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ABSTRACT
In this study, a phytoplankton–zooplankton system has been modelled
using a system of differential equations with piecewise constant argu-
ments, which represents a new approach to modelling phytoplankton–
zooplankton interaction. To analyse the dynamic behaviour of the
model, we consider the solution of the system in a certain subinterval,
which yields a system of difference equations. Some theoretical results
on the boundedness character and local stability properties for the
discrete dynamical system are obtained. In addition, we explain the
biological dynamics of the bloom in the plankton model through
Neimark–Sacker bifurcation and obtain the threshold values for different
parameters that govern the periodic nature of the bloom. We conclude
that, while other studies explained that the bloom depended on only
one parameter, this study explains that the bloom depended on three
different parameters, namely θ (rate of toxin production per phytoplank-
ton), β (zooplankton growth efficiency) and K (environmental carrying
capacity of phytoplankton).
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1. Introduction

Plankton are a diverse group of organisms that live in the water column and cannot swim against
the current [1]. Mainly, plankton are broadly divided into two large groups; phytoplankton are
usually unicellular and microscopic organisms, and they are consumed by zooplankton.
Phytoplankton are very important component of aquatic ecology. They are the base of the aquatic
food web, and they also produce 50–80% of the oxygen needs of the world and absorb half of the
carbon dioxide, potentially mitigating one cause of global warming. These functions of plankton,
which are called beneficial algal blooms, occur in ocean patches where they have favourable
nutritional, physical and biological conditions [2].

The dynamics of the rapid increase of the plankton population is known as a ‘bloom’. Algal
blooms are broadly divided into two groups; first, spring blooms occur seasonally depending on
the temperature and nutrient conditions; second, red tides are the result of localized outbreaks
associated with water temperature [3]. If the biomass of an algal bloom has adverse effects on the
environment, it is called a harmful algal bloom (HAB). HABs have adverse and disruptive effects
on the environment and ecology. HABs fall into two general types: (a) those that secrete
secondary metabolites (e.g. toxin and mucus) and cause contamination in the water and damage
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aquatic life and (b) those occurring after an extreme biomass increase, thus causing an anoxic
situation and harming various organisms.

In recent years, there has been considerable scientific attention focused on HABs [4,5]. Not
only does algal nutrient status affect the likelihood of top–down control of these organisms, but
any negative impact on grazing pressure will decrease nutrient regeneration, further enhancing
algal nutrient stress and unpalatability [6]. For bloom development in immature ecosystems (e.g.
during the spring bloom), grazer mismatch is important, but an alternative mechanism is required
for growth to exceed grazing losses within mature ecosystems [7].

Modelling of plankton populations is an essential tool to improve our understanding of the
physical and biological processes that affect population dynamics. In particular, it is very impor-
tant to explain the dynamic mechanism of the HAB and its control in the plankton model. In
recent years, many authors have used mathematical models to focus on the adverse effect of HAB
in order to determine factors that cause bloom [8–13]. Because the dynamics of bloom are not
well explained by the ordinary differential equations, many authors prefer to use delay differential
equations [14–19]. Chattopadhyay and Sarkar [19] explained the cyclic nature of bloom dynamics
of phytoplankton–zooplankton interaction by using the following model:

dP
dt ¼ rP tð Þ 1� P tð Þ

K

� �
� αP tð ÞZ tð Þ;

dZ
dt ¼ βP tð ÞZ tð Þ � μZ tð Þ � θP t�τð Þ

γþP t�τð ÞZ tð Þ:

8<: (1:1)

The model includes two predational forms. The first form is P tð ÞZ tð Þ, which is constructed
according to the law of mass action. The second form is the Holling type II functional response,
which is given by the last term in the second equation. In addition, they assumed that liberation of
toxic substances by the phytoplankton species is not an instantaneous process but instead
followed by some time lag. In this way, the mechanism of the periodic nature of blooms was
explained by using delay differential equations.

Theoretical studies show that differential equations with piecewise constant arguments are
equivalent to integral equations and are very close to delay differential equations [20,21]. This idea
was suggested and studied by Cooke and Györi [20]. They provided that differential equations
with piecewise constant arguments can be used to obtain the approximate solution of delay
differential equations that contain discrete delays. In their method of approximation, the delay
equation is first replaced by a differential equation with piecewise constant arguments, and then
by a difference equation. With this in mind, they studied the qualitative dynamics of these three
equations.

Following this work, using the method of reduction to discrete equations, many authors have
analysed various types of biological models consisting of differential equations with piecewise
constant arguments [22–29]. In such biological events, differential equations may reflect the
dynamics of growth and death of populations; otherwise, difference equations may represent
the interaction of two populations, such as competition or predation phenomena [27,28].

By taking into account the work of Chattopadhyay and Sarkar [19], this paper proposes a
mathematical model for the phytoplankton–zooplankton interaction including both discrete and
continuous time:

dx1
dt ¼ rx1 tð Þ 1� x1 tð Þ

K

� �
� αx1 tð Þx2 ½½t��ð Þ;

dx2
dt ¼ βx1 ½½t��ð Þx2 tð Þ � μx2 tð Þ � θx1 ½½t��ð Þ

γþx1 ½½t��ð Þ x2 tð Þ:

8><>: (1:2)

In this model, x1 tð Þ and x2 tð Þ represent the density of the phytoplankton and zooplankton
populations, respectively; ½½t�� denotes the integer part of t 2 0;1½ Þ; and all these parameters are
positive. The parameters r; K and α are the intrinsic growth rate, environmental carrying capacity
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and specific predation rate of phytoplankton species, respectively. β represents the ratio of biomass
consumption per zooplankton for the production of new zooplankton, μ is the mortality rate of
zooplankton, θ denotes the rate of toxin production per phytoplankton, and γ is the half saturation
constant. Most of the parameter values are taken from the study of Edwards and Briendly [30] in
terms of consistency with the biological facts, and these parameter values are shown in Table 1.

Model (1.2) includes both discrete and continuous time for each population because plankton
dynamics have different dynamics properties that can be described using both differential and

difference equations. The logistic term rx1 tð Þ 1� x1 tð Þ
K

� �
and the term μx2 tð Þ include only a time-

continuity for the growth of phytoplankton and the death of zooplankton, respectively. In model
(1.1), the authors assumed that liberation of toxic substances by the phytoplankton species is not
an instantaneous process but instead followed by some time lag. In our model, these time delays

are reflected by discrete time in the Holling type II functional response as
θx1 ½½t��ð Þ
γþx1 ½½t��ð Þ x2 tð Þ. On the

other hand, in model (1.1), the authors did not consider another time delay in the interaction
phytoplankton and zooplankton system. In a real ecological context, the interaction between
phytoplankton and zooplankton, which is described as x1 tð Þx2 tð Þ; will not be essentially instan-
taneous. Instead, the response of zooplankton to contacts with phytoplankton is likely to be
delayed due to a gestation period [31–33]. Therefore, we choose a discrete time instead of time
delay in the predation term and obtained x1 tð Þx2 ½½t��ð Þ, x1 ½½t��ð Þx2 tð Þ; which include both discrete
and continuous time for each population. Thus, the phytoplankton–zooplankton interaction is
considered in a certain subinterval and is modelled using a system of differential equations with
piecewise constant arguments. This approach is a new idea for modelling the phytoplankton–
zooplankton system.

2. Local stability analysis

For t 2 n; nþ 1½ Þ, system (1.2) can be written as follows:

dx1
dt � r � αx2 nð Þð Þx1 tð Þ ¼ �rkx12 tð Þ;
dx2
x2 tð Þ ¼ βx1 nð Þ � μ� θx1 nð Þ

γþx1 nð Þ
� �

dt;

(
(2:1)

where 1
K ¼ k:

Solving Equation (2.1) in interval t 2 n; nþ 1½ Þ and letting t go to nþ 1; one can obtain a
system of difference equation as follows:

x1 nþ 1ð Þ ¼ x1 nð Þ r�αx2 nð Þð Þ
r�αx2 nð Þ�rkx1 nð Þð Þe� r�αx2 nð Þð Þþrkx1 nð Þ ;

x2 nþ 1ð Þ ¼ x2 nð Þeβx1 nð Þ�μ� θx1 nð Þ
γþx1 nð Þ:

8<: (2:2)

Table 1. Parameters values used for numerical analysis.

Parameters Default values Reported ranges

r (Maximum x1 growth rate) 0.2 m�1day�1ð Þa 0.07–0.28 m�1day�1ð Þ
α (Maximum x2 grazing rate) 0.6 day�1ð Þa 0.6–1.4 day�1ð Þ
β (x2 growth efficiency) 0.25a 0.2–0.5
μ (Natural death rate of x2) 0.02 m�1day�1ð Þa 0.015–0.15 m�1day�1ð Þ
γ (x2 grazing half-saturation coefficient) 0.06 gCm�3ð Þa 0.02–0.1 gCm�3ð Þ
θ (Rate of toxin production per phytoplankton) 0.9 m�1day�1ð Þa
K (Environmental carrying capacity of x1) 5 m�1ð Þb

aEdwards and Briendly [30].
bParameter values within a biologically meaningful range.
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Now we obtain the solution of system (1.2) as a system of difference equation that reveals the
rich dynamical characteristics and the asymptotic behaviour of the system of differential equations
with piecewise constant arguments.

The recurrence relation (2.2) corresponds to the discrete dynamical systems:

x1
x2

� �
!

x1 r�αx2ð Þ
r�αx2�rkx1ð Þe� r�αx2ð Þþrkx1

x2 e
βx1�μ� θx1

γþx1

0@ 1A; F1ðx; r; α; k; β; μ; θ; γ
F2ðx; r; α; k; β; μ; θ; γ

� �
; (2:3)

where x ¼ x1; x2ð ÞT : Map (2.3) has fixed points E0 ¼ 0; 0ð Þ and E1 ¼ 1
k ; 0
� �

for all parameter
values. For

θ <
β

k
þ βγ� μ� kγμ; (2:4)

a nontrivial fixed point E� ¼ x1; x2ð Þ appears, with the coordinates

x1 ¼
�βγþ θ þ μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βγ� θ � μð Þ2 þ 4βγμ

q
2β

; x2 ¼ r
α

1� kx1ð Þ: (2:5)

Now, we first focus on boundedness solution of system (2.2), and later discuss the stability of
fixed points of map (2.3).

Theorem 2.1. Let x1 nð Þ; x2 nð Þð Þf g1n¼0 be a positive solution of system (2.2). If x2 nð Þ 2 0; rα
� �

;

then x1 nð Þ 2 0; er
k er�1ð Þ

� �
: If x1 nð Þ < x1, then x2 nð Þ 2 0; x2 0ð Þð Þ:

Proof. It can be easily seen that the function

f uð Þ ¼ ueu

eu � 1
; u 2 IR

is increasing on �1;1ð Þ since

f 0 uð Þ ¼ eu eu � 1� uð Þ
eu � 1ð Þ2 > 0:

From the first equation in the system, we get

x1 nþ 1ð Þ ¼ x1 nð Þ r � αx2 nð Þð Þer�αx2 nð Þ

r � αx2 nð Þ þ rkx1 nð Þ er�αx2 nð Þ � 1ð Þ

<
x1 nð Þ r � αx2 nð Þð Þer�αx2 nð Þ

rkx1 nð Þ er�αx2 nð Þ � 1ð Þ

¼ r � αx2 nð Þð Þer�αx2 nð Þ

rk er�αx2 nð Þ � 1ð Þ
<

rer

kr er � 1ð Þ ¼
er

k er � 1ð Þ :

Similarly, it can be shown that x2 nð Þ 2 0; x2 0ð Þð Þ under the condition x1 nð Þ < x1:

Theorem 2.2. The fixed points E0 and E1 are saddle points.

Proof. The Jacobian matrix at the fixed point E0, is the form
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A0 ¼ er 0
0 e�μ

� �
and has eigenvalues μ1 ¼ er; μ2 ¼ e�s: Consequently, E0 is a saddle point. On the other hand the
Jacobian matrix A1 at the point E1 is

A1 ¼
e�r � α�e�rα

kr

0 e
β
k� θ

1þkγ�μ

 !
;

which gives eigenvalues μ1 ¼ e�randμ2 ¼ e
β
k� θ

1þkγ�μ: Considering the condition (2.4), we can say
that E1 is a saddle point.

Now, we can investigate the stability of the nontrivial fixed point of the map. The Jacobian
matrix A evaluated at the nontrivial fixed point is given by

A ¼ a11 a12
a21 a22

� �
; (2:6)

where

a11 ¼ @F1
@x1

x1; x2ð Þ ¼ e�krx1 ;

a12 ¼ @F1
@x2

x1; x2ð Þ ¼ � 1� e�krx1
� �

α

kr
;

a21 ¼ @F2
@x1

x1; x2ð Þ ¼ 2x2β
β2γ2 þ θþ μð Þ θþ μþ Δð Þ þ βγ �2θþ 2μþ Δð Þ

βγþ θþ μþ Δð Þ2 ;

a22 ¼ @F2
@x2

x1; x2ð Þ ¼ 1

and

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βγ� θ� μð Þ2 þ 4βγμ

q
:

The characteristic equation of the matrix A can be obtained as

p μð Þ ¼μ2 þ μ �1� e�krx1
� �

þ 1� e�krx1
� �

kr
2x2βα

β2γ2 þ θþ μð Þ θ þ μþ Δð Þ þ βγ �2θþ 2μþ Δð Þ
βγþ θþ μþ Δð Þ2 þ e�krx1 ¼ 0:

(2:7)

In order to analyse local behaviour of the map through characteristic equation (2.7), we can use
the following theorem (Schur–Cohn criterion).

Theorem 2.3 ([34]). The characteristic polynomial

p μð Þ ¼ μ2 þ p1μþ p0 (2:8)

has all its roots inside the unit open disk ð μj j < 1Þ if and only if

(a) p 1ð Þ ¼ 1þ p1 þ p0 > 0;
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(b) p �1ð Þ ¼ 1� p1 þ p0 > 0;

(c) Dþ
1 ¼ 1þ p0 > 0;D�

1 ¼ 1� p0 > 0:

By using Theorem 2.3, we can analyse the dynamic behaviour of the map in the following
theorem:

Theorem 2.4. The nontrivial fixed point of map (2.3) is locally asymptotically stable if and only if

k >
2β β2γ2 þ θ þ μð Þ θþ μþ Δð Þ þ βγ �2θ þ 2μþ Δð Þ� �

βγþ θþ μþ Δð Þ2 þ �γβþ θþ μþ Δð Þ β2γ2 þ θþ μð Þ θ þ μþ Δð Þ þ βγ �2θþ 2μþ Δð Þ� � :
Proof. From the characteristic equation, we obtain

p1 ¼ �1� e�krx1 ;

p0 ¼
1� e�krx1
� �

kr
2x2βα

β2γ2 þ θþ μð Þ θ þ μþ Δð Þ þ βγ �2θþ 2μþ Δð Þ
βγþ θþ μþ Δð Þ2 þ e�krx1 :

The condition (a), (b) and (c) of Theorem 2.3 gives the inequalities

p 1ð Þ ¼ 1� e�krx1
� �

kr
2x2βα

βγ� θð Þ2 þ 2θμþ θΔþ μ2 þ μΔþ 2μβγþ βγΔ

βγþ θ þ μþ Δð Þ2 > 0; (2:9)

p �1ð Þ ¼ 2þ 1� e�krx1
� �

kr
2x2βα

βγ� θð Þ2 þ 2θμþ θΔþ μ2 þ μΔþ 2μβγþ βγΔ

βγþ θþ μþ Δð Þ2
þ 2e�krx1 > 0 (2:10)

and

Dþ
1 ¼ 1þ 1� e�krx1

� �
kr

2x2βα
β2γ2 þ θþ μð Þ θþ μþ Δð Þ þ βγ �2θþ 2μþ Δð Þ

βγþ θþ μþ Δð Þ2
þ e�krx1 > 0; (2:11)

which are always held under condition (2.4). From condition (d), we get

D�
1 ¼ 1� e�krx1

� �
kr

2x2βα
β2γ2 þ θ þ μð Þ θþ μþ Δð Þ þ βγ �2θ þ 2μþ Δð Þ

βγþ θþ μþ Δð Þ2
þ e�krx1 < 1; (2:12)

which reveals

k >
2β β2γ2 þ θ þ μð Þ θþ μþ Δð Þ þ βγ �2θ þ 2μþ Δð Þ� �

βγþ θþ μþ Δð Þ2 þ �γβþ θþ μþ Δð Þ β2γ2 þ θþ μð Þ θ þ μþ Δð Þ þ βγ �2θþ 2μþ Δð Þ� � :
This completes the proof.

To test the conditions of Theorem 2.4, we can use parameter values given in Table 1 and initial
conditions x1 1ð Þ ¼ 3:5; x2 1ð Þ ¼ 1. Figure 1 shows that, under the conditions given in Theorem
2.4, the nontrivial fixed point E� ¼ x1; x2ð Þ ¼ 3:62133; 0:0919116ð Þ is locally asymptotically stable,
where blue and red graphs represent population densities of phytoplankton and zooplankton,
respectively.
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3. Bifurcation analysis

In this section, we investigate the existence of stationary bifurcation (fold, transcritical and
pitchfork bifurcation), period-doubling bifurcation and Neimark–Sacker bifurcation in map (2.3).

3.1 Stationary bifurcation and period-doubling bifurcation analysis

Stationary bifurcation occurs in a discrete dynamical system when the Jacobian matrix A has one
real eigenvalue equal to 1. For a period-doubling bifurcation, the Jacobian matrix A has one real
eigenvalue that equals −1, while the other eigenvalue of A is inside the unit circle. It is well known
that replacing condition (a) in Theorem 2.3 by p 1ð Þ ¼ 0, the algebraic conditions under which the
system may undergo stationary bifurcation are obtained. Replacing condition (b) in Theorem 2.3
by p �1ð Þ ¼ 0, the conditions of period-doubling bifurcation are obtained.

Because of inequalities (2.9) and (2.10), these conditions do not hold for the system. Thus,
stationary bifurcation and period-doubling bifurcation do not exist for the system.

3.2 Neimark–Sacker bifurcation analysis

Theorem 3.1 ([34]). A pair of complex conjugate roots of characteristic polynomial (2.8) lie on
the unit circle and the other roots of p μð Þ all lie inside the unit circle if and only if

(a) p 1ð Þ ¼ 1þ p1 þ p0 > 0;
(b) p �1ð Þ ¼ 1� p1 þ p0 > 0;
(c) Dþ

1 ¼ 1þ p0 > 0;
(d) D�

1 ¼ 1� p0 ¼ 0:

Theorem 3.2. The eigenvalue assignment condition of Neimark–Sacker bifurcation for map (2.3)
holds if

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

n

x 1(n
),

 x
v(n

) 

Figure 1. Asymptotically stable fixed point of the map.
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�k ¼ 2β β2γ2 þ θþ μð Þ θþ μþ Δð Þ þ βγ �2θþ 2μþ Δð Þ� �
βγþ θ þ μþ Δð Þ2 þ �γβþ θþ μþ Δð Þ β2γ2 þ θ þ μð Þ θþ μþ Δð Þ þ βγ �2θ þ 2μþ Δð Þ� � :

Proof. The proof is clear.

Using the condition of Theorem 3.2 with the parameters given in Table 1, we obtain the critical
value of the Neimark–Sacker bifurcation parameter as �K ¼ 7:6861.

Theorem 3.3 ([35]). For any generic two dimensional one-parameter system

x 7!f x; αð Þ
having at α ¼ 0 the fixed point x0 ¼ 0 with complex multipliers μ1;2 ¼ e�iθ0 ; there is a neigh-
bourhood of x0 in which a unique closed invariant curve bifurcates from x0 as α passes through
zero.

The system has to satisfy the following genericity conditions:

(1) r0 0ð Þ � 0;whereμ1;2 αð Þ ¼ r αð Þe�iφ αð Þ, r 0ð Þ ¼ 1;φ 0ð Þ ¼ θ0;

(2) e�ikθ0 � 1; k ¼ 1; 2; 3; 4;

(3) a 0ð Þ � 0;where

a 0ð Þ ¼ Re
e�iθ0g21

2

	 

� Re

1� 2eiθ0
� �

e�2iθ0

2 1� eiθ0ð Þ g20g11

	 

� 1
2
g11j j2 � 1

4
g02j j2:

Theorem 3.4. For map (2.3), a supercritical Neimark–Sacker bifurcation occurs at K ¼ 7:6861,
and the fixed point E� ¼ x1; x2ð Þ ¼ 3:62133; 0:176282ð Þ is surrounded by a closed invariant curve
that is stable.

Proof. For �K ¼ 7:6861; the Jacobian matrix of map (2.3) at the nontrivial fixed point is

A �Kð Þ ¼ 0:910073 �2:07356
0:0433682 1

� �
(3:1)

and has the eigenvalues

μ1;2 ¼ 0:955037� 0:296488i ¼ e�iθ0 ; θ0 ¼ 0:301013:

It is clear that (C1) and (C2) are satisfied. To verify the non-degeneracy condition (C3), we have
to compute a 0ð Þ�0: The critical Jacobian matrix A �Kð Þ has the eigenvectors

A �Kð Þq ¼eiθ0q;

A �Kð ÞTp ¼e�iθ0p;

where
qe �0:989704; 0:0214609þ 0:141513ið ÞT ; (3:2)

pe 0:0214609þ 0:141513i; 0:989704ð ÞT : (3:3)
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To obtain the normalization <p; q> ¼ 1, we can take

q ¼ �0:989704; 0:0214609þ 0:141513ið ÞT ; (3:4)

p ¼ �0:505202þ 0:0766158i; 2:18814x10�16 þ 3:53325i
� �T

: (3:5)

Now we form

x ¼ x0 þ zqþ zq

and evaluate the function

H z;�zð Þ ¼ p; F x0 þ zqþ �z�q; �K
� �� x0

� �
:

Computing its Taylor expansion at z;�zð Þ ¼ 0; 0ð Þ;

H z;�zð Þ ¼ eiθ0z þ
X

2�jþk�3

1
j!k!

gjkz
j�z�k þ O zj j4� �

;

gives

g20 ¼ �0:209213� 0:0715625i; g11 ¼ �0:000184023� 0:00134844i;

g21 ¼ 0:0341405� 0:0055375i; g02 ¼ 0:255385þ 0:0759236i;

which allows us to find the critical real part

a 0ð Þ ¼ Re
e�iθ0g21

2

	 

� Re

1� 2eiθ0
� �

e�2iθ0

2 1� eiθ0ð Þ g20g11

	 

� 1
2
g11j j2 � 1

4
g02j j2 ¼ �0:00281049:

Therefore, a supercritical Neimark–Sacker bifurcation occurs at �K ¼ 7:6861 (Figure 2).

2 2.5 3 3.5 4 4.5 5
0
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0.1
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0.25
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0.35

0.4
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x
1
(n)

x 2(n
)

Figure 2. Stable invariant curve in map (2.3) for �K ¼ 7:6861.
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4. Results and discussion

In this paper, we propose and analyse a plankton model with continuous and discrete time. Some
theoretical results are obtained for the local behaviour of the model. To test these theoretical
results, parameters values (Table 1) are taken from the study of Edwards and Briendly [30] in
terms of consistency with the biological facts. In addition, we try to explain the dynamics of the
bloom, which is the most significant problem in the plankton model. The Neimark–Sacker
analysis shows that the parameters θ (rate of toxin production per phytoplankton), β (x2 growth
efficiency) and K (environmental carrying capacity of phytoplankton) play a key role in the
dynamics of the bloom.

Theorems 3.2 and 3.4 show that, when the carrying capacity K of phytoplankton crosses a
threshold value �K, the system undergoes a Neimark–Sacker bifurcation. The numerical value of �K
is obtained by using the parameter values given in Table 1, yielding �K ¼ 7:6861 at which the
plankton bloom occurs (Figures 2 and 5). This is biologically reasonable because the population
density of phytoplankton grows with the increasing carrying capacity [17,36,37]. When the
carrying capacity is small, the toxic effect on zooplankton is also small, and both populations
can coexist at a stable steady state. Contrary to that, the planktonic bloom has high probability
when the carrying capacity increases, and, in that case, the toxin produced by the phytoplankton
population plays an important role in the termination of the bloom [38]. Figure 3 shows that the
nontrivial fixed point of the map is locally asymptotically stable with damping oscillation for the
small value of K. Alternately, the system experiences unstable oscillation for large values of K
(Figure 4).

In the plankton system, chaotic behaviour can arise due to interactions between seasons and
internal biological rhythms [39]. The role of chaos was identified and recognized by Huisman and
Weissing [40]. From the mathematical point of view, if a dynamical system has a positive largest
Lyapunov exponent, then the system exhibits chaotic dynamics. For map (2.3), the maximum

2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x
1
(n)

x 2(n
)

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5
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5

n

x 1(n
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 x
2(n

)

Figure 3. Stable focus in the map for K ¼ 6:25. Initial conditions and other parameters are the same as in Figure 1.
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Lyapunov exponents corresponding to Figure 5 are calculated and plotted in Figure 10(a) [41],
which demonstrates the existence of the chaotic regions in the parametric space.

There is also a variety of evidence that the toxic substance plays a key role in the growth of the
zooplankton population in controlling the dynamics of bloom [14,18,19,42–44]. This result is also
valid for our system. The parameter θ is determined as a bifurcation parameter to show the
existence of Neimark–Sacker bifurcation around the nontrivial fixed point. When the value of the

0 2 4 6 8 10
0
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1.5

2

2.5

x
1
(n)
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)

0 200 400 600
0

1

2

3

4

5
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n

x 1(n
),

 x
2(n

)

Figure 4. Unstable fixed point of the map for K ¼ 9:09091. Initial conditions and other parameters are the same as in Figure 1.
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Figure 5. Bifurcation diagram of the map with respect to parameter K .
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rate of toxin production is �θ ¼ 0:167996, a periodic solution occurs as a result of Neimark–Sacker
bifurcation (Figures 6 and 7). The phytoplankton bloom occurs between the 47th and 112th days.
When the phytoplankton population reaches the first peak at the 112th day, it releases too much
of the toxic substance such that it controls the bloom of the zooplankton and also its own bloom.
After the bloom, the phytoplankton population decreases and finally attains very low densities at
the 139th day. In this period, the zooplankton population decreases between the 8th and 102nd
day. Alternately, zooplankton bloom occurs between the 102nd and 118th day. After the zoo-
plankton bloom, the zooplankton population starts to decrease, and it reaches low density at the
173rd day. When there is a low concentration of toxin, both populations lead to another bloom
and the process continues (Figure 6). Results from Chattopadhayay et al. [14] support our

0 50 100 150 200 250 300
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0.5

1

1.5

2

2.5

3

n

x 1(n
),

 x
2(n

) 

Figure 6. Periodic solutions of the map for �θ ¼ 0:167996 due to the Neimark–Sacker bifurcation, where x1 1ð Þ ¼
3:6213; x2 1ð Þ ¼ 0:0919 and other parameters are taken from Table 1.
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Figure 7. Bifurcation diagram of the map with respect to parameter θ.
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findings. In addition, the system exhibits chaotic dynamics for some values of the parameter θ
(Figures 7 and 10(b)).

In contrast, if θ is increased beyond �θ, the zooplankton population becomes extinct and the
phytoplankton population reaches its environmental carrying capacity (Figure 7). In this situation,
the system tends to fixed point E1 ¼ K; 0ð Þ.

Another important parameter controlling the bloom is β. If the growth efficiency of the
population of zooplankton passes a threshold value, �β ¼ 0:384513, the system undergoes a
Neimark–Sacker bifurcation and the bloom occurs (Figures 8 and 9). Due to the increase of β,
the zooplankton population increase triggers the zooplankton bloom. In this period, the zoo-
plankton requires more phytoplankton, and they consume too much phytoplankton; as a result,
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Figure 8. Periodic solutions of the map for �β ¼ 0:384513 due to the Neimark–Sacker bifurcation. Initial conditions and other
parameters are taken from Figure 1.
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Figure 9. Bifurcation diagram of the map with respect to parameter β.
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the zooplankton leads to a reduction of the phytoplankton population. As the phytoplankton
population decreases, the zooplankton cannot consume sufficient nutrients, so the population
tends to decrease. If β exceeds �β, the system exhibits chaotic dynamics where the populations of
phytoplankton and zooplankton cannot be controlled (Figures 9 and 10(c)).

5. Conclusion

In this study, we prefer to use differential equations with piecewise constant arguments instead of
delay differential equations for two important reasons. The first reason is that analysing of delay
differential equations is usually very difficult because the state space of these equations are infinite
dimensional. Therefore, a numerical approach may be needed for delay differential equations. In
this paper, this is done by using differential equations with piecewise constant arguments.

The second reason for using differential equations with piecewise constant arguments is related
to biology. It is well known that the macroscopic biological state is continuous and the micro-
scopic biological state is discrete. However, using a mathematical model that considers the
population interactions from the microscopic level and the macroscopic level at the same time
could allow us to better understand the biological phenomenon. Our model that combine proper-
ties both differential and difference equations considers the microscopic state and the macro-
scopic state at the same time.

We note that our model is different from model (1.1), in which the delay only occurs in the
Holling type II functional response due to the liberation of toxic substances by the phytoplankton
species. This is reflected by discrete time in our model. In addition, Model (1.2) also includes
another time lag, which is reflected by discrete time, due to a gestation period.

Model (1.1) and the discrete version of model (1.2), which is given as (2.2), have both
same and different dynamic properties. For example, the equilibrium points of system (1.1)
and (2.2) are the same. In addition, the periodic solution occurs as a result of Hopf
bifurcation in model (1.1) at the delay parameter. For model (2.2), the Neimark–Sacker
bifurcation, which is a discrete version of the Hopf bifurcation in the discrete dynamical
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Figure 10. Maximum Lyapunov exponents corresponding to Figure 5(a), Figure 7(b) and Figure 9(c).
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system, occurs for three different parameters. While the study [19] explained that the bloom
depends on one parameter, we explain that the bloom depends on three different parameters,
namely θ (rate of toxin production per phytoplankton), β (x2 growth efficiency) and K
(environmental carrying capacity of phytoplankton). This result is biologically reasonable
because the population density of phytoplankton grows with the increasing carrying capacity
(KÞ where the planktonic bloom has high probability [17,36,37]. Another reason behind
population succession and bloom is the toxin produced ðθÞ. Plankton ecology studies show
that phytoplankton start to release toxic chemicals or become toxic very quickly in the
presence of dense zooplankton population; as a result, the grazing pressure decreases, and
the toxic effect on zooplankton will help in the termination of blooms [14,18,19,42–44]. In
addition, due to the increase of β, the zooplankton population increase triggers the zooplank-
ton bloom. In this period, the zooplankton requires more phytoplankton, and they consume
too much phytoplankton. So, the presence of low concentration of toxin leads to zooplankton
bloom [14]. Finally, we can say that our model also explains the chaotic dynamics in the
plankton system.
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