechanisms of marine organisms to keep MPs in their bodies and remove them 

from water. 
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