
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342665588

On the symmetrical second order hyperbolic quaternions sequences

Article  in  Notes on Number Theory and Discrete Mathematics · July 2020

DOI: 10.7546/nntdm.2020.26.2.61-70

CITATIONS

0
READS

111

2 authors:

Some of the authors of this publication are also working on these related projects:

Research Article View project

Research articles View project

Sure Köme

Nevşehir Hacı Bektaş Veli University

12 PUBLICATIONS   14 CITATIONS   

SEE PROFILE

Cahit Köme

Nevşehir Hacı Bektaş Veli University

15 PUBLICATIONS   28 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Cahit Köme on 03 July 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/342665588_On_the_symmetrical_second_order_hyperbolic_quaternions_sequences?enrichId=rgreq-359f762293145d126000f48b7b656770-XXX&enrichSource=Y292ZXJQYWdlOzM0MjY2NTU4ODtBUzo5MDkyNjcwNzA2MjM3NDVAMTU5Mzc5NzU3MTcxOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/342665588_On_the_symmetrical_second_order_hyperbolic_quaternions_sequences?enrichId=rgreq-359f762293145d126000f48b7b656770-XXX&enrichSource=Y292ZXJQYWdlOzM0MjY2NTU4ODtBUzo5MDkyNjcwNzA2MjM3NDVAMTU5Mzc5NzU3MTcxOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Research-Article-10?enrichId=rgreq-359f762293145d126000f48b7b656770-XXX&enrichSource=Y292ZXJQYWdlOzM0MjY2NTU4ODtBUzo5MDkyNjcwNzA2MjM3NDVAMTU5Mzc5NzU3MTcxOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Research-articles-3?enrichId=rgreq-359f762293145d126000f48b7b656770-XXX&enrichSource=Y292ZXJQYWdlOzM0MjY2NTU4ODtBUzo5MDkyNjcwNzA2MjM3NDVAMTU5Mzc5NzU3MTcxOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-359f762293145d126000f48b7b656770-XXX&enrichSource=Y292ZXJQYWdlOzM0MjY2NTU4ODtBUzo5MDkyNjcwNzA2MjM3NDVAMTU5Mzc5NzU3MTcxOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sure-Koeme?enrichId=rgreq-359f762293145d126000f48b7b656770-XXX&enrichSource=Y292ZXJQYWdlOzM0MjY2NTU4ODtBUzo5MDkyNjcwNzA2MjM3NDVAMTU5Mzc5NzU3MTcxOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sure-Koeme?enrichId=rgreq-359f762293145d126000f48b7b656770-XXX&enrichSource=Y292ZXJQYWdlOzM0MjY2NTU4ODtBUzo5MDkyNjcwNzA2MjM3NDVAMTU5Mzc5NzU3MTcxOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nevsehir-Haci-Bektas-Veli-University?enrichId=rgreq-359f762293145d126000f48b7b656770-XXX&enrichSource=Y292ZXJQYWdlOzM0MjY2NTU4ODtBUzo5MDkyNjcwNzA2MjM3NDVAMTU5Mzc5NzU3MTcxOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sure-Koeme?enrichId=rgreq-359f762293145d126000f48b7b656770-XXX&enrichSource=Y292ZXJQYWdlOzM0MjY2NTU4ODtBUzo5MDkyNjcwNzA2MjM3NDVAMTU5Mzc5NzU3MTcxOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cahit-Koeme?enrichId=rgreq-359f762293145d126000f48b7b656770-XXX&enrichSource=Y292ZXJQYWdlOzM0MjY2NTU4ODtBUzo5MDkyNjcwNzA2MjM3NDVAMTU5Mzc5NzU3MTcxOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cahit-Koeme?enrichId=rgreq-359f762293145d126000f48b7b656770-XXX&enrichSource=Y292ZXJQYWdlOzM0MjY2NTU4ODtBUzo5MDkyNjcwNzA2MjM3NDVAMTU5Mzc5NzU3MTcxOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nevsehir-Haci-Bektas-Veli-University?enrichId=rgreq-359f762293145d126000f48b7b656770-XXX&enrichSource=Y292ZXJQYWdlOzM0MjY2NTU4ODtBUzo5MDkyNjcwNzA2MjM3NDVAMTU5Mzc5NzU3MTcxOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cahit-Koeme?enrichId=rgreq-359f762293145d126000f48b7b656770-XXX&enrichSource=Y292ZXJQYWdlOzM0MjY2NTU4ODtBUzo5MDkyNjcwNzA2MjM3NDVAMTU5Mzc5NzU3MTcxOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cahit-Koeme?enrichId=rgreq-359f762293145d126000f48b7b656770-XXX&enrichSource=Y292ZXJQYWdlOzM0MjY2NTU4ODtBUzo5MDkyNjcwNzA2MjM3NDVAMTU5Mzc5NzU3MTcxOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Vol. 26, 2020, No. 2, 61–70
DOI: 10.7546/nntdm.2020.26.2.61-70

On the symmetrical second order
hyperbolic quaternions sequences
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e-mail: cahit@nevsehir.edu.tr

Received: 4 September 2019 Revised: 26 November 2019 Accepted: 20 April 2020

Abstract: The purpose of this study is to obtain a new generalized quaternions sequences by
using hyperbolic functions with second order recurrence sequences. First of all, we define the
symmetrical second order hyperbolic sine and the symmetrical second order hyperbolic cosine
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1 Introduction

Hyperbolic functions play an important role in many fields of mathematics, physics, geometry
(Hyperbolic Lobatchevski’s geometry) and cosmological researches (Four-dimensional Minkowki’s
world). Up until now, some researchers have studied the hyperbolic functions using number
sequences [1, 9, 11–13]. For instance, Stakhov and Rozin illustrate some remarkable results
for a new class of hyperbolic functions which unite the characteristics of the classical hyper-
bolic functions and the Fibonacci and Lucas series [11]. Falcon and Plaza introduced an exten-
sion of the classical Fibonacci hyperbolic functions, k−Fibonacci hyperbolic functions, and he
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presented several properties of these hyperbolic functions [2]. Stakhov and Rozin introduced the
new continuous functions, which is an essential area of the Fibonacci numbers theory, for the
Fibonacci and Lucas p−numbers with the help of Binet formulas [12]. By the help of the second
order recurrence sequences, Koçer et al. proposed the symmetrical hyperbolic sine, sUs(x), and
symmetrical hyperbolic cosine hyperbolic functions, cUs(x), as

sUs(x) =
αx − qxα−x√

p2 + 4q
and cUs(x) =

αx + qxα−x√
p2 + 4q

, (1)

where p and q are nonzero real numbers such that p2+4q 6= 0 and α is the root of the characteristic
equation x2 − px − q. They also showed that their study is generalization of some hyperbolic
functions in the literature [9].

Another remarkable research topic is quaternions which are a number system that extends the
complex numbers. In general, a quaternion q, which is member of a non-commutative division
algebra, is defined by

q = q0 + iq1 + jq2 + kq3, (2)

where q0, q1, q2 and q3 are real numbers and i, j and k satisfy the multiplication rules

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. (3)

Quaternions arise in quantum mechanics, physics, mathematics, computer science and related
areas. They have been studied by several authors in the recent years (see [3–8,10]). For example,
Horadam, in [7], defined the Fibonacci quaternions. Motivated by Horadam’s study, Halici, in [5],
presented some basic properties of Fibonacci and Lucas quaternions. Flaut and Savin introduced
the generalized Fibonacci-Lucas quaternions and they proved that the set of these elements is an
order in the sense of ring theory of a quaternion algebra [4]. Köme et al demonstrated the modified
generalized Fibonacci and Lucas quaternions and they presented the generating functions, the
Binet formulas, matrix representations and some significant identities for these quaternions [10].
Using a different approach from our study, Catarino defined the hyperbolic k−Pell quaternions
sequences and then she gave the generating functions, the Binet formulas and some identities for
these quaternions sequences [1].

Motivating by the above cited works, in this paper, we define the symmetrical second
order hyperbolic sine and the symmetrical second order hyperbolic cosine quaternions. After that,
by using these quaternions and hyperbolic functions with second order recurrence sequences, we
obtain the symmetrical second order hyperbolic quaternions sequences and we derive the
generating functions, the Binet formula and some important properties of these quaternions
sequences.

2 Main results

Definition 1. For any p, q ∈ R+ and x ∈ R, the symmetrical second order hyperbolic sine and
the symmetrical second order hyperbolic cosine quaternions are defined by

sUs(x)Q = sUs(x) + sUs(x+ 1)i1 + sUs(x+ 2)i2 + sUs(x+ 3)i3 (4)
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and
cUs(x)Q = cUs(x) + cUs(x+ 1)i1 + cUs(x+ 2)i2 + cUs(x+ 3)i3, (5)

where sUs(x) and cUs(x) are the symmetrical second order hyperbolic functions which are
defined in the Eq. (1).

The following theorem shows the relation between the symmetrical second order hyperbolic
sine and the symmetrical second order hyperbolic cosine quaternions.

Theorem 2.1. For any x ∈ R, the following relations hold:

sUs(x+ 2)Q = pcUs(x+ 1)Q+ qsUs(x)Q (6)

cUs(x+ 2)Q = psUs(x+ 1)Q+ qcUs(x)Q. (7)

Proof. By using the equations (4), (5) and Proposition 1 in [9], we have

pcUs(x+ 1)Q+ qsUs(x)Q = p
(
cUs(x+ 1) + cUs(x+ 2)i1 + cUs(x+ 3)i2 + cUs(x+ 4)i3

)
+ q
(
sUs(x) + sUs(x+ 1)i1 + sUs(x+ 2)i2 + sUs(x+ 3)i3

)
=
(
pcUs(x+ 1) + qsUs(x)

)
+
(
pcUs(x+ 2) + qsUs(x+ 1)

)
i1

+
(
pcUs(x+ 3) + qsUs(x+ 2)

)
i2 +

(
pcUs(x+ 4) + qsUs(x+ 3)

)
i3

= sUs(x+ 2) + sUs(x+ 3)i1 + sUs(x+ 4)i2 + sUs(x+ 5)i3

= sUs(x+ 2)Q.

Analogously, we can prove the second relation. So we omit the proof.

Theorem 2.2. For any x ∈ R, the norm identities of the symmetrical second order hyperbolic
sine and the symmetrical second order hyperbolic cosine quaternions are as follows:

||sUs(x)Q||2 =
α2x (α2 + 1) (α4 + 1) + q2xα−2x−6 (q2 + α2) (q4 + α4)− 2qx (q + 1) (q2 + 1)

(α + qα−1)2

||cUs(x)Q||2 =
α2x (α2 + 1) (α4 + 1) + q2xα−2x−6 (q2 + α2) (q4 + α4) + 2qx (q + 1) (q2 + 1)

(α + qα−1)2
.

Proof. By using the equations in (1), we obtain

||sUs(x)Q||2 =
(
sUs(x)

)2
+
(
sUs(x+ 1)

)2
+
(
sUs(x+ 2)

)2
+
(
sUs(x+ 3)

)2
=

(
αx − qxα−x

α+ qα−1

)2

+

(
αx+1 − qx+1α−x−1

α+ qα−1

)2

+

(
αx+2 − qx+2α−x−2

α+ qα−1

)2

+

(
αx+3 − qx+3α−x−3

α+ qα−1

)2

=
α2x

(α+ qα−1)2

(
1 + α2 + α4 + α6

)
+

q2xα−2x

(α+ qα−1)2

(
1 +

( q
α

)2
+
( q
α

)4
+
( q
α

)6)
− 2qx

(α+ qα−1)2

(
1 + q + q2 + q3

)
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=
α2x

(α+ qα−1)2

(
α8 − 1

α2 − 1

)
+

q2xα−2x

(α+ qα−1)2

(( q
α

)8 − 1( q
α

)2 − 1

)
− 2qx

(α+ qα−1)2

(
q4 − 1

q − 1

)
=
α2x

(
α2 + 1

) (
α4 + 1

)
+ q2xα−2x−6

(
q2 + α2

) (
q4 + α4

)
− 2qx (q + 1)

(
q2 + 1

)
(α+ qα−1)2

.

Similarly, we obtain

||cUs(x)Q||2 =
α2x (α2 + 1) (α4 + 1) + q2xα−2x−6 (q2 + α2) (q4 + α4) + 2qx (q + 1) (q2 + 1)

(α + qα−1)2

which completes the proof.

Theorem 2.3. For any x ∈ R, the symmetrical second order hyperbolic sine and the symmetrical
second order hyperbolic cosine quaternions satisfy the following relations:

sUs(x+ 2)Q = χ(q)sUs(x)Q− sUs(x− 2)Q (8)

and

cUs(x+ 2)Q = χ(q)cUs(x)Q− cUs(x− 2)Q, (9)

where the transformation function χ(q) = λ(q)2α−2 + λ(q)−2α2 and where

λ(q) =

1, χ(q)αx,

q, χ(q)α−x
.

Proof. By using the equations (4) and (5), we have

sUs(x+ 2)Q+ sUs(x− 2)Q

=
(
sUs(x+ 2) + sUs(x− 2)

)
+
(
sUs(x+ 3) + sUs(x− 1)

)
i1

+
(
sUs(x+ 4) + sUs(x)

)
i2 +

(
sUs(x+ 5) + sUs(x+ 1)

)
i3

=
αx
(
α2 + α−2

)
− qxα−x

(
q2α−2 + q−2α2

)
α + qα−1

+

αx+1
(
α2 + α−2

)
− qx+1α−x−1

(
q2α−2 + q−2α2

)
α + qα−1

 i1

+

αx+2
(
α2 + α−2

)
− qx+2α−x−2

(
q2α−2 + q−2α2

)
α + qα−1

 i2

+

αx+3
(
α2 + α−2

)
− qx+3α−x−3

(
q2α−2 + q−2α2

)
α + qα−1

 i3

= χ(q)
(
sUs(x) + sUs(x+ 1)i1 + sUs(x+ 2)i2 + sUs(x+ 3)i3

)
= χ(q)sUs(x)Q. (10)
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In the same way, we get

cUs(x+ 2)Q+ cUs(x− 2)Q = χ(q)cUs(x)Q.

Hence the proof is complete.

Now, we give the generating functions for the symmetrical second order hyperbolic
quaternions sequences.

Theorem 2.4. For any x ∈ R, the generating functions for the symmetrical second order
hyperbolic quaternions sequences are as follows:

Gs(x, t) =
sUs(x)Q+ sUs(x+ 1)Qt− sUs(x− 2)Qt2 − sUs(x+ 1)Qt3

1− χ(q)t2 + t4
(11)

and

Gc(x, t) =
cUs(x)Q+ cUs(x+ 1)Qt− cUs(x− 2)Qt2 − cUs(x+ 1)Qt3

1− χ(q)t2 + t4
. (12)

Proof. We use the formal power series to find the generating function of the symmetrical second
order hyperbolic quaternions sequences. Now, we define

Gs(x, t) =
∞∑
n=0

sUs(x+ n)Qtn = sUs(x)Q+ sUs(x+ 1)Qt

+ sUs(x+ 2)Qt2 + sUs(x+ 3)Qt3 +
∞∑
n=4

sUs(x+ n)Qtn

−χ(q)Gs(x, t)t
2 = −χ(q)

∞∑
n=0

sUs(x+ n)Qtn+2 = −χ(q)
∞∑
n=2

sUs(x+ n− 2)Qtn

= −χ(q)

(
sUs(x)Qt

2 + sUs(x+ 1)Qt3 +
∞∑
n=4

sUs(x+ n− 2)Qtn

)

t4Gs(x, t) =
∞∑
n=0

sUs(x+ n)Qtn+4 =
∞∑
n=4

sUs(x+ n− 4)Qtn.

By using above expressions, we have(
1− χ(q)t2 + t4

)
Gs(x, t)

= sUs(x)Q+ sUs(x+ 1)Qt+ sUs(x+ 2)Qt2 + sUs(x+ 3)Qt3

− χ(q)sUs(x)Qt2 − χ(q)sUs(x+ 1)Qt3

+
∞∑
n=4

(
sUs(x+ n)Q− χ(q)sUs(x+ n− 2)Q+ sUs(x+ n− 4)Q

)
tn

= sUs(x)Q+ sUs(x+ 1)Qt− sUs(x− 2)Qt2 − sUs(x− 1)Qt3

+
∞∑
n=4

(
sUs(x+ n)Q− χ(q)sUs(x+ n− 2)Q+ sUs(x+ n− 4)Q︸ ︷︷ ︸

0

)
tn.
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Hence, we have

Gs(x, t) =
sUs(x)Q+ sUs(x+ 1)Qt− sUs(x− 2)Qt2 − sUs(x− 1)Qt3

1− χ(q)t2 + t4
.

By doing similar operations, we get

Gc(x, t) =
cUs(x)Q+ cUs(x+ 1)Qt− cUs(x− 2)Qt2 − cUs(x− 1)Qt3

1− χ(q)t2 + t4
.

Therefore the proof is complete.

Theorem 2.5. The Binet formulas for the symmetrical second order quaternions sequences are
as follows:

sUs(x+ n)Q =
Aαx+n −Bqx+nα−x−n

α + qα−1
(13)

and

cUs(x+ n)Q =
Aαx+n +Bqx+nα−x−n

α + qα−1
, (14)

where A = 1 + αi1 + α2i2 + α3i3 and B = 1 + qα−1i1 + q2α−2i2 + q3α−3i3.

Proof.

sUs(x+ n)Q = sUs(x+ n) + sUs(x+ n+ 1)i1 + sUs(x+ n+ 2)i2 + sUs(x+ n+ 3)i3

=
αx+n − qx+nα−x−n

α + qα−1
+
αx+n+1 − qx+n+1α−x−n−1

α + qα−1
i1

+
αx+n+2 − qx+n+2α−x−n−2

α + qα−1
i2 +

αx+n+3 − qx+n+3α−x−n−3

α + qα−1
i3

=
αx+n

α + qα−1

(
1 + αi1 + α2i2 + α3i3

)
− qx+nα−x−n

α + qα−1

(
1 + qα−1i1 + q2α−2i2 + q3α−3i3

)
=
Aαx+n −Bqx+nα−x−n

α + qα−1
.

In a similar way, we get

cUs(x+ n)Q =
Aαx+n +Bqx+nα−x−n

α + qα−1
. (15)

Hence the proof is complete.

It is not difficult to see that the symmetrical second order hyperbolic quaternions sequences
can be reduced into several quaternions sequences for the special cases of p and q. For example,

• If we get p = k and q = 1, we have k−Fibonacci hyperbolic quaternions sequences;
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• If we get p = k and q = 2, we have k−Jacobsthal hyperbolic quaternions sequences;

• If we get p = 2 and q = k, we have k−Pell hyperbolic quaternions sequences;

• If we get p = 2 and q = 1, we have Pell hyperbolic quaternions sequences;

• If we get p = 1 and q = 2, we have Jacobsthal hyperbolic quaternions sequences;

• If we get p = 1 and q = 1, we have Fibonacci hyperbolic quaternions sequences.

Now, we give the well-known identities such as Catalan’s identity, Cassini’s identity and
d’Ocagne’s identity for the symmetrical second order quaternions sequences.

Theorem 2.6. For nonnegative integers n and r, such that r ≤ n, the Catalan identities for the
symmetrical second order quaternions sequences are as follows:

sUs(x+ n+ r)QsUs(x+ n− r)Q− (sUs(x+ n)Q)2

=
1

(α + qα−1)2

(
AB
(
qx+n − qx+n−rα2r

)
+BA

(
qx+n − qx+n+rα−2r

))
and

cUs(x+ n+ r)QcUs(x+ n− r)Q− (cUs(x+ n)Q)2

=
1

(α + qα−1)2

(
− AB

(
qx+n − qx+n−rα2r

)
−BA

(
qx+n − qx+n+rα−2r

))
,

where A = 1 + αi1 + α2i2 + α3i3 and B = 1 + qα−1i1 + q2α−2i2 + q3α−3i3.

Proof. By using the Binet formula of the symmetrical second order quaternions sequences in
Theorem 2.5, we get

sUs(x+ n+ r)QsUs(x+ n− r)Q− (sUs(x+ n)Q)2

=

(
Aαx+n+r −Bqx+n+rα−x−n−r

α + qα−1

)(
Aαx+n−r −Bqx+n−rα−x−n+r

α + qα−1

)
−
(
Aαx+n −Bqx+nα−x−n

α + qα−1

)2

=
−ABqx+n−rα2r −BAqx+n+rα−2r + ABqx+n +BAqx+n

(α + qα−1)2

=
1

(α + qα−1)2

(
AB
(
qx+n − qx+n−rα2r

)
+BA

(
qx+n − qx+n+rα−2r

))
.

Similarly, we get

cUs(x+ n+ r)QcUs(x+ n− r)Q− (cUs(x+ n)Q)2

=
1

(α + qα−1)2

(
− AB

(
qx+n − qx+n−rα2r

)
−BA

(
qx+n − qx+n+rα−2r

))
.

Hence we prove the theorem.
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Corollary 2.6.1. For r = 1, we obtain the Cassini’s identity for the symmetrical second order
quaternions sequences as

sUs(x+ n+ 1)QsUs(x+ n− 1)Q− (sUs(x+ n)Q)2

=
1

(α + qα−1)2

(
AB
(
qx+n − qx+n−1α2

)
+BA

(
qx+n − qx+n+1α−2

))
and

cUs(x+ n+ 1)QcUs(x+ n− 1)Q− (cUs(x+ n)Q)2

=
1

(α + qα−1)2

(
− AB

(
qx+n − qx+n−1α2

)
−BA

(
qx+n − qx+n+1α−2

))
,

respectively.

Theorem 2.7 (d’Ocagne’s identity). For the symmetrical second order quaternions sequences,
the following identities hold:

sUs(x+m)QsUs(x+ n+ 1)Q− sUs(x+m+ 1)QsUs(x+ n)Q

=
α− qα−1

(α + qα−1)2

(
ABqx+nαm−n −BAqx+mαn−m

)
and

cUs(x+m)QcUs(x+ n+ 1)Q− cUs(x+m+ 1)QcUs(x+ n)Q

=
α− qα−1

(α + qα−1)2

(
− ABqx+nαm−n +BAqx+mαn−m

)
,

where A = 1 + αi1 + α2i2 + α3i3 and B = 1 + qα−1i1 + q2α−2i2 + q3α−3i3.

Proof. By using the Binet formula of the symmetrical second order quaternions sequences in
Theorem 2.5, we get

sUs(x+m)QsUs(x+ n+ 1)Q− sUs(x+m+ 1)QsUs(x+ n)Q

=

(
Aαx+m −Bqx+mα−x−m

α + qα−1

)(
Aαx+n+1 −Bqx+n+1α−x−n−1

α + qα−1

)
−
(
Aαx+m+1 −Bqx+m+1α−x−m−1

α + qα−1

)(
Aαx+n −Bqx+nα−x−n

α + qα−1

)
=
ABqx+nαm−n+1 +BAqx+m+1αn−m−1 − ABqx+n+1αm−n−1 −BAqx+mαn−m+1

(α + qα−1)2

=
ABqx+nαm−n

(
α− qα−1

)
+BAqx+mαn−m

(
qα−1 − α

)
(α + qα−1)2

=
α− qα−1

(α + qα−1)2

(
ABqx+nαm−n −BAqx+mαn−m

)
.
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Similarly, we get

cUs(x+m)QcUs(x+ n+ 1)Q− cUs(x+m+ 1)QcUs(x+ n)Q

=
α− qα−1

(α + qα−1)2

(
− ABqx+nαm−n +BAqx+mαn−m

)
,

which proves the theorem.

3 Conclusion

This study presents the symmetrical second order quaternions sequences and their norms,
generating functions and many properties of these quaternions sequences. Moreover, for the
special cases of p and q, we obtain several new quaternions sequences which have not been
defined before. We also obtain generating functions, Binet formulas, Catalan’s identity, Cassini’s
identity and d’Ocagne’s identity of second order hyperbolic quaternions sequences. Since this
study includes some new generalized results for the quaternions sequences, it contributes to the
literature by providing essential information on the generalization of the quaternions sequences.
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