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Abstract
The purpose of this paper is to study the existence of solutions of some nonlinear functional integral equations in the space of
continuous functions defined on interval [0, a] under some conditions. To do this, we will use Krasnoselskii Fixed Point Theorem

and Ascoli-Arzela Theorem. Finally we will give an example to illustrate our result.
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Krasnoselskii Sabit Nokta Teoreminin Lineer Olmayan Baz1 Fonksiyonel integral

Denklemlere Uygulamasi

Ozet
Bu ¢aligmanin amaci [0, a] arahigi iizerinde tanimhi ve siirekli fonksiyonlarin uzayinda, bazi kabuller altinda lineer olmayan bazi
fonksiyonel integral denklemlerin ¢odziimlerinin varligini arastirmaktir. Bunun i¢in Krasnoselskii Sabit Nokta Teoremini ve Ascoli-

Arzela Teoremini kullanilacaktir. Son olarak elde edilen sonuglart agiklayici bir 6rnek verilecektir.
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1. Introduction

Many nonlinear problems arising from the most areas of natural sciences such as engineering,
mechanics, physics, economics and so on can be represented under the mathematical point of view.
Especially nonlinear integral equations are often used in characterization of these problems. For example
quadratic integral equations used in many applications in the theory of radioactive transfer, in the theory
of neutron transport and in the kinetic theory of gases, [1]. Some nonlinear problems involve the study of
solutions of nonlinear operator equations of the form

Ax + Bx = x, X€ES

where S is a closed, bounded and convex subset of a Banach space X and A, B are two operators defined
onsS, [2].

The author considered the following equation in [3]

1

x(t) = f(t,x(a(t))) f u(t, s,x(s))ds,

0
fort € [0,1].
In 2004, J. Banas and A. Martinon [4] studied the nonlinear quadratic integral equation of

Volterra type having the form

x(t) = b(t) +x(t)fu(t,s,x(s))ds, te[o,T]. (1)
Then K. Maleknejad et al. [5] studied ti:e existence of solutions of the following equation
x(t) = g (6, 2(B(©))) f u(t,s,x(s))ds, t € [0,1]. ©)
Also the authors [6, 7] dealt with the foll[;wing equation in space C[0,a]
®
x(6) = f (& x(a(®)) + g(t,x(ﬁ(t)))(} u(t,s,x(y(s))) ds 3)

0

and give the following conditions in [7].
(a;) The functionsa, B:1—1,¢:1 - R, and y: R, — R, are continuous.
(a,) The functions f, g: I X R — R are continuous and there exist the positive constants k and [ such that

If (1) — (& x2)| < klx1 — xa,

lg(t,x1) — g(t, x2)| < l|x1 — x2|
forall t € I and x;,x, € R.
(a3) The function u: I x [0,T] X R — R is continuous and there exist the positive constants m,n and p
such that

|u(t, s, x)| < m+nj|x|P

forallt €1,s € [0,T]and x € R.
(a4) The inequality

M+Tm+n)({+N)+k<1
is held, where M and N are positive constants such that |g(t,0)] < N and |f(t,0)] < M forallt € I.
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In this paper, we will consider again Eq.(3) for t € [0,a]. In Section 2, we present some
definitions and preliminaries such as modulus continuity, equicontinuity, Ascoli-Arzela Theorem and so
on. In Section 3, we give our main result concerning the existence of solutions of the integral equation
(3) by applying Krasnoselskii Fixed Point Theorem defined by M. A. Krasnoselskii [8] and finally we

establish an example to show that our result is applicable but the some previous ones are not.

2. Definition and Auxiliary Facts

In this section, we give some definitions and theorems which will be needed next section. Let
(X, I 1D be an infinite Banach space with zero element 8. We write B(x,r) to denote the closed ball
centered at x with radius r and especially we write B,. in case of x = 0.

Definition 2.1 [9] Let U be a compact subset of R and C(U) denote the family of all continuous
functions from U to R. Then modulus continuity of x € C(U) is the function w(x,.): [0, ) — [0, )
defined by

w(x, &) = sup{|x(t)) — x(tz2)]: ty, t2 € U and |t; — t,| < €}
fore > 0.

Definition 2.2 [10] Let X be an arbitrary nonempty set and E be a family of complex valued
functions defined on X. We call E uniformly bounded if there exists a real number M such that

lx(®)| <M
foreveryx e Eandt € X.
Definition 2.3 [11] Let X and Y be two metric spaces, and E a family of functions from X to Y.
The family E is equicontinuous at a point t, € X if for every € > 0, there exists a § > 0 such that
dy(x(to),x(t)) <e
for all x € E and all t € X such that dy(to, t) < 8. The family E is equicontinuous if it is equicontinuous
at each point of X. The family E is uniformly equicontinuous if for every € > 0, there exists a § > 0 such
that
dy(x(tl),x(tz)) <e¢
forall x € E and all t1,t, € X such that dy(t,t2) < 6.

Theorem 2.1 (Ascoli-Arzela Theorem) Let 2 be a compact Hausdorff metric space. Then
M c C(Q) is relatively compact if and only if M is uniformly bounded and uniformly equicontinuous.

In 1958, M. A. Krasnoselskii [8] established following theorem which is one of the important
results in fixed point theorems.

Theorem 2.2 (Krasnoselskii Fixed Point Theorem) Let S be a closed, bounded and convex
subset of a real Banach space X and let U, and U, be operators on S satisfying the following conditions:

() UL(S) + Ux(S) S,

(ii) U4 is continuous on S and U, (S) is a relatively compact subset of X,

(iii) U, is a strict contraction on S, i.e., there exists k € [0,1) such that

U2(x) = U2l < kllx =yl
for every x,y € S.

Then there exists x € S such that U,x + U,x = x.
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Main Result

In this section we give a theorem for solvability of Eg. (3) under following assumptions. Also we
write I to denote the interval [0, a] throughout this section.
(a) The functions a, B : 1 - I,:1 - R, and y: R, — R, are continuous.
Remark 3.1 Note that assumption (a) implies that there exists a positive constant T such that
M) <T
forallt e 1.

(b) The functions f, g: I X R — R are continuous and there exist positive constants k and [ such that

[f(t,x1) — f(t,x2)| < k|x1 — x2,

lg(t,x1) — g(t, x2)| < lx1 — X2
forallt € I and x4, x; € R.
Remark 3.2 Note that assumption (b) implies that there exist positive constants M and N such
that
Ift 0 < M,
lg(t,0)] = N
forallt € 1.

(c) The function u: I x [0,T] X R — R is continuous. Moreover, there exist a function h: R, — R, which
is nondecreasing on R, such that

[u(t,s,x)| < h(]x])
forallt el,s € [0,T]and x € R.

(d) There exists a positive solution r, of the inequality

kr + M+ T(lr + N)h(r) <. )]
Lemma3.lLetS = B, < C(I). We define operator U, on S such that forany x € S

()

Ux)t)=g (t,x(ﬁ(t))) f u (t, s,x(y(s))) ds.

0
Then operator U, is continuous on S under above assumptions.

Proof. Fore > 0 and any x,y € B, suchthat ||x — y|| < & we get

|(Ux)(®) = (Uy) ()]

o(t) o(t)
g (t,x(ﬁ(t))) f u (t, s,x(y(s))) ds—g (t,y(ﬁ(t))) f u (t, s,y(y(s))) ds
@) 10)
<

g (t,x(ﬁ(t))) f u (t, s,x(y(s))) ds—g (t,y(ﬁ(t))) f u (t, s,x(y(s))) ds

0

[4G)]

+(lg (6 v(8®)) - 9e, 0] + 1g(t, 0)1) f [u(t:5.x(r () —u (65 ¥((5))| ds

< Ux(B®) — y(B®))|Th(ro) + (Lly(B®))| + N)Tw,, (U, €)
< Tll|x = yllh(ro) + Tyl + N)w,, (1, €)

< T(leh(ro) + (Iro + N)w,,(, s))
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where

wy,(I,€) = sup{|u(t,s,x) —u(t,s,y)|:t €1,s € [0,T], x,y € [~ro,70] and |x — y| < €}.
Due to the function u = u(t, s, x) is uniformly continuous on the compact set I X [0,T] X [T, o], We
infer that w,, (1,&) — 0 as e — 0. Hence, the above estimate prove that the operator U, is continuous on
S.

Lemma 3.2 Under assumptions (a)-(d) U4(S) is a relatively compact subset of C (1).

Proof. The main tool used in this proof is Ascoli-Arzela Theorem. Let consider € > 0, any

Uix € U1(S) and any tq,t, € I such that |t; —t;] < e. Then we obtain the following inequalities by
using above conditions

|(Urx)(ts) — (Ux)(t2)]

@(t1) o(tz)

= |9 (03(6@)) | w(twsx(r())ds - g (eax(8)) [ u(easx(r))ds
o(t1) o(t1)

< |g (tl,x(,b’(tl))) f u (tl, s,x(y(s))) ds—g (tl,x(ﬁ(tz))) f u (tl, s,x(y(s))) ds
@(t1) o(t1)

+1g (tl,x(,b’(tz))) f u (tl, s, x(y(s))) ds—g (tz,x(ﬁ (tz))) f u (tl, s,x(y(s))) ds
@(t1) @(t2)

+1g (tz,x([)’(tz))) f u (tl, s, x(y(s))) ds—g (tz,x(ﬁ (tz))) f u (tz, s,x(y(s))) ds

o(t1)

= |g (tl,x(ﬁ(tl))) -g (tl,x(ﬁ(tz)))| J- |u (tl, s,x(y(s))>| ds

o(t1)

+ |9 (tl’x(ﬁ(fz))) -9 (fz,x(ﬁ(tz)))| J- |u (tI: s,x(y(s)))| ds

o(ty) o(t1) @(t2)
+|g(t2, x(B(t2)))] J- u (tl, s, x(y(s))) ds + J- u (tl,s, x(y(s))) ds — f u (tz, s, x(y(s))) ds
0 o(tz) 0
o(t1)

< (l|x(ﬁ(t1)) - x(ﬁ(tz))| + wy (1, s)) f |u (tl, s,x(y(s)))| ds

+(|g (22 2(B(t2)) = 9(22, 0| + 19 (22, 0)1) x

(tz) (t1)
X ( J- |u (tl, s,x(y(s))) —-u (tz,s,x(y(s))>| ds + f u (tl,s,x(y(s))) ds )
0 o(t2)

< [lw(x,a)(,b’, e)) + wy (1, s)]Th(ro) + (lro+N) [Twul(l, &)+ w(ep, s)h(ro)],
where

w(x;,€) = sup{|x;(t1) —x;(t2)|: t1, t, €l and |t; — t;] < €},
fori =1,2,3suchthatx; =x, x,=Fandx; = ¢
Also
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wy(l,€) = sup{|lg(ty,x) — g(tz,x)|:ts,t2 € L,x € [-To,1o] and [ty — t2| < &},
wy,(I,e) = sup{lu(ty, s, x) —u(tsy, s, x)|:ty,t2 €1,s €[0,T],x € [=1o,T0] and [t — t5] < €}.

Hence we write w(B,¢) = 0, w(x, &) = 0, w(p,&) = 0 as € —» 0 the from above estimate by
using uniformly continuity of these functions on the set /. Similarly, we get w, (1, €) and w,,,(I,€) — 0 as
e = 0 since functions g and u are uniformly continuous on the sets I X [—r¢,7] and I X [0, T] X
[—70,70] respectively. On the other hand for any x € U;(S) and all t € [0, a] we have |x(t)]| < ||x|| <
To. This means that the set U;(S) is uniformly bounded and uniformly equicontinuous. So U,(S) is a
relatively compact subset of C(I) from Acoli-Arzela Theorem.

Theorem 3.1 Under assumptions (a)-(d), Eq. (3) has at least solution x = x(t) which belongs to
B,, < C[0,a].

Proof. Note that we will use Krasnoselskii Fixed Point Theorem as our main tool. We define
operator U on S such that (U,x)(t) = f (t,x(a(t))), forany x € S.

Using the conditions (a)-(d) we have

W)@ = W)@ = |f (6x(a(®)) - £ (£3(a(®)))]
bx(a(®) = y(a(®)|
kllx — yll

IA

IA

for any x,y € S, where k € (0,1) from (4). So we infer that U, is a strict contraction on S. Also for any

X €S,
()

f (t,x(a(t))) +g (t,x(ﬁ(t))) J- u (t, s,x(y(s))) ds

0

< | (tx(a®)) - & 0)| + 1£ 0|

|(Ux)(®) + (U2) (D)

o(t)

+ (|g (t,x([)’(t))) —g(t, 0)| +|g(t, O)I) f |u (t, s,x(y(s)))| ds

< kro+ M+ T(lrg + N)h(ro)

< 1.

Then U4(S) + U,(S) © S. Hence U, and U, are satisfy Krasnoselskii conditions. Consequently, there
exists at least one function x = x(t) € C[0, a] such that (U1x)(t) + (Uxx)(t) = x(t). This completes the
proof.

Remark 3.3 Function h: [0, 00) — [0, o0) defined by h(x) = m + nxP is nondecreasing for any
positive fixed p. Also, if condition (a,) in [7] satisfies, that is,

M+Tm+n)(+N)+k<1,

then condition (d) is held. This means that Theorem 3.1 is applicable to all equations in [7] but the
converse of this may not be correct. Now, we will give an example to illustrate this case.

Example 3.1 We will deal with the following integral equation in C[0,1]:
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1—cost+x(t)+1+x(\/f)

1 + expx(s)
*(®) =—75 8 7+t (“+x(s)+l [—D )
0
Put
B(t) = Vt, a(t) =¢@) =t y(s) =s,
. _1—cost+x . _1+x
f(tx)= 10 3’ 9('x)—7+t'
1+ expx
u(t,s,x)=t25+x2+ln[Tp]
and
h(r) =1+72+In [Hexpr] T=1 I=Neo kes M=—
n=1+r ’ - M=y Bk BT

Since ro = 1 is a solution of
AR (Y Ll
8 10 7 2
(d) is satisfied. So, from Theorem 3.1 Eq. (5) has at least one solution x = x(t) € B; c C[0,1].

Since there is not constant m, n and p such that
lu(t,s, x)| < m+ n|x|?,
for all t,s € [0,1] and x € R, the previous results presented in [5] and [7] are inapplicable to integral

equation (5).
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