Application of the collocation method with b-splines to the gew equation

Basit öğe kaydını göster

dc.contributor.author Zeybek, Halil
dc.contributor.author Karakoç, Seydi Battal Gazi
dc.date.accessioned 2021-09-27T06:51:43Z
dc.date.available 2021-09-27T06:51:43Z
dc.date.issued 2017
dc.identifier.uri https://etna.math.kent.edu/vol.46.2017/pp71-88.dir/pp71-88.pdf
dc.identifier.uri http://hdl.handle.net/20.500.11787/5249
dc.description.abstract In this paper, the generalized equal width (GEW) wave equation is solved numerically by using a quintic B-spline collocation algorithm with two different linearization techniques. Also, a linear stability analysis of the numerical scheme based on the von Neumann method is investigated. The numerical algorithm is applied to three test problems consisting of a single solitary wave, the interaction of two solitary waves, and a Maxwellian initial condition. In order to determine the performance of the numerical method, we compute the error in the L2- and L∞ norms and in the invariants I1, I2, and I3 of the GEW equation. These calculations are compared with earlier studies. Afterwards, the motion of solitary waves according to different parameters is designed tr_TR
dc.language.iso eng tr_TR
dc.rights info:eu-repo/semantics/restrictedAccess tr_TR
dc.subject GEW equation tr_TR
dc.subject Solitary waves tr_TR
dc.subject Quintic B-spline tr_TR
dc.title Application of the collocation method with b-splines to the gew equation tr_TR
dc.type article tr_TR
dc.relation.journal Electronic Transactions on Numerical Analysis tr_TR
dc.contributor.department Nevşehir Hacı Bektaş Veli Üniversitesi/fen-edebiyat fakültesi/matematik bölümü/uygulamalı matematik anabilim dalı tr_TR
dc.contributor.authorID 28727 tr_TR
dc.identifier.volume 46 tr_TR
dc.identifier.startpage 71 tr_TR
dc.identifier.endpage 88 tr_TR


Bu öğenin dosyaları

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster