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Bu çalışmada, Gaussyen potansiyel ile sınırlandırılmış GaAs kuantum noktanın istatistiksel mekaniksel modellenmesi ve 

termodinamik özellikleri araştırılmıştır. Manyetik alan içerisindeki parçacığın kutupsal koordinatlardaki Hamiltoniyeni çözülmüş, 

enerji özdeğer ve özdurumları bulunmuştur. Fock Darwin durumları olan bu öz durumlar kullanılarak pertürbasyon teorisi 

yardımıyla sistemin toplam enerjisi elde edilmiştir. Böylelikle kanonik topluluk yaklaşımı ile elde edilen partisyon fonksiyonundan; 

serbest enerji, entropi, ortalama enerji ve ısı kapasitesi gibi termodinamik niceliklerin değişimleri, sıcaklık, manyetik alan, Gaussyen 

potansiyelin erimi ve Gaussyen potansiyelin derinliği gibi parametrelere bağlı olarak incelenmiştir.  
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Statistical Mechanical Modelling and Termodynamical Properties of Single 

Electron Quantum Dot with Gaussian Confinement 

 
Abstract 

 

In this study, statistical mechanical modelling and termodynamical properties of a GaAs quantum dot with Gaussian confinement 

have been investigated. The Hamiltonian of a particle under magnetic field was solved in polar coordinates, energy eigenvalues and 

eigenfunctions have been obtained. The total energy of the system was found by using the Fock Darwin states and the first order 

Perturbation theory. Therefore, the behavior of the thermodynamical quantities of the system such as, free energy, entropy, average 

energy and heat capacity were investigated as a function of temperature, magnetic field, quantum dot size and Gaussian potential 

depth by using the partition function obtained by using canonical ensemble approach. 
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1. Introduction 

In recent years, quantum dots have become one of the important, prominent topics of condensed 

matter physics. This can be explained in two ways: the first of them is application area of quantum dots 

with promising application potential; for instance, solar cells, single electron transistors, quantum 

computers and microelectronic applications such as quantum lasers.  The second and less important one is 

quantum dots are small laboratories where quantum mechanics can be tested. 

For solving to any quantum problem, we must first understand the nature of the confinement 

potential. After the first experiments, it is realized that these potentials are harmonic. However, in recent 

experiments, it has been shown that, the confinement potential is non-harmonic and should be a finite 

depth. In this context, Gaussian potential is an important candidate for confinement potential and there 

have been many studies on this in recent years [1]. These studies are the researches for learning many 

properties of quantum dots, such as electronic, magnetic and thermodynamic properties, in single-particle 

and multi-particle situations. 

In semiconductor physics, there are structures which limit the three dimensions of electrons and 

carry them to two dimensions, it is called 'Quantum Wells', and the other structures which electrons can 

move in one dimension are called 'Quantum Wires [2-5]. In recent years, Adamowski and his colleagues 

investigate the properties of excited electrons in quantum dots, depends on the attractive Gaussian 

potential which limits this quantum dot [1]. This potential is at a finite depth, exhibiting parabolic 

features at the center of the quantum dot and providing the generalized Kohn theorem [6]. Various 

calculation methods have been used while physical properties of quantum dot structures are investigated, 

these are Perturbation Methods and Variational Methods. At spherical quantum dot, when the impurity 

atom is outside the center of the sphere, the binding energy is calculated by the Perturbation method [6,7]. 

In the last few years, in the presence of the magnetic field, many discoveries have been made about the 

heat capacity and entropy of quantum dots and the other related low- dimensional systems [9-12]. In 

addition, most of the investigations were made for square potential wells or confined parabolic potential 

quantum wells. As a result of these calculations, peaks were observed in energy levels in heat capacity 

and sustainability. Oh. et al. (1994) has calculated the heat capacitance in quantum wires and quantum 

dots and have observed heat capacitance which exhibits oscillation behavior at low temperatures [6,10]. 

Also they have researched magnetization, magnetic sustainability and heat capacity in helium-like 

confined quantum dots and have introduced additional structures for heat capacitance [9]. 

Maksym and Chakraborty investigated electronic heat capacity by taking account electron 

interactions [6,9]. All calculations are made by using parabolic confinement potential. According to our 

knowledge ever, in the presence of spin Zeeman interactions, there is not enough scientific research done 

in temperature-dependent heat capacity and entropy in Gaussian potentially confined quantum dots. 

 

2. Material and Methodology 

Nowadays, making new technics by taking advantage of the physical properties of one and zero 

dimensional semiconductor systems are among the most popular topics. The shapes, dimensions, energy 

levels, and the number of electrons of quantum dot structures, where electron motion is limited to all 

dimensions, can be controlled. Hence, it is attracted a great deal of attention technologically. Hamiltonian 
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of an electronic system, moving in two dimensions, limited to 𝑉potential and in the presence of 

Hamiltonian of an electronic system, moving in two dimensions, limited to 𝑉potential and in the presence 

of 𝐵�⃗  external magnetic field; 

𝐻 =
1

2𝑚∗ �𝑝 +
𝑒
𝑐
𝐴�

2
+ 𝑉(𝜌) (1) 

can be written as above. After some arrangements on Hamiltonian: 

𝐻 = −
ℏ2

2𝑚∗ ∇
2 +

1
2
𝜔𝑐𝐿𝑧 +

1
8
𝑚∗𝜔𝑐2𝜌2 + 𝑉(𝜌) (2) 

we can obtain relation above. Where 𝜌 is the position of electron moving in two dimensions, 𝑝̂ is the 

momentum operator, 𝑚∗ is effective mass, and 𝐴 is vector potential corresponding to the magnetic field B 

applied in the z-direction. And 𝜔𝑐=𝑒𝑒
𝑚∗ where frequency of cyclotron, 𝐵 is magnetic field and 𝑉(𝜌) =

−𝑉0𝑒
− 𝜌2

2𝑅2 represents confinement potential. 𝑉0 is the depth of potential, 𝑅 is width of potential, and so 

represents size of quantum dots and effective confinement length respectively. 

Where; 𝜔ℎ = 𝑉0
𝑚∗𝑅2

 ve 𝜔�2 = 1
4
𝜔𝑐2 + 𝜔ℎ

2. Term of 𝜆  to be a key term in a model; if 𝜆 = 0 is taken 

Harmonic Potential, if 𝜆 = 1 is taken Gaussian Potential is represented by 𝜆. When Eq.2 is derived 

according to above relation; 

𝐻 = −
ℏ2

2𝑚∗ ∇
2 +

1
2
𝜔𝑐𝐿𝑧 +

1
2
𝑚∗𝜌2𝜔�2 − 𝑉0 − 𝜆 �

1
2
𝑚∗𝜔ℎ

2𝜌2 + 𝑉0 �𝑒
− 𝜌2
2𝑅2 − 1�� (3) 

where H is the identify whole of the system Hamiltonian operator, and there is completely solvable 𝐻0, 

and where 𝐻1 makes the solution difficult but with a small contribution to the eigenvalues and 

eigenfunction of 𝐻0, if it is written form of the sum of 𝐻1 and is solved by Perturbation Theory; 

𝐻 = −
ℏ2

2𝑚∗ ∇
2 +

1
2
𝜔𝑐𝐿𝑧 − 𝑉0 +

1
2
𝑚∗𝜌2 �(1 − 𝜆)𝜔ℎ

2 +
1
4
𝜔𝑐2 +

4𝜆𝑉0𝜔ℎ𝑜

(ℏ + 4𝑅2𝑚∗𝜔ℎ𝑜)� (4) 

we can obtain solution above. Where 𝜔2 = 𝑚∗𝜌2 �(1 − 𝜆)𝜔ℎ
2 + 1

4
𝜔𝑐2 + 4𝜆𝑉0𝜔ℎ𝑜

(ℏ+4𝑅2𝑚∗𝜔ℎ𝑜)
�; 

𝐻 = −
ℏ2

2𝑚∗ ∇
2 +

1
2
𝜔𝑐𝐿𝑧 − 𝑉0 +

1
2
𝜔2 (5) 

we obtain above relations. 

Following Hamiltonian solution is the form of Fock Darwin 

𝐻Φ𝑛𝑛(𝜌) = 𝐸𝑛𝑛Φ𝑛𝑛(𝜌) (6) 
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Where Φ𝑛𝑛(𝜌) Fock Darwin wavefunction; 

Φ𝑛𝑛(𝜌) =
𝛼
√𝜋

�
𝑛!

(𝑛 + |𝑙|)!
�
2

(𝛼𝛼)|𝑙|𝐿𝑛
|𝑙|(𝛼2𝜌2)𝑒−

1
2𝛼

2𝜌2+𝑖𝑖𝑖  (7) 

we have 𝛼 = �𝑚∗𝜔
ℏ

. 

The energy eigenvalues of this wave function; 

𝐸𝑛𝑛 = (2𝑛 + |𝑙| + 1)ℏ𝜔 +
1
2

|𝑙|ℏ𝜔𝑐 − 𝑉0 (8) 

as expected. Where 𝑛 is Radial quantum number and 𝑙; Azimuth angular momentum quantum number. 

Modelling by using physical properties of Gaussian confined potential GaAs quantum dots and 

canonical distribution when examining physical properties by statistical mechanical methods; 

𝑍 = �𝑒−
𝐸𝑛𝑛
𝑘𝐵𝑇

𝑛,𝑙

 (9) 

defined as above. When the ground state energy is substituted in Equation 8 and Equation 9; 

𝑍(𝑇,𝐵,𝑉0,𝑅) = ��𝑒−
�(2𝑛+|𝑙|+1)ℏ𝜔+12|𝑙|ℏ𝜔𝑐−𝑉0�

𝑘𝐵𝑇

±∞

𝑙=0

∞

𝑛=0

 (10) 

Partition function of system; 

𝑍(𝑇,𝐵,𝑉0,𝑅) =
𝑐𝑐𝑐𝑐ℎ �𝑔ℏ𝜔𝑐4𝑘𝐵𝑇

�

𝑐𝑐𝑐ℎ � ℏ𝜔𝑘𝐵𝑇
� − 𝑐𝑐𝑐𝑐ℎ � ℏ𝜔𝑐2𝑘𝐵𝑇

�
 (11) 

obtained as above. 

3. Results 

In this study, the physical properties of Gaussian confined potential GaAs quantum dots are 

modelled and ground state energy is obtained using Perturbation theory. Also partition function and 

phenomenon was obtained using Boltzmann Gibbs Statistics was understood in microscopic level, and 

was calculated all other thermodynamics sizes. In this model, in the presence of the Zeeman term, the 

thermodynamic properties of confined Gaussian potential GaAs quantum dots were investigated with 

respect to heat capacity and entropy changes depending on different parameters.  These parameters are: 
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temperature, magnetic field, range of Gaussian potential, effective potential and depth of Gaussian 

potential. 

Free Energy; 

𝐹(𝑇,𝐵,𝑉0,𝑅) = −𝑘𝐵𝑇𝑇𝑇𝑇(𝑇,𝐵,𝑉0,𝑅) = −𝑘𝐵𝑇𝑇𝑇
𝑐𝑐𝑐𝑐ℎ �𝑔ℏ𝜔𝑐4𝑘𝐵𝑇

�

𝑐𝑐𝑐ℎ � ℏ𝜔𝑘𝐵𝑇
� − 𝑐𝑐𝑐𝑐ℎ � ℏ𝜔𝑐2𝑘𝐵𝑇

�
 (12) 

is derived as above. 

 
(a)                                                          (b) 

 
(c)                                                             (d) 

Figure 1. a) Temperature dependent free energy. b) Magnetic Field dependent free energy. c) Potential Depth 
dependent free energy. d) Width of quantum dot dependent free energy. 

 

In Figure 1a, Temperature dependent free energy is given for different magnetic fields. Free 

energy decreases depend on the temperature and increase with magnetic field increasing proportionally. 

Free energy, decreases by depending on the temperature and increases with magnetic field increasing. In 

Figure 1b, the variation of the free energy against the magnetic field is given for different temperatures. 

Free energy or free enthalpy increases due to magnetic field and inversely proportionally decreases with 

increasing in temperature. At low values of magnetic fields, due to increasing in kinetic energy efficiency 

which causes of electron trapping, free energy increases due to temperature at low magnetic field values. 

The graph of free energy versus potential depth is given in Figure 1c. As the potential depth increases, the 

free energy increases monotonically. It is observed that, free energy decreases somewhat due to changing 

in temperature. In Figure 1d, the free energy is plotted for different temperatures depending on the width 
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of the quantum dot. It has been found that, depends on size of quantum dots, free energy exhibits 

exponential behaviors at high temperatures. 

Average energy; 

𝐸(𝑇,𝐵,𝑉0,𝑅) = −
𝜕
𝜕𝜕

𝑙𝑙𝑙(𝑇,𝐵,𝑉0, 𝑅)

=
ℏ
4
�
4𝜔𝜔𝜔𝜔ℎ � ℏ𝜔𝑘𝐵𝑇

� − 2𝜔𝑐𝑠𝑠𝑠ℎ �
ℏ𝜔𝑐

2𝑘𝐵𝑇
�

𝑐𝑐𝑐ℎ � ℏ𝜔𝑘𝐵𝑇
� − 𝑐𝑐𝑐ℎ � ℏ𝜔𝑐2𝑘𝐵𝑇

�
− 𝑔𝜔𝑐𝑡𝑡𝑡ℎ �

𝑔ℏ𝜔𝑐
4𝑘𝐵𝑇

�� 
(13) 

 

is obtained as above derivation. 

 
(a)                                                          (b) 

 
(c)                                                             (d) 

Figure 2. a) Temperature dependent average energy b) Magnetic Field dependent average energy. c) Potential Depth 
dependent average energy. d) Width of quantum dot dependent average energy. 

 

As seen in Figure 2a, average energy increases exponentially depending on the temperature for 

all magnetic field values. In figure 2b, magnetic field versus average energy graph is plotted. At low 

temperatures, spin effects cause decreasing by the increasing in magnetic field initially, and then 

monotone increasing is observed. But, monotone increasing only is observed at high temperatures. In 

figure 2c, as the depth of the well increases, the average energy increases as expected. Similarly, if 

temperature will increase, also average energy will increase proportionally. So the calculations are made 

in line with the expected results. In figure 2d, the graph of average energy versus change due to the width 

of quantum dot is plotted for different temperatures. At low temperatures, the average energy has not 

changed, but at high temperatures (over 100K) a sharp decline is observed. 
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Heat capacitance; 

𝐶𝑣(𝑇,𝐵,𝑉0,𝑅) = −𝑇
𝜕2𝐹(𝑇,𝐵,𝑉0,𝑅)

𝜕𝑇2

=

ℏ2 �
−2(4𝜔2 + 𝜔𝑐2) + (2𝜔 + 𝜔𝑐)2𝑐𝑐𝑐ℎ �ℏ(2𝜔 + 𝜔𝑐)

2𝑘𝐵𝑇
� + (−2𝜔 + 𝜔𝑐)2𝑐𝑐𝑐ℎ �ℏ(2𝜔 + 𝜔𝑐)

2𝑘𝐵𝑇
� +

𝑔2
2 𝜔𝑐2 �𝑐𝑐𝑐ℎ �

ℏ𝜔
𝑘𝐵𝑇

� − 𝑐𝑐𝑐ℎ � ℏ𝜔𝑐2𝑘𝐵𝑇
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2
𝑠𝑠𝑠ℎ2 �𝑔ℏ𝜔𝑐4𝑘𝐵𝑇

�
�

�8𝑘𝐵𝑇2 �𝑐𝑐𝑐ℎ �
ℏ𝜔
𝑘𝐵𝑇

� − 𝑐𝑐𝑐ℎ � ℏ𝜔𝑐2𝑘𝐵𝑇
��
2
�

 

(14) 

is obtained as Eq.14. 

 
(a)                                                          (b) 

 
(c)                                                            (d) 

Figure 3. a) Temperature dependent heat capacity. b) Magnetic field dependent heat capacity. c) Potential depth 
dependent heat capacity. d) Width of quantum dot dependent heat capacity. 

 
The temperature dependence of the heat capacity per electron is given in Figure 3a, taking into 

account the effect of electron spin. Peaks for different magnetic fields were observed at low temperatures. 

Unlike other magnetic fields, the B=10 Tesla is shaped like a shoulder. When the magnetic field 

increases, the peaks disappear and the heat capacity approaches each other for all magnetic fields. These 

peaks are caused by the fluctuation in the spin states. If electrons are active at high temperatures, the 

effect of spin states is not observed. The dependence of the heat capacity for per electron on the magnetic 

field is given in Figure 3b, taking into account the effect of electron spin. At low magnetic fields, peaks 

were observed for different temperatures (2 K and 5 K). Above T = 10K, it takes the shape of a shoulder 

at a certain magnetic field value and the curves approach each other at high magnetic field values. 

Depending on the depth of the potential to trap the behavior of the heat capacity, the graph is given in 

Figure 3c. In the low values of V0, the curves intercept each other. This sharp decline is due to the large 

energy splitting between the lowest excited state and the ground state as V0 increases. Depending on the 



Oylumluoglu G. 

8 
 

width of the quantum dot, the heat capacity is given in Figure 3d at different temperatures for 2 Tesla. 

The higher  temperatures, the sharper change due to the width of the quantum dot. At 25K and 50K, this 

behavior disappears as the temperature increases constantly over the range of the quantum dot. 

 

4. Discussion and Conclusion 

Quantum dots are quantum mechanical structures, also referred to as impurity atoms with atomic 

structure. These structures can be chemically synthesized, as well as can be designed of semi-conductor 

junction structures.  In fact, these structures are restricted in three- dimensional quantum mechanically. 

This consideration allows to look at the problem as ‘fermions in quantum well’. The adjustability of the 

size of the quantum well, enriches the using of these devices in technology which have atomic structures. 

Nowadays, there are technological application areas such as laser, single electron transistors, quantum 

computers with quantum byte in. There are many experimental studies on this subject that theoretical 

modeling is made both numerically and analytically. It is important to determine the thermodynamic and 

magnetic properties of the quantum dots with respect of their application areas. 

Quantum dots are modeled using Gaussian potential.  In general, parabolic potential well model 

is used in quantum dots. However, the knowledge that the potential exists at infinite depths of the 

parabolic potential is not enough to understand some of the features of quantum dots. Hence, the 

Gaussian potential well seems more realistic model, since it allows particles to break from these impurity 

atoms. Studies have shown that, the properties of the confined Gaussian potential quantum well and 

confined parabolic potential quantum well have shown similarity. 

The determination of the thermodynamic properties of quantum dots is a significant way of 

understanding the device properties of this kind of systems. While, fluctuations and shoulder-like 

structures in the thermodynamic quantities of the quantum dot are observed at low temperature and 

magnetic fields, monotone changes are observed at high temperature and high magnetic fields. It is 

thought that these observations are caused by the spin of the particle. It is observed that the quantities of 

the changes which depends on potential depth are increased when the temperature increases. Furthermore, 

in the changes which depends on width of the quantum dots abnormal changes are observed above the 

certain temperature values. 
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