Statistical scenarios for demand forecast of a high voltage feeder: A comparative study

Basit öğe kaydını göster

dc.contributor.author Bayindir, Ramazan
dc.contributor.author Cetinkaya, Umut
dc.contributor.author Bulbul, Halil Ibrahim
dc.contributor.author Arslan, Fahrettin
dc.contributor.author Yeşilbudak, Mehmet
dc.date.accessioned 2021-08-24T06:46:07Z
dc.date.available 2021-08-24T06:46:07Z
dc.date.issued 2015
dc.identifier.uri http://hdl.handle.net/20.500.11787/4201
dc.description.abstract The electricity demand forecasting has gained remarkable concern in energy market operation and planning with the emergence of deregulation in the power industry. Power system operators benefit from accurate demand forecasts by supporting investment decisions more objectively. As a crucial requirement, this paper focuses on hourly demand forecasts of a high voltage feeder. Moving average (MA), weighted moving average (WMA), autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) models have been used for creating statistical demand scenarios at 1-h, 2-h, 3-h and 4-h intervals. Many constructive comparisons have been conducted among MA, WMA, ARMA and ARIMA models comprehensively. Besides, the best statistical model employed in each hourly demand scenario provides the robust improvement percentage with respect to the persistence model. tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.1109/icmla.2015.34 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject High voltage feeder tr_TR
dc.subject Demand forecast tr_TR
dc.subject Statistical methods tr_TR
dc.subject Comparative study tr_TR
dc.title Statistical scenarios for demand forecast of a high voltage feeder: A comparative study tr_TR
dc.type conferenceObject tr_TR
dc.relation.journal IEEE 14th International Conference on Machine Learning and Applications (ICMLA'15) tr_TR
dc.contributor.department Nevşehir Hacı Bektaş Veli Üniversitesi/mühendislik-mimarlık fakültesi/elektrik-elektronik mühendisliği bölümü/kontrol ve kumanda sistemleri anabilim dalı tr_TR
dc.contributor.authorID 10136 tr_TR
dc.contributor.authorID 52131 tr_TR
dc.contributor.authorID 13290 tr_TR
dc.identifier.startpage 1056 tr_TR
dc.identifier.endpage 1061 tr_TR


Bu öğenin dosyaları

Dosyalar Boyut Biçim Göster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster