dc.contributor.author |
Köme, Sure |
|
dc.contributor.author |
Köme, Cahit |
|
dc.contributor.author |
Yazlık, Yasin |
|
dc.date.accessioned |
2021-06-28T10:12:02Z |
|
dc.date.available |
2021-06-28T10:12:02Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
Köme, Sure, Cahit Köme, and Yasin Yazlik. "Dual-complex generalized k-horadam numbers." (2021). |
tr_TR |
dc.identifier.uri |
https://dergipark.org.tr/en/pub/cfsuasmas/issue/58214/780861 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.11787/3240 |
|
dc.description.abstract |
The purpose of this paper is to provide a broad overview of thegeneralization of the various dual-complex number sequences, especially inthe disciplines of mathematics and physics. By the help of dual numbers and dual-complex numbers, in this paper, we define the dual-complex generalized k-Horadam numbers. Furthermore, we investigate the Binet formula,generating function, some conjugation identities, summation formula and atheorem which is generalization of the Catalanís identity, Cassiniís identityand d'Ocagneís identity. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.31801/cfsuasmas.780861 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Dual numbers |
tr_TR |
dc.subject |
Dual-complex numbers |
tr_TR |
dc.subject |
Generalizedkhoradam numbers |
tr_TR |
dc.subject |
Dual-complex generalizedkhoradam numbers |
tr_TR |
dc.title |
Dual-complex generalızed k-horadam numbers |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics |
tr_TR |
dc.contributor.department |
Nevşehir Hacı Bektaş Veli Üniversitesi/fen-edebiyat fakültesi/matematik bölümü/uygulamalı matematik anabilim dalı |
tr_TR |
dc.contributor.authorID |
274360 |
tr_TR |
dc.contributor.authorID |
116690 |
tr_TR |
dc.contributor.authorID |
116682 |
tr_TR |
dc.identifier.volume |
70 |
tr_TR |
dc.identifier.issue |
1 |
tr_TR |
dc.identifier.startpage |
117 |
tr_TR |
dc.identifier.endpage |
129 |
tr_TR |