Quantum calculus approach to the dual bicomplex fibonacci and lucas numbers

Basit öğe kaydını göster

dc.contributor.author Köme, Sure
dc.contributor.author Köme, Cahit
dc.contributor.author Catarino, Paula M.C.
dc.date.accessioned 2022-06-13T10:51:41Z
dc.date.available 2022-06-13T10:51:41Z
dc.date.issued 2022
dc.identifier.uri http://hdl.handle.net/20.500.11787/6660
dc.description.abstract Quantum calculus, which arises in the mathematical fields of combinatorics and special functions as well as in a number of areas, involving the study of fractals and multi-fractal measures, and expressions for the entropy of chaotic dynamical systems, has attracted the attention of many researchers in recent years. In this paper, by virtue of some useful notations from q-calculus, we define the q-Fibonacci dual bicomplex numbers and q-Lucas dual bicomplex numbers with a different perspective. Afterwards, we give the Binet formulas, binomial sums, exponential generating functions, Catalan identities, Cassini identities, d'Ocagne identities and some algebraic properties for the q-Fibonacci dual bicomplex numbers and q-Lucas dual bicomplex numbers. tr_TR
dc.language.iso eng tr_TR
dc.publisher Journal of mathematical extension tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject q-Calculus tr_TR
dc.subject Dual bicomplex numbers tr_TR
dc.subject q-Fibonacci dual bicomplex numbers tr_TR
dc.subject q-Lucas dual bicomplex numbers tr_TR
dc.title Quantum calculus approach to the dual bicomplex fibonacci and lucas numbers tr_TR
dc.type article tr_TR
dc.relation.journal Journal of mathematical extension tr_TR
dc.contributor.department Nevşehir Hacı Bektaş Veli Üniversitesi/fen-edebiyat fakültesi/matematik bölümü/uygulamalı matematik anabilim dalı tr_TR
dc.contributor.authorID 274360 tr_TR
dc.identifier.volume 16 tr_TR
dc.identifier.issue 2 tr_TR
dc.identifier.startpage 1 tr_TR
dc.identifier.endpage 17 tr_TR


Bu öğenin dosyaları

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster