GEW ve GRLW denklemlerinin sonlu elemanlar yöntemi ile sayisal çözümleri

Basit öğe kaydını göster

dc.contributor.author Zeybek, Halil
dc.contributor.author Karakoç, Seydi Battal Gazi
dc.date.accessioned 2020-11-12T11:26:06Z
dc.date.available 2020-11-12T11:26:06Z
dc.date.issued 2016-05
dc.identifier.uri http://hdl.handle.net/20.500.11787/801
dc.description.abstract Bu tez çalışmasında, GEW ve GRLW denklemleri, B-spline fonksiyonlar kullanılarak kollokasyon ve Galerkin sonlu elemanlar yöntemleri ile sayısal olarak çözüldü. Von-Neumann tekniği kullanılarak, lineerleştirilmiş algoritmaların şartsız kararlı olduğu gösterildi. Sayısal algoritmalar; tek solitary dalga, iki ve üç solitary dalganın etkileşimi, Maxwellian başlangıç şartı ile dalga oluşumu ve ardışık dalgaların gelişimini içeren örneklere uygulanarak test edildi. Sayısal algoritmaların performansını kanıtlamak için, L2 ve L∞ hata normları hesaplandı ve daha önce elde edilen sayısal sonuçlarla karşılaştırıldı. Sayısal algoritmaların kütle, momentum ve enerji ile ilgili özellikleri koruduğunu göstermek için I1, I2 ve I3 ile ifade edilen korunum sabitlerindeki değişim hesaplandı. Ayrıca, solitary dalgaların farklı zamanlardaki hareketleri grafik çizilerek gösterildi. Tez, beş bölüm olarak tasarlandı. Tezin birinci bölümünde; GEW ve GRLW denklemleri tanıtıldı, bu denklemler için kapsamlı bir literatür araştırması yapıldı. İkinci bölümde, B- spline fonksiyonlar ve özellikleri, beş farklı lineerleştirme tekniği, dalga teorisi ve sonlu elemanlar yöntemi tanıtıldı. Tezin üçüncü ve dördüncü bölümü ana metin olarak inşa edildi. Üçüncü bölümde, GEW denkleminin sonlu elamanlar yöntemi ile sayısal çözümleri elde edildi. GRLW denkleminin sonlu elemanlar yöntemi ile yaklaşık çözümleri ise dördüncü bölümde verildi. Son bölüm olan beşinci bölümde ise, elde edilen sonuçlar ve öneriler sunuldu. tr_TR
dc.description.abstract In this thesis work, GEW and GRLW equations are solved numerically by collocation and Galerkin finite element methods using B-spline functions. Using the von-Neumann technique, it is shown that the linearized algorithms are unconditionally stable. The numerical algorithms are tested by applying examples including the single solitary wave, the interaction of two and three solitary waves, the wave generation with Maxwellian initial condition and the development of an undular bore. To prove the performance of the numerical algorithms, L2 and L∞ error norms are computed and they are compared with the earlier numerical results. In order to show that the numerical algorithms conserves the properties related to mass, momentum and energy, the change in conservative quantities represented by I1, I2 and I3 is calculated. Also, the motions of solitary waves are described at different times. Thesis is designed as a five chapter. In the first part of thesis, GEW and GRLW equations are introduced, a comprehensive literature search for these equations is made. In the second chapter, B-spline functions and its properties, five different linearization techniques, wave theory and finite element method are presented. The third and fourth part of thesis are constructed as a main text. In the third chapter, the numerical solutions of the GEW equation are obtained by finite element method. The approximate solutions of the GRLW equation with finite element method are given in the fourth chapter. In last section, Section 5, the obtained results and the suggestions are offered. tr_TR
dc.language.iso tur tr_TR
dc.publisher Nevşehir Hacı Bektaş Veli Üniversitesi tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject GRLW denklemi tr_TR
dc.subject GEW denklemi tr_TR
dc.subject Sonlu elemanlar yöntemi tr_TR
dc.subject B-spline tr_TR
dc.subject Solitary dalgalar tr_TR
dc.subject GRLW equation tr_TR
dc.subject GEW equation tr_TR
dc.subject Finite element method tr_TR
dc.subject Solitary waves tr_TR
dc.title GEW ve GRLW denklemlerinin sonlu elemanlar yöntemi ile sayisal çözümleri tr_TR
dc.title.alternative Numerical solutions of the GEW and GRLW equations using finite element method tr_TR
dc.type doctoralThesis tr_TR
dc.contributor.department Nevşehir Hacı Bektaş Veli Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü/Uygulamalı Matematik Anabilim Dalı tr_TR
dc.contributor.authorID 28727 tr_TR


Bu öğenin dosyaları

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster