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Abstract 

 

The purpose of this paper is to study the existence of solutions of some nonlinear functional integral equations in the space of 

continuous functions defined on interval [0, 𝑎] under some conditions. To do this, we will use Krasnoselskii Fixed Point Theorem 

and Ascoli-Arzela Theorem. Finally we will give an example to illustrate our result.  
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Özet 

 

Bu çalışmanın amacı [0, 𝑎] aralığı üzerinde tanımlı ve sürekli fonksiyonların uzayında, bazı kabuller altında lineer olmayan bazı 

fonksiyonel integral denklemlerin çözümlerinin varlığını araştırmaktır. Bunun için Krasnoselskii Sabit Nokta Teoremini ve Ascoli-

Arzela Teoremini kullanılacaktır. Son olarak elde edilen sonuçları açıklayıcı bir örnek verilecektir.  
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1. Introduction 

Many nonlinear problems arising from the most areas of natural sciences such as engineering, 

mechanics, physics, economics and so on can be represented under the mathematical point of view. 

Especially nonlinear integral equations are often used in characterization of these problems. For example 

quadratic integral equations used in many applications in the theory of radioactive transfer, in the theory 

of neutron transport and in the kinetic theory of gases, [1]. Some nonlinear problems involve the study of 

solutions of nonlinear operator equations of the form 

𝐴𝐴 + 𝐵𝐵 = 𝑥, 𝑥 ∈ 𝑆 

where 𝑆 is a closed, bounded and convex subset of a Banach space 𝑋 and 𝐴,𝐵 are two operators defined 

on S, [2]. 

The author considered the following equation in [3] 

𝑥(𝑡) = 𝑓 �𝑡, 𝑥�𝛼(𝑡)���𝑢�𝑡, 𝑠, 𝑥(𝑠)�𝑑𝑑,
1

0

 

for 𝑡 ∈ [0,1].  

In 2004, J. Banaś and A. Martinon [4]  studied the nonlinear quadratic integral equation of 

Volterra type having the form 

                                               𝑥(𝑡) = 𝑏(𝑡) + 𝑥(𝑡)�𝑢�𝑡, 𝑠, 𝑥(𝑠)�𝑑𝑑,
𝑡

0

 𝑡 ∈ [0,𝑇].                                           (1) 

Then K. Maleknejad et al. [5] studied the existence of solutions of the following equation 

                                              𝑥(𝑡) = 𝑔 �𝑡, 𝑥�𝛽(𝑡)���𝑢�𝑡, 𝑠, 𝑥(𝑠)�𝑑𝑑,
1

0

 𝑡 ∈ [0,1].                                          (2)  

Also the authors [6, 7] dealt with the following equation in space C[0,a] 

                                   𝑥(𝑡) = 𝑓 �𝑡, 𝑥�𝛼(𝑡)�� + 𝑔 �𝑡, 𝑥�𝛽(𝑡)�� � 𝑢 �𝑡, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡)

0

                           (3) 

and give the following conditions in [7]. 

(𝑎1)  The functions 𝛼, 𝛽 ∶ 𝐼 → 𝐼,𝜑: 𝐼 → ℝ+ and 𝛾:ℝ+ → ℝ+ are continuous. 

(𝑎2) The functions 𝑓,𝑔: 𝐼 × ℝ → ℝ are continuous and there exist the positive constants 𝑘 and 𝑙 such that 

|𝑓(𝑡, 𝑥₁) − 𝑓(𝑡, 𝑥₂)| ≤ 𝑘|𝑥₁ − 𝑥₂|, 

|𝑔(𝑡, 𝑥₁) − 𝑔(𝑡, 𝑥₂)| ≤ 𝑙|𝑥₁ − 𝑥₂| 

for all 𝑡 ∈ 𝐼 and 𝑥1, 𝑥2 ∈ ℝ. 

(𝑎3) The function 𝑢: 𝐼 × [0,𝑇] × ℝ → ℝ is continuous and there exist the positive constants 𝑚,𝑛 and 𝑝 

such that 

|𝑢(𝑡, 𝑠, 𝑥)| ≤ 𝑚 + 𝑛|𝑥|𝑝 

for all 𝑡 ∈ 𝐼, 𝑠 ∈ [0,𝑇] and 𝑥 ∈ ℝ. 

(𝑎4) The inequality 

𝑀 + 𝑇(𝑚 + 𝑛)(𝑙 + 𝑁) + 𝑘 < 1 

is held, where 𝑀 and 𝑁 are positive constants such that |𝑔(𝑡, 0)| ≤ 𝑁 and |𝑓(𝑡, 0)| ≤ 𝑀 for all 𝑡 ∈ 𝐼. 
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In this paper, we will consider again Eq . (3)  for 𝑡 ∈ [0, 𝑎].  In Section 2, we present some 

definitions and preliminaries such as modulus continuity, equicontinuity, Ascoli-Arzela Theorem and so 

on. In Section 3, we give our main result concerning the existence of solutions of the integral equation 

(3) by applying Krasnoselskii Fixed Point Theorem defined by M. A. Krasnoselskii [8] and finally we 

establish an example to show that our result is applicable but the some previous ones are not.  

 

2. Definition and Auxiliary Facts  

In this section, we give some definitions and theorems which will be needed next section. Let 

(𝑋, ‖. ‖) be an infinite Banach space with zero element 𝜃. We write 𝐵(𝑥, 𝑟) to denote the closed ball 

centered at 𝑥 with radius 𝑟 and especially we write 𝐵𝑟  in case of 𝑥 = 𝜃. 

Definition 2.1 [9] Let 𝑈 be a compact subset of ℝ and 𝐶(𝑈) denote the family of all continuous 

functions from 𝑈 to ℝ. Then modulus continuity of 𝑥 ∈ 𝐶(𝑈) is the function 𝜔(𝑥, . ): [0,∞) → [0,∞) 

defined by 

 𝜔(𝑥, 𝜀) = 𝑠𝑠𝑠{|𝑥(𝑡₁) − 𝑥(𝑡₂)|: 𝑡₁, 𝑡₂ ∈ 𝑈 𝑎𝑎𝑎 |𝑡₁ − 𝑡₂| ≤ 𝜀} 

for 𝜀 > 0. 

Definition 2.2 [10] Let 𝑋 be an arbitrary nonempty set and 𝐸 be a family of complex valued 

functions defined on 𝑋. We call 𝐸 uniformly bounded if there exists a real number 𝑀 such that 

|𝑥(𝑡)| ≤ 𝑀 

for every 𝑥 ∈ 𝐸 and 𝑡 ∈ 𝑋. 

Definition 2.3 [11] Let 𝑋 and 𝑌 be two metric spaces, and 𝐸 a family of functions from 𝑋 to 𝑌. 

The family 𝐸 is equicontinuous at a point 𝑡₀ ∈ 𝑋 if for every 𝜀 > 0, there exists a 𝛿 > 0 such that 

𝑑𝑌�𝑥(𝑡₀), 𝑥(𝑡)� < 𝜀 

for all 𝑥 ∈ 𝐸 and all 𝑡 ∈ 𝑋 such that 𝑑𝑋(𝑡₀, 𝑡) < 𝛿. The family 𝐸 is equicontinuous if it is equicontinuous 

at each point of 𝑋. The family 𝐸 is uniformly equicontinuous if for every 𝜀 > 0, there exists a 𝛿 > 0 such 

that 

𝑑𝑌�𝑥(𝑡₁), 𝑥(𝑡₂)� < 𝜀 

for all 𝑥 ∈ 𝐸 and all 𝑡₁, 𝑡₂ ∈ 𝑋 such that 𝑑𝑋(𝑡₁, 𝑡₂) < 𝛿. 

Theorem 2.1 (Ascoli-Arzela Theorem) Let 𝛺  be a compact Hausdorff metric space. Then 

𝑀 ⊂ 𝐶(𝛺) is relatively compact if and only if 𝑀 is uniformly bounded and uniformly equicontinuous. 

In 1958, M. A. Krasnoselskii [8] established following theorem which is one of the important 

results in fixed point theorems. 

Theorem 2.2 (Krasnoselskii Fixed Point Theorem) Let 𝑆 be a closed, bounded and convex 

subset of a real Banach space 𝑋 and let 𝑈₁ and 𝑈₂ be operators on 𝑆 satisfying the following conditions: 

  (i) 𝑈₁(𝑆) + 𝑈₂(𝑆) ⊂ 𝑆, 

  (ii) 𝑈₁ is continuous on 𝑆 and 𝑈₁(𝑆) is a relatively compact subset of 𝑋, 

  (iii) 𝑈₂ is a strict contraction on 𝑆, i.e., there exists 𝑘 ∈ [0,1) such that 

‖𝑈₂(𝑥) − 𝑈₂(𝑦)‖ ≤ 𝑘‖𝑥 − 𝑦‖  

for every 𝑥,𝑦 ∈ 𝑆. 

Then there exists 𝑥 ∈ 𝑆 such that 𝑈₁𝑥 + 𝑈₂𝑥 = 𝑥. 
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3. Main Result 

In this section we give a theorem for solvability of Eq. (3) under following assumptions. Also we 

write 𝐼 to denote the interval [0, 𝑎] throughout this section. 

(a) The functions 𝛼, 𝛽 ∶ 𝐼 → 𝐼,𝜑: 𝐼 → ℝ+ and 𝛾:ℝ+ → ℝ+ are continuous. 

Remark 3.1 Note that assumption (a) implies that there exists a positive constant T such that 

𝜙(𝑡) ≤ 𝑇 

for all 𝑡 ∈ 𝐼. 

(b) The functions 𝑓,𝑔: 𝐼 × ℝ → ℝ are continuous and there exist positive constants 𝑘 and 𝑙 such that 

|𝑓(𝑡, 𝑥₁) − 𝑓(𝑡, 𝑥₂)|  ≤  𝑘|𝑥₁ − 𝑥₂|, 

|𝑔(𝑡, 𝑥₁) − 𝑔(𝑡, 𝑥₂)|  ≤  𝑙|𝑥₁ − 𝑥₂| 

for all 𝑡 ∈ 𝐼 and 𝑥₁, 𝑥₂ ∈ ℝ. 

Remark 3.2 Note that assumption (b) implies that there exist positive constants 𝑀 and 𝑁 such 

that 

|𝑓(𝑡, 0)|  ≤  𝑀, 

|𝑔(𝑡, 0)|  ≤  𝑁 

for all 𝑡 ∈ 𝐼. 

(c) The function 𝑢: 𝐼 × [0,𝑇] × ℝ → ℝ is continuous. Moreover, there exist a function ℎ:ℝ₊ → ℝ₊ which 

is nondecreasing on ℝ₊ such that 

|𝑢(𝑡, 𝑠, 𝑥)| ≤ ℎ(|𝑥|) 

for all 𝑡 ∈ 𝐼, 𝑠 ∈ [0,𝑇] and 𝑥 ∈ ℝ. 

(d) There exists a positive solution 𝑟₀ of the inequality 

                                                                        𝑘𝑘 + 𝑀 + 𝑇(𝑙𝑙 + 𝑁)ℎ(𝑟) ≤ 𝑟.                                                         (4)  

Lemma 3.1 Let 𝑆 = 𝐵𝑟0 ⊂ 𝐶(𝐼).  We define operator 𝑈₁ on 𝑆 such that  for any 𝑥 ∈ 𝑆 

(𝑈₁𝑥)(𝑡) = 𝑔 �𝑡, 𝑥�𝛽(𝑡)�� � 𝑢 �𝑡, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡)

0

. 

Then operator 𝑈₁ is continuous on 𝑆 under above assumptions. 

Proof.  For 𝜀 > 0 and any 𝑥,𝑦 ∈ 𝐵𝑟0  such that ‖𝑥 − 𝑦‖ ≤ 𝜀 we get 

 |(𝑈₁𝑥)(𝑡) − (𝑈₁𝑦)(𝑡)| 

 =  �𝑔 �𝑡, 𝑥�𝛽(𝑡)�� � 𝑢 �𝑡, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡)

0

− 𝑔 �𝑡,𝑦�𝛽(𝑡)�� � 𝑢 �𝑡, 𝑠,𝑦�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡)

0

� 

 ≤  �𝑔 �𝑡, 𝑥�𝛽(𝑡)�� � 𝑢 �𝑡, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡)

0

− 𝑔 �𝑡,𝑦�𝛽(𝑡)�� � 𝑢 �𝑡, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡)

0

� 

  + ��𝑔 �𝑡,𝑦�𝛽(𝑡)�� − 𝑔(𝑡, 0)� + |𝑔(𝑡, 0)|� � �𝑢 �𝑡, 𝑠, 𝑥�𝛾(𝑠)�� − 𝑢 �𝑡, 𝑠,𝑦�𝛾(𝑠)��� 𝑑𝑑

𝜑(𝑡)

0

 

 ≤  𝑙�𝑥�𝛽(𝑡)� − 𝑦�𝛽(𝑡)��𝑇ℎ(𝑟₀) + �𝑙�𝑦�𝛽(𝑡)�� + 𝑁�𝑇𝜔𝑢₃(𝐼, 𝜀) 

 ≤  𝑇𝑇‖𝑥 − 𝑦‖ℎ(𝑟₀) + 𝑇(𝑙‖𝑦‖ + 𝑁)𝜔𝑢₃(𝐼, 𝜀) 

 ≤  𝑇�𝑙𝑙ℎ(𝑟₀) + (𝑙𝑙₀ + 𝑁)𝜔𝑢₃(𝐼, 𝜀)� 
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where 

 𝜔𝑢₃(𝐼, 𝜀) = 𝑠𝑠𝑠{|𝑢(𝑡, 𝑠, 𝑥) − 𝑢(𝑡, 𝑠,𝑦)|: 𝑡 ∈ 𝐼, 𝑠 ∈ [0,𝑇], 𝑥,𝑦 ∈ [−𝑟₀, 𝑟₀] 𝑎𝑎𝑎 |𝑥 − 𝑦| ≤ 𝜀}.  

Due to the function 𝑢 = 𝑢(𝑡, 𝑠, 𝑥) is uniformly continuous on the compact set 𝐼 × [0,𝑇] × [−𝑟₀, 𝑟₀], we 

infer that 𝜔𝑢₃(𝐼, 𝜀) → 0 as 𝜀 → 0. Hence, the above estimate prove that the operator 𝑈₁ is continuous on 

𝑆. 

Lemma 3.2 Under assumptions (a)-(d) 𝑈₁(𝑆) is a relatively compact subset of 𝐶(𝐼). 

Proof. The main tool used in this proof is Ascoli-Arzela Theorem. Let consider 𝜀 > 0, any 

𝑈₁𝑥 ∈ 𝑈₁(𝑆) and any 𝑡₁, 𝑡₂ ∈ 𝐼  such that |𝑡₁ − 𝑡₂| ≤ 𝜀 . Then we obtain the following inequalities by 

using above conditions 

  |(𝑈₁𝑥)(𝑡₁) − (𝑈₁𝑥)(𝑡₂)| 

 =  �𝑔 �𝑡₁,𝑥�𝛽(𝑡₁)�� � 𝑢 �𝑡₁, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡1)

0

− 𝑔 �𝑡₂, 𝑥�𝛽(𝑡₂)�� � 𝑢 �𝑡2, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡2)

0

� 

  ≤  �𝑔 �𝑡₁, 𝑥�𝛽(𝑡₁)�� � 𝑢 �𝑡₁, 𝑠,𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡1)

0

− 𝑔 �𝑡1, 𝑥�𝛽(𝑡₂)�� � 𝑢 �𝑡₁, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡1)

0

� 

  + �𝑔 �𝑡₁,𝑥�𝛽(𝑡2)�� � 𝑢 �𝑡₁, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡1)

0

− 𝑔 �𝑡₂,𝑥�𝛽(𝑡₂)�� � 𝑢 �𝑡₁, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡1)

0

� 

  + �𝑔 �𝑡₂,𝑥�𝛽(𝑡₂)�� � 𝑢 �𝑡₁, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡1)

0

− 𝑔 �𝑡₂,𝑥�𝛽(𝑡₂)�� � 𝑢 �𝑡2, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡2)

0

� 

 =  �𝑔 �𝑡₁, 𝑥�𝛽(𝑡₁)�� − 𝑔 �𝑡₁, 𝑥�𝛽(𝑡2)��� � �𝑢 �𝑡₁, 𝑠, 𝑥�𝛾(𝑠)��� 𝑑𝑑

𝜑(𝑡1)

0

 

+ �𝑔 �𝑡₁, 𝑥�𝛽(𝑡2)�� − 𝑔 �𝑡₂, 𝑥�𝛽(𝑡₂)��� � �𝑢 �𝑡₁, 𝑠, 𝑥�𝛾(𝑠)��� 𝑑𝑑

𝜑(𝑡1)

0

 

+|𝑔(𝑡₂, 𝑥(𝛽(𝑡₂)))| � � 𝑢 �𝑡1, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡2)

0

+ � 𝑢 �𝑡1, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡1)

𝜑(𝑡2)

− � 𝑢 �𝑡2, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡2)

0

� 

≤  �𝑙�𝑥�𝛽(𝑡₁)� − 𝑥�𝛽(𝑡₂)�� + 𝜔𝑔(𝐼, 𝜀)� � �𝑢 �𝑡₁, 𝑠, 𝑥�𝛾(𝑠)��� 𝑑𝑑

𝜑(𝑡1)

0

 

+ ��𝑔 �𝑡₂, 𝑥�𝛽(𝑡₂)�� − 𝑔(𝑡₂, 0)� + |𝑔(𝑡₂, 0)|� × 

  × � � �𝑢 �𝑡₁, 𝑠, 𝑥�𝛾(𝑠)�� − 𝑢 �𝑡2, 𝑠, 𝑥�𝛾(𝑠)��� 𝑑𝑑

𝜑(𝑡2)

0

+ � � 𝑢 �𝑡1, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡1)

𝜑(𝑡2)

��   

 ≤  �𝑙𝑙�𝑥,𝜔(𝛽, 𝜀)� + 𝜔𝑔(𝐼, 𝜀)�𝑇ℎ(𝑟₀) + (𝑙𝑙₀ + 𝑁)�𝑇𝜔𝑢₁(𝐼, 𝜀) + 𝜔(𝜑, 𝜀)ℎ(𝑟₀)�, 

where 

𝜔(𝑥𝑖 , 𝜀) = 𝑠𝑠𝑠{|𝑥𝑖(𝑡₁) − 𝑥𝑖(𝑡₂)|: 𝑡₁, 𝑡₂ ∈ 𝐼 𝑎𝑎𝑎 |𝑡₁ − 𝑡₂| ≤ 𝜀}, 

for 𝑖 = 1,2,3 such that 𝑥₁ = 𝑥, 𝑥₂ = 𝛽 and 𝑥3 = 𝜑. 

Also 
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 𝜔𝑔(𝐼, 𝜀)   =  𝑠𝑠𝑠{|𝑔(𝑡₁, 𝑥) − 𝑔(𝑡₂, 𝑥)|: 𝑡₁, 𝑡₂ ∈ 𝐼, 𝑥 ∈ [−𝑟₀, 𝑟₀] 𝑎𝑎𝑎 |𝑡₁ − 𝑡₂| ≤ 𝜀}, 

𝜔𝑢₁(𝐼, 𝜀)   =  𝑠𝑠𝑠{|𝑢(𝑡₁, 𝑠, 𝑥) − 𝑢(𝑡₂, 𝑠, 𝑥)|: 𝑡₁, 𝑡₂ ∈ 𝐼, 𝑠 ∈ [0,𝑇], 𝑥 ∈ [−𝑟₀, 𝑟₀] 𝑎𝑎𝑎 |𝑡₁ − 𝑡₂| ≤ 𝜀}. 

Hence we write 𝜔(𝛽, 𝜀) → 0, 𝜔(𝑥, 𝜀) → 0, 𝜔(𝜑, 𝜀) → 0 as 𝜀 → 0 the from above estimate by 

using uniformly continuity of these functions on the set 𝐼. Similarly, we get 𝜔𝑔(𝐼, 𝜀) and 𝜔𝑢₁(𝐼, 𝜀) → 0 as 

𝜀 → 0  since functions g and u are uniformly continuous on the sets 𝐼 × [−𝑟₀, 𝑟₀]  and 𝐼 × [0,𝑇] ×

[−𝑟₀, 𝑟₀] respectively. On the other hand for any 𝑥 ∈ 𝑈₁(𝑆) and all 𝑡 ∈ [0, 𝑎] we have |𝑥(𝑡)| ≤ ‖𝑥‖ ≤

𝑟₀. This means that the set 𝑈₁(𝑆) is uniformly bounded and uniformly equicontinuous. So 𝑈₁(𝑆) is a 

relatively compact subset of 𝐶(𝐼) from Acoli-Arzela Theorem. 

Theorem 3.1 Under assumptions (a)-(d), Eq. (3) has at least solution 𝑥 = 𝑥(𝑡) which belongs to 

𝐵𝑟0 ⊂ 𝐶[0, 𝑎]. 

Proof. Note that we will use Krasnoselskii Fixed Point Theorem as our main tool. We define 

operator 𝑈₂ on 𝑆 such that (𝑈₂𝑥)(𝑡) = 𝑓 �𝑡, 𝑥�𝛼(𝑡)��, for any 𝑥 ∈ 𝑆. 

Using the conditions (a)-(d) we have 

 |(𝑈2𝑥)(𝑡) − (𝑈2𝑦)(𝑡)|  =  �𝑓 �𝑡, 𝑥�𝛼(𝑡)�� − 𝑓 �𝑡,𝑦�𝛼(𝑡)��� 

                                                            ≤  𝑘�𝑥�𝛼(𝑡)� − 𝑦�𝛼(𝑡)�� 

                                        ≤  𝑘‖𝑥 − 𝑦‖ 

 

for any 𝑥,𝑦 ∈ 𝑆, where 𝑘 ∈ (0,1) from (4). So we infer that 𝑈₂ is a strict contraction on 𝑆. Also for any 

𝑥 ∈ 𝑆, 

|(𝑈₁𝑥)(𝑡) + (𝑈₂𝑥)(𝑡)|  =  �𝑓 �𝑡, 𝑥�𝛼(𝑡)�� + 𝑔 �𝑡, 𝑥�𝛽(𝑡)�� � 𝑢 �𝑡, 𝑠, 𝑥�𝛾(𝑠)�� 𝑑𝑑

𝜑(𝑡)

0

� 

                                            ≤  �𝑓 �𝑡, 𝑥�𝛼(𝑡)�� − 𝑓(𝑡, 0)� + |𝑓(𝑡, 0)| 

                    + ��𝑔 �𝑡,𝑥�𝛽(𝑡)�� − 𝑔(𝑡, 0)� + |𝑔(𝑡, 0)|� � �𝑢 �𝑡, 𝑠, 𝑥�𝛾(𝑠)��� 𝑑𝑑

𝜑(𝑡)

0

 

                                             ≤  𝑘𝑘₀ + 𝑀 + 𝑇(𝑙𝑙₀ + 𝑁)ℎ(𝑟₀) 

                                             ≤  𝑟0. 

 

Then 𝑈₁(𝑆) + 𝑈₂(𝑆) ⊂ 𝑆 . Hence 𝑈₁  and 𝑈₂  are satisfy Krasnoselskii conditions. Consequently, there 

exists at least one function 𝑥 = 𝑥(𝑡) ∈ 𝐶[0, 𝑎] such that (𝑈₁𝑥)(𝑡) + (𝑈₂𝑥)(𝑡) = 𝑥(𝑡). This completes the 

proof. 

Remark 3.3 Function ℎ: [0,∞) → [0,∞) defined by ℎ(𝑥) = 𝑚 + 𝑛𝑥𝑝 is nondecreasing for any 

positive fixed 𝑝. Also, if condition (𝑎4)  in [7] satisfies, that is, 

𝑀 + 𝑇(𝑚 + 𝑛)(𝑙 + 𝑁) + 𝑘 < 1, 

then condition (d) is held. This means that Theorem 3.1 is applicable to all equations in [7]  but the 

converse of this may not be correct. Now, we will give an example to illustrate this case. 

Example 3.1 We will deal with the following integral equation in 𝐶[0,1]: 
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               𝑥(𝑡) =
1 − 𝑐𝑐𝑐 𝑡

10
+
𝑥(𝑡)

8
+

1 + 𝑥�√𝑡�
7 + 𝑡

� �𝑡²𝑠 + 𝑥²(𝑠) + 𝑙𝑙 �
1 + 𝑒𝑒𝑒𝑒(𝑠)

2
��

𝑡

0

𝑑𝑑.                       (5) 

Put 

𝛽(𝑡) = √𝑡, 𝛼(𝑡) = 𝜑(𝑡) = 𝑡, 𝛾(𝑠) = 𝑠, 

𝑓(𝑡, 𝑥) =
1 − 𝑐𝑐𝑐 𝑡

10
+
𝑥
8

, 𝑔(𝑡, 𝑥) =
1 + 𝑥
7 + 𝑡

, 

𝑢(𝑡, 𝑠, 𝑥) = 𝑡²𝑠 + 𝑥² + 𝑙𝑙 �
1 + 𝑒𝑒𝑒𝑒

2
� 

and 

ℎ(𝑟) = 1 + 𝑟2 + 𝑙𝑙 �
1 + 𝑒𝑒𝑒𝑒

2
� , 𝑇 = 1, 𝑙 = 𝑁 =

1
7

, 𝑘 =
1
8

, 𝑀 =
1

10
. 

Since 𝑟₀ = 1 is a solution of 
𝑟
8

+
1

10
+ �

𝑟 + 1
7

� �1 + 𝑟² + 𝑙𝑙 �
1 + 𝑒𝑒𝑒𝑒

2
�� ≤ 𝑟, 

(d) is satisfied. So, from Theorem 3.1  Eq. (5) has at least one solution 𝑥 = 𝑥(𝑡) ∈ 𝐵₁ ⊂ 𝐶[0,1]. 

Since there is not constant 𝑚,𝑛 and 𝑝 such that 

|𝑢(𝑡, 𝑠, 𝑥)| ≤ 𝑚 + 𝑛|𝑥|𝑝, 

for all 𝑡, 𝑠 ∈ [0,1] and 𝑥 ∈ ℝ, the previous results presented in [5] and [7]  are inapplicable to integral 

equation (5). 
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