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Abstract

In this paper, we investigate the following system of difference equations

xn+1 =
αn

1 + ynxn−1
, yn+1 =

βn

1 + xnyn−1
, n ∈ N0,

where the sequences (αn)n∈N0
, (βn)n∈N0

are positive, real and periodic with period two and
the initial values x−1, x0, y−1, y0 are non-negative real numbers. We show that every positive
solution of the system is bounded and examine their global behaviors. In addition, we give
closed forms of the general solutions of the system by using the change of variables. Finally,
we present a numerical example to support our results.
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1 Introduction

As a prototype, in [1], Drymonis investigated the global stability, periodic character and bounded-
ness of solution of the following difference equation by distinguishing several special cases

xn+1 =
αn + βnxnxn−1 + γnxn−1

An +Bnxnxn−1 + Cnxn−1
, n ∈ N0, (1)

where the parameters αn, βn, γn, An, Bn, Cn are non-negative periodic sequences and the initial
values x−1, x0 are non-negative real numbers. In [2–5], equation (1) with constant coefficients
is studied in the global stability, periodic and boundedness of solutions of some particular cases.
Kulenovic et al, obtained five equations for the related of equation (1) with constant coefficients
in [5]. Moreover, Amleh et al. studied thirty equations which are special case of equation (1) and
constant coefficients in [2, 3]. One of thirty equations considered in [2] is the rational difference
equation given as follows:

xn+1 =
α

1 + xnxn−1
, n ∈ N0. (2)

Further, some featured studies on the stability of the particular cases with constant coefficients
of equation (1) can be found in the literature, (see, [6–11] ). On the other hand, many authors
obtain some closed-form formulas which are solutions special cases of the equation (1) in [4,12–19].
The interesting thing is that all of them have constant coefficients. Equation (1) is extended to the
two-dimensional and the three-dimensional systems of difference equation with constant coefficients
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and obtained in the closed form the solutions in [20–34]. In addition, the global stability of the
system of extending of equation (1) with constant coefficients is studied in [35–37].
According to the mentioned literature, there is no particular case using variable coefficients with
the system of equation (1). Motivated by this, we extend equation (2) to the system of difference
equations with periodic coefficients as follows:

xn+1 =
αn

1 + ynxn−1
, yn+1 =

βn
1 + xnyn−1

, n ∈ N0, (3)

where the sequences (αn)n∈N0
, (βn)n∈N0

are positive, real and periodic with period two and the
initial values x−1, x0, y−1, y0 are non-negative real numbers. Firstly, we show that every positive
solution of the system (3) is bounded and then state the global behavior of positive solution of the
system (3). We also give closed forms of the general solutions of the system (3) by using change of
variables. Finally, we present a numerical example to support effective results.

Throughout this paper, we use the following sequences (αn)n∈N0
, (βn)n∈N0

,

αn =

{
a1, if n is even,

b1, if n is odd
and a1 > 0, b1 > 0, a1 6= b1,

βn =

{
a2, if n is even,

b2, if n is odd
and a2 > 0, b2 > 0, a2 6= b2.

Then the system (3) can be written as follows:

x2n+1 =
a1

1 + y2nx2n−1
, x2n+2 =

b1
1 + y2n+1x2n

, (4)

y2n+1 =
a2

1 + x2ny2n−1
, y2n+2 =

b2
1 + x2n+1y2n

. (5)

To conduct the stability analysis, we assume that

x2n−1 = un, x2n = vn, y2n−1 = wn, y2n = tn, n ∈ N0. (6)

Thus (4) and (5) are obtained in the following form:
un+1 = a1

1+tnun

vn+1 = b1(1+vnwn)
1+vnwn+a2vn

wn+1 = a2
1+vnwn

tn+1 = b2(1+tnun)
1+tnun+a1tn

, n ∈ N0. (7)

We conclude that the system (7) is equivalent to the system (3). From now on we will use the
system (7) instead of the system (3). Note that the following equations{

un+1 = a1
1+tnun

tn+1 = b2(1+tnun)
1+tnun+a1tn

(8)
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are independent from (vn, wn) and {
vn+1 = b1(1+vnwn)

1+vnwn+a2vn

wn+1 = a2
1+vnwn

(9)

are also independent from (un, tn). This means that the system (8) and the system (9) are the
two-dimensional systems of difference equations. We see that if

(
u, v, w, t

)
is an equilibrium point

of the system (7), then the corresponding equilibrium points of (8) and (9) are
(
u, t
)

and (v, w),
respectively.

Now, we give some results concerning difference equations.

Lemma 1.1. [38] Consider the system un+1 = f (un, vn) , vn+1 = g (un, vn) , n ∈ N0. Let F =
(f, g) be a continuously differentiable function defined on an open set D ⊂ R× R.

(a) If the eigenvalues of the Jacobian matrix JF (u, v), that is, both roots of its characteristic
equation

λ2 − TrJF (u, v)λ+DetJF (u, v) = 0, (10)

lie inside the unit disk, then the equilibrium point (ū, v̄) of the system un+1 = f (un, vn) , vn+1 =
g (un, vn) is locally asymptotically stable.

(b) A necessary and sufficient condition for both roots of equation ( 10) to lie inside the unit disk
is

|TrJF (u, v)| < 1 +DetJF (u, v) < 2.

Lemma 1.2. [39] Consider the cubic equation

P (z) = z3 − αz2 − βz − γ = 0. (11)

The equation (11) has the discriminant

∆ = −α2β2 − 4β3 + 4α3γ + 27γ2 + 18αβγ. (12)

Thus the following statements are true;

(i) If ∆ < 0 then the polynomial P has three distinct real zeros ρ1, ρ2, ρ3.

(ii) If ∆ = 0 then there are two sub cases:

(a) If β = −α2

3 and γ = α3

27 , then the polynomial P has the triple root ρ = α
3 ,

(b) If β 6= −α2

3 or γ 6= α3

27 , then the polynomial P has the double root r and the simple root
ρ.

(iii) If ∆ > 0 then the polynomial P has one real root p and two complex roots re±iθ, θ ∈ (0, π).
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2 Main results

In this section, we prove our main results.

Lemma 2.1. Assume that (αn)n∈N0
, (βn)n∈N0

are positive periodic sequences of prime period 2.
Then every positive solution of the system (3) is bounded.

Proof. From the system (3), we have

xn+1 =
αn

1 + ynxn−1
≤ αn, yn+1 =

βn
1 + xnyn−1

≤ βn, (13)

for n ∈ N0. Then we see that x2n+1 ≤ a1, x2n+2 ≤ b1, y2n+1 ≤ a2 and y2n+2 ≤ b2, for n ∈ N0.
Combining (3) and (13), we have

x2n+1 =
α2n

1 + y2nx2n−1
≥ α2n

1 + b2a1
, x2n+2 =

α2n+1

1 + y2n+1x2n
≥ α2n+1

1 + a2b1
,

y2n+1 =
β2n

1 + x2ny2n−1
≥ β2n

1 + b1a2
, y2n+2 =

β2n+1

1 + x2n+1y2n
≥

β2n+1

1 + a1b2
,

for n ∈ N0. Consequently, we get

a1

1 + b2a1
≤ x2n+1 ≤ a1,

b1
1 + a2b1

≤ x2n+2 ≤ b1, (14)

a2

1 + a2b1
≤ y2n+1 ≤ a2,

b2
1 + a1b2

≤ y2n+2 ≤ b2, (15)

for n ∈ N0.

2.1 Locally Asymptotically Stability

In this subsection, we study locally asymptotically stability of the unique positive equilibrium(
u, t, w, v

)
=
(
u, b2a1u,w,

b1
a2
w
)

of the system (7).

Lemma 2.2. The system (7) has the unique positive equilibrium point on
(

a1
1+a1b2

, a1

)
×
(

b2
1+a1b2

, b2

)
×(

a2
1+a2b1

, a2

)
×
(

b1
1+a2b1

, b1

)
.

Proof. The equilibrium points of the system (7) are the solutions of the algebraic systems

u =
a1

1 + tu
, v =

b1 (1 + vw)

1 + vw + a2v
, w =

a2

1 + vw
, t =

b2
(
1 + tu

)
1 + tu+ a1t

. (16)

From (16), we obtain the following equalities:

v =
b1
a2
w, t =

b2
a1
u. (17)

Substituting (17) into (16), we have the polynomial equations

P (u) = u3 +
a1

b2
u− a2

1

b2
= 0, R (w) = w3 +

a2

b1
w − a2

2

b1
= 0. (18)
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From (6), (14), (15) and (18), we have

P (a1) = a3
1 > 0, R (a2) = a3

2 > 0 (19)

and

P

(
a1

1 + a1b2

)
= −

a3
1

(
(1 + a1b2)

2 − 1
)

(1 + a1b2)
3 < 0,

R

(
a2

1 + a2b1

)
= −

a3
2

(
(1 + a2b1)

2 − 1
)

(1 + a2b1)
3 < 0. (20)

Since
P ′ (u) = 3u2 +

a1

b2
> 0, R′ (w) = 3w2 +

a2

b1
> 0, (21)

P (u) has the unique zero on
(

a1
1+a1b2

, a1

)
and R (w) has the unique zero on

(
a2

1+a2b1
, a2

)
. On the

other hand, by taking into account (17), we have

b2
a1
u = t ∈

(
b2
a1

a1

1 + a1b2
,
b2
a1
a1

)
=

(
b2

1 + a1b2
, b2

)
and

b1
a2
w = v ∈

(
b1
a2

a2

1 + a2b1
,
b1
a2
a2

)
=

(
b1

1 + a2b1
, b1

)
,

which completes the proof.

Theorem 2.3. The unique equilibrium
(
u, t, w, v

)
=
(
u, b2a1u,w,

b1
a2
w
)

of the system (7) is locally

asymptotically stable.

Proof. We define the maps

F :

(
a1

1 + a1b2
, a1

)
×
(

b2
1 + a1b2

, b2

)
→
(

a1

1 + a1b2
, a1

)
×
(

b2
1 + a1b2

, b2

)
and

G :

(
a2

1 + a2b1
, a2

)
×
(

b1
1 + a2b1

, b1

)
→
(

a2

1 + a2b1
, a2

)
×
(

b1
1 + a2b1

, b1

)
,

given by

F

(
x
k

)
=

(
a1

1+xk
b2(1+xk)

1+xk+a1k

)
and G

(
z
y

)
=

(
a2

1+yz
b1(1+yz)

1+yz+a2y

)
.

The Jacobian matrices evaluated at
(
u, b2a1u

)
of F and

(
w, b1a2w

)
of G are

JF
(
u, t
)

=

−b2u3

a21

−u3

a1
b32u

6

a51

−b2u4

a31

 , JG (w, v) =

−b1w3

a22

−w3

a2
b31w

6

a52

−b1w4

a32
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and theirs characteristic equations associated with
(
u, b2a1u

)
and

(
w, b1a2w

)
are

λ2 +
a4

1b2u
3 + a3

1b2u
4

a6
1

λ+
a1b

2
2u

7 + b32u
9

a6
1

= 0,

λ̂
2

+
a4

2b1w
3 + a3

2b1w
4

a6
2

λ̂+
a2b

2
1w

7 + b31w
9

a6
2

= 0,

respectively. Therefore, from Lemma 1.1-(b), we have the following inequalities∣∣∣∣a4
1b2u

3 + a3
1b2u

4

a6
1

∣∣∣∣ < 1 +
a1b

2
2u

7 + b32u
9

a6
1

< 2,∣∣∣∣a4
2b1w

3 + a3
2b1w

4

a6
2

∣∣∣∣ < 1 +
a2b

2
1w

7 + b31w
9

a6
2

< 2.

After some calculations from the last inequalities, we obtain the following inequalities:

(a1 − u)
2

+ u2 > 0, 8a1b2 + 1 > 0

and
(a2 − w)

2
+ w2 > 0, 8a2b1 + 1 > 0,

which always hold. So, the proof is completed.

Theorem 2.4. The system (7) has not positive periodic solutions with prime period two.

Proof. First, we suppose that the system (7) has positive periodic solutions with prime period two
as follows:

{. . . , (φ1, θ1, α1, ψ1) , (φ2, θ2, α2, ψ2) , . . . } ,

where φ1 6= φ2, θ1 6= θ2, α1 6= α2 and ψ1 6= ψ2. Then we have

φ1 =
a1

1 + φ2ψ2

, φ2 =
a1

1 + φ1ψ1

, ψ1 =
b2 (1 + φ2ψ2)

1 + φ2ψ2 + a1ψ2

, ψ2 =
b2 (1 + φ1ψ1)

1 + φ1ψ1 + a1ψ1

, (22)

α1 =
a2

1 + α2θ2
, α2 =

a2

1 + α1θ1
, θ1 =

b1 (1 + α2θ2)

1 + α2θ2 + a2θ2
, θ2 =

b1 (1 + α1θ1)

1 + α1θ1 + a2θ1
, (23)

from which it follows that

ψ1 =
b2

1 + φ1ψ2

, ψ2 =
b2

1 + φ2ψ1

, θ1 =
b1

1 + α1θ2
, θ2 =

b1
1 + α2θ1

. (24)

From the first two equations of (22), the first two equations of (23) and (24), we have

φ1φ2 (ψ2 − ψ1) + φ1 − φ2 = 0, ψ1ψ2 (φ1 − φ2) + ψ1 − ψ2 = 0, (25)

α1α2 (θ2 − θ1) + α1 − α2 = 0, θ1θ2 (α1 − α2) + θ1 − θ2 = 0. (26)

(24) implies φ1φ2ψ1ψ2 = −1, α1α2θ1θ2 = −1 which is a contradiction. So, the proof is completed.
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2.2 Closed form solutions of the system (3)

In this subsection, we obtain a closed form solutions of the system (3). By applying the change of
variables

xn =
pn−1

rn
, yn =

rn−1

pn
, n ≥ −1, (27)

to the system (3), we have the following third-order linear system

rn+1 −
1

αn
pn −

1

αn
pn−2 = 0, pn+1 −

1

βn
rn −

1

βn
rn−2 = 0, n ∈ N0, (28)

where p0 = 1, p−1 = x0, p−2 = x−1y0, r0 = 1, r−1 = y0, r−2 = y−1x0. From the system (28), we
have

r2n+1 −
1

a1
p2n −

1

a1
p2n−2 = 0, r2n+2 −

1

b1
p2n+1 −

1

b1
p2n−1 = 0, n ∈ N0, (29)

p2n+1 −
1

a2
r2n −

1

a2
r2n−2 = 0, p2n+2 −

1

b2
r2n+1 −

1

b2
r2n−1 = 0, n ∈ N0, (30)

from which it follows that

r2n+1 −
1

a1b2
r2n−1 −

2

a1b2
r2n−3 −

1

a1b2
r2n−5 = 0,

r2n+2 −
1

a2b1
r2n −

2

a2b1
r2n−2 −

1

a2b1
r2n−4 = 0, (31)

p2n+1 −
1

a2b1
p2n−1 −

2

a2b1
p2n−3 −

1

a2b1
p2n−5 = 0,

p2n+2 −
1

a1b2
p2n −

2

a1b2
p2n−2 −

1

a1b2
p2n−4 = 0, (32)

for n ∈ N0. Equations (31) and (32) have the characteristic equations as follows:

P1 (λ) = λ6 − 1

a1b2
λ4 − 2

a1b2
λ2 − 1

a1b2
= 0,

P2 (λ) = λ6 − 1

a2b1
λ4 − 2

a2b1
λ2 − 1

a2b1
= 0. (33)

Let

Q1 (λ) = λ3 − 1√
a1b2

λ2 − 1√
a1b2

, R1 (λ) = λ3 +
1√
a1b2

λ2 +
1√
a1b2

, (34)

Q2 (λ) = λ3 − 1√
a2b1

λ2 − 1√
a2b1

, R2 (λ) = λ3 +
1√
a2b1

λ2 +
1√
a2b1

. (35)

Then P1 (λ) = Q1 (λ)R1 (λ) and P2 (λ) = Q2 (λ)R2 (λ). Note that the polynomials Q1, R1, Q2

and R2 satisfy the relations Q1 (−λ) = −R1 (λ) and Q2 (−λ) = −R2 (λ). Namely, if λ is any zero
of the polynomial R1, then −λ is a zero of the polynomial Q1 and if λ is any zero of the polynomial
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R2, then −λ is a zero of the polynomial Q2. On the other hand, we consider the following linear
equations

sn −
1

a1b2
sn−1 −

2

a1b2
sn−2 −

1

a1b2
sn−3 = 0, ŝn −

1

a2b1
ŝn−1 −

2

a2b1
ŝn−2 −

1

a2b1
ŝn−3 = 0. (36)

Characteristic equations of equations in (36) are

P1 (
√
µ) = µ3 − 1

a1b2
µ2 − 2

a1b2
µ− 1

a1b2
= 0

and

P2

(√
µ̂
)

= µ̂3 − 1

a2b1
µ̂2 − 2

a2b1
µ̂− 1

a2b1
= 0.

We see from Lemma 1.2 that the equations P1

(√
µ
)

= 0 and P2

(√
µ̂
)

= 0 have one real root

and two complex roots denoted by p̃2, r̃e±2iθ, θ ∈ (0, π) and p̂2 , r̂e±2iθ, θ ∈ (0, π), respectively.
These notations are legal, since µ = λ2 and µ̂ = λ2. Also, note that since a1b2 > 0, a2b1 > 0 and

µ3 = 1
a1b2

(µ+ 1)
2
, µ̂3 = 1

a2b1
(µ̂+ 1)

2
, the unique real roots of P1

(√
µ
)

= 0 and P2

(√
µ̂
)

= 0 are

positive. So, we have the general solutions of (36) as follows:

sn−1 = C1p̃
2n + r̃2n (C2 cos 2nθ + C3 sin 2nθ) , n ≥ −1, (37)

where C1, C2, and C3 are arbitrary constants.

ŝn−1 = Ĉ1p̂
2n + r̂2n

(
Ĉ2 cos 2nθ + Ĉ3 sin 2nθ

)
, n ≥ −1, (38)

where Ĉ1, Ĉ2, and Ĉ3 are arbitrary constants. Any solutions of the equations in (31) and (32) are
the solutions of the equations in (36). Therefore, we can formulate the sequences (p2n)n≥−1 and
(r2n)n≥−1 as follows:

p2n = C1p̃
2n + r̃2n (C2 cos 2nθ + C3 sin 2nθ) , n ≥ −1, (39)

where

C1 =
p̃4
[
1 + r̃4 (a1 − x−1) y0 − 2r̃2 cos 2θx−1y0

]
p̃4 + r̃4 − 2p̃2r̃2 cos 2θ

,

C2 =
r̃2
[
2p̃2 cos 2θ

(
−1 + p̃2x−1y0

)
+ r̃2

(
1 + p̃4 (−a1 + x−1) y0

)]
p̃4 + r̃4 − 2p̃2r̃2 cos 2θ

,

C3 =
r̃2 csc 2θ

[
r̃4
(
p̃2 (a1 − x−1) − x−1

)
y0 − r̃2 cos 2θ

(
−1 + p̃4 (a1 − x−1) y0

)
+ p̃2 cos 4θ

(
−1 + p̃2x−1y0

)]
p̃4 + r̃4 − 2p̃2r̃2 cos 2θ

,

r2n = Ĉ1p̂
2n + r̂2n

(
Ĉ2 cos 2nθ + Ĉ3 sin 2nθ

)
, n ≥ −1, (40)

where

Ĉ1 =
p̂4
[
1 + r̂4 (a2 − y−1)x0 − 2r̂2 cos 2θy−1x0

]
p̂4 + r̂4 − 2p̂2r̂2 cos 2θ

,
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Ĉ2 =
r̂2
[
2p̂2 cos 2θ

(
−1 + p̂2y−1x0

)
+ r̂2

(
1 + p̂4 (−a2 + y−1)x0

)]
p̂4 + r̂4 − 2p̂2r̂2 cos 2θ

,

Ĉ3 =
r̂2 csc 2θ

[
r̂4
(
p̂2 (a2 − y−1) − y−1

)
x0 − r̂2 cos 2θ

(
−1 + p̂4 (a2 − y−1)x0

)
+ p̂2 cos 4θ

(
−1 + p̂2y−1x0

)]
p̂4 + r̂4 − 2p̂2r̂2 cos 2θ

.

On the other hand, by the first equations of (29), (30) and some operations, we have

r2n+1 =
1

a1
p2n +

1

a1
p2n−2,

= C1
p̃2 + 1

a1
p̃2n−2 +

r̃2n

a1
(C ′2 cos 2nθ + C ′3 sin 2nθ) , n ≥ −1, (41)

where

C ′2 = C2 +
C2 cos 2θ − C3 sin 2θ

r̃2
, C ′3 = C3 +

C3 cos 2θ + C2 sin 2θ

r̃2
,

p2n+1 =
1

a2
r2n +

1

a2
r2n−2,

= Ĉ1
p̂2 + 1

a2
p̂2n−2 +

r̂2n

a2

(
Ĉ ′2 cos 2nθ + Ĉ ′3 sin 2nθ

)
, n ≥ −1, (42)

where

Ĉ ′2 = Ĉ2 +
Ĉ2 cos 2θ − Ĉ3 sin 2θ

r̂2
, Ĉ ′3 = Ĉ3 +

Ĉ3 cos 2θ + Ĉ2 sin 2θ

r̂2
.

Also, the relations P1 (λ) = Q1 (λ)R1 (λ) and P2 (λ) = Q2 (λ)R2 (λ) and Q1 (−λ) = −R1 (λ) and
Q2 (−λ) = −R2 (λ) imply that p̃ is the root of Q1 (λ) and −p̃ is the root of R1 (λ), p̂ is the root of
Q2 (λ) and −p̂ is the root of R2 (λ). Hence p̃ and p̂ satisfy the following relations:

p̃2 + 1

a1
=

√
b2
a1
p̃3,

p̂2 + 1

a2
=

√
b1
a2
p̂3.

From these and (41), (42) follows that

r2n+1 = C1

√
b2
a1
p̃2n+1 +

r̃2n

a1
(C ′2 cos 2nθ + C ′3 sin 2nθ) , n ≥ −1, (43)

where

C ′2 = C2 +
C2 cos 2θ − C3 sin 2θ

r̃2
, C ′3 = C3 +

C3 cos 2θ + C2 sin 2θ

r̃2
,

p2n+1 = Ĉ1

√
b1
a2
p̂2n+1 +

r̂2n

a2

(
Ĉ ′2 cos 2nθ + Ĉ ′3 sin 2nθ

)
, n ≥ −1, (44)

where

Ĉ ′2 = Ĉ2 +
Ĉ2 cos 2θ − Ĉ3 sin 2θ

r̂2
, Ĉ ′3 = Ĉ3 +

Ĉ3 cos 2θ + Ĉ2 sin 2θ

r̂2
.

Therefore, from (27), (39), (40), (43), (44 ), we have the closed form solutions of the system (3) as
follows:

x2n =
Ĉ1

√
b1
a2
p̂2n−1 + r̂2n−2

a2

(
Ĉ ′2 cos (2n− 2) θ + Ĉ ′3 sin (2n− 2) θ

)
Ĉ1p̂2n + r̂2n

(
Ĉ2 cos 2nθ + Ĉ3 sin 2nθ

) , (45)
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x2n+1 =
C1p̃

2n + r̃2n (C2 cos 2nθ + C3 sin 2nθ)

C1

√
b2
a1
p̃2n+1 + r̃2n

a1
(C ′2 cos 2nθ + C ′3 sin 2nθ)

, (46)

y2n =
C1

√
b2
a1
p̃2n−1 + r̃2n−2

a1
(C ′2 cos (2n− 2) θ + C ′3 sin (2n− 2) θ)

C1p̃2n + r̃2n (C2 cos 2nθ + C3 sin 2nθ)
(47)

and

y2n+1 =
Ĉ1p̂

2n + r̂2n
(
Ĉ2 cos 2nθ + Ĉ3 sin 2nθ

)
Ĉ1

√
b1
a2
p̂2n+1 + r̂2n

a2

(
Ĉ ′2 cos 2nθ + Ĉ ′3 sin 2nθ

) , (48)

where

C1 =
p̃4
[
1 + r̃4 (a1 − x−1) y0 − 2r̃2 cos 2θx−1y0

]
p̃4 + r̃4 − 2p̃2r̃2 cos 2θ

,

C2 =
r̃2
[
2p̃2 cos 2θ

(
−1 + p̃2x−1y0

)
+ r̃2

(
1 + p̃4 (−a1 + x−1) y0

)]
p̃4 + r̃4 − 2p̃2r̃2 cos 2θ

,

C3 =
r̃2 csc 2θ

[
r̃4
(
p̃2 (a1 − x−1) − x−1

)
y0 − r̃2 cos 2θ

(
−1 + p̃4 (a1 − x−1) y0

)
+ p̃2 cos 4θ

(
−1 + p̃2x−1y0

)]
p̃4 + r̃4 − 2p̃2r̃2 cos 2θ

,

C ′2 = C2 +
C2 cos 2θ − C3 sin 2θ

r̃2
, C ′3 = C3 +

C3 cos 2θ + C2 sin 2θ

r̃2
,

Ĉ1 =
p̂4
[
1 + r̂4 (a2 − y−1)x0 − 2r̂2 cos 2θy−1x0

]
p̂4 + r̂4 − 2p̂2r̂2 cos 2θ

,

Ĉ2 =
r̂2
[
2p̂2 cos 2θ

(
−1 + p̂2y−1x0

)
+ r̂2

(
1 + p̂4 (−a2 + y−1)x0

)]
p̂4 + r̂4 − 2p̂2r̂2 cos 2θ

,

Ĉ3 =
r̂2 csc 2θ

[
r̂4
(
p̂2 (a2 − y−1) − y−1

)
x0 − r̂2 cos 2θ

(
−1 + p̂4 (a2 − y−1)x0

)
+ p̂2 cos 4θ

(
−1 + p̂2y−1x0

)]
p̂4 + r̂4 − 2p̂2r̂2 cos 2θ

,

Ĉ ′2 = Ĉ2 +
Ĉ2 cos 2θ − Ĉ3 sin 2θ

r̂2
, Ĉ ′3 = Ĉ3 +

Ĉ3 cos 2θ + Ĉ2 sin 2θ

r̂2
.

2.3 Globally asymptotically stability

In this subsection, we study globally asymptotically stability of the unique positive equilibrium(
u, t
)

=
(
u, b2a1u

)
, (w, v) =

(
w, b1a2w

)
of the system (7).

Lemma 2.5. Consider the cubic polynomial S (λ) = λ3 − cλ2 − c, where c is a real number.
Then zeros of the polynomial S satisfy the relation |σ| < ρ, where ρ is the unique real zero of the
polynomial S and σ is one of complex conjugate ones.

Proof. Note that c = ρσσ̄ = ρ |σ|2. Since S (ρ) = 0, we have

ρ3 − cρ2 − c = ρ3 − ρ |σ|2 ρ2 − ρ |σ|2 = 0

which implies

|σ|2 =
ρ2

ρ2 + 1
< ρ2.

Therefore, the proof is completed.
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Theorem 2.6. The unique equilibrium
(
u, t
)

=
(
u, b2a1u

)
, (w, v) =

(
w, b1a2w

)
of the system (7) is

globally asymptotically stable.

Proof. We know from Theorem 2.3 that the unique equilibrium
(
u, t
)

=
(
u, b2a1u

)
, (w, v) =

(
w, b1a2w

)
of the system (7) is locally asymptotically stable. Hence, it is enough to show that

lim
n→∞

un = u, lim
n→∞

tn = t, lim
n→∞

wn = w and lim
n→∞

vn = v,

or
lim
n→∞

x2n = v, lim
n→∞

x2n+1 = u, lim
n→∞

y2n = t and lim
n→∞

y2n+1 = w,

by taking into account (6). We also know that u and w are the unique real zeros of the polynomials
P and R in (18). On the other hand, p̃ is the unique real zero of polynomial Q1 in (34) and p̂ is
the unique real zero of polynomial Q2 in (35). We claim that the zeros of the polynomials P and
Q1 and also the zeros of the polynomials R and Q2 are of the relations√

a1

b2

1

p̃
= u,

√
a2

b1

1

p̂
= w, (49)

respectively. To verify these relations, we have

P (u) = u3 +
a1

b2
u− a2

1

b2

=

(√
a1

b2

1

p̃

)3

+
a1

b2

√
a1

b2

1

p̃
− a2

1

b2

= −
(
a2

1

b2

1

p̃3

)(
p̃3 − 1√

a1b2
p̃2 − 1√

a1b2

)
= −

(
a2

1

b2

1

p̃3

)
Q1 (p̃)

= 0

and

R (w) = w3 +
a2

b1
w − a2

2

b1

=

(√
a2

b1

1

p̂

)3

+
a2

b1

√
a2

b1

1

p̂
− a2

2

b1

= −
(
a2

2

b1

1

p̂3

)(
p̂3 − 1√

a2b1
p̂2 − 1√

a2b1

)
= −

(
a2

2

b1

1

p̂3

)
Q2 (p̂)

= 0.
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By taking limits of (45)-(48) as n→∞ by using (49) and the result of Lemma 2.5, we have

lim
n→∞

x2n = lim
n→∞

p̂2n−1

p̂2n

Ĉ1

√
b1
a2

+
(
r̂
p̂

)2n−1
1
a2r̂

(
Ĉ ′2 cos (2n− 2) θ + Ĉ ′3 sin (2n− 2) θ

)
Ĉ1 +

(
r̂
p̂

)2n (
Ĉ2 cos 2nθ + Ĉ3 sin 2nθ

)
=

√
b1
a2

1

p̂

=
b1
a2
w

= v

lim
n→∞

x2n+1 = lim
n→∞

p̃2n

p̃2n+1

C1 +
(
r̃
p̃

)2n

(C2 cos 2nθ + C3 sin 2nθ)

C1

√
b2
a1

+
(
r̃
p̃

)2n+1
1
a1r̃

+ (C ′2 cos 2nθ + C ′3 sin 2nθ)

=

√
a1

b2

1

p̃

= u

lim
n→∞

y2n = lim
n→∞

p̃2n−1

p̃2n

C1

√
b2
a1

+
(
r̃
p̃

)2n−1
1
a1r̃

(C ′2cos (2n− 2) θ + C ′3sin (2n− 2) θ)

C1 +
(
r̃
p̃

)2n

(C2cos2nθ + C3sin2nθ)

=

√
b2
a1

1

p̃

=
b2
a1
u

= t

lim
n→∞

y2n+1 = lim
n→∞

p̂2n

p̂2n+1

Ĉ1 +
(
r̂
p̂

)2n (
Ĉ2 cos 2nθ + Ĉ3 sin 2nθ

)
Ĉ1

√
b1
a2

+
(
r̂
p̂

)2n+1
1
a2r̂

+
(
Ĉ ′2 cos 2nθ + Ĉ ′3 sin 2nθ

)
=

√
a2

b1

1

p̂

= w.

So, the proof is completed.
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Theorem 2.7. The system (3) has positive periodic solutions with prime period two which is given
by {

. . . ,

(
u,
b2
a1
u

)
,

(
w,

b1
a2
w

)
,

(
u,
b2
a1
u

)
,

(
w,

b1
a2
w

)
, . . .

}
. (50)

Proof. First, we suppose that the system (3) has positive periodic solutions with prime period two
as follows:

{. . . , (φ, θ) , (α,ψ) , (φ, θ) , (α,ψ) , . . . } , (51)

where φ 6= α and θ 6= ψ. From (4) and (5), we have

φ =
a1

1 + φψ
, ψ =

b2
1 + φψ

, θ =
a2

1 + αθ
, α =

b1
1 + αθ

, (52)

from which it follows that

ψ =
b2
a1
φ, α =

b1
a2
θ, (53)

By using (52) and (53), we have

P (φ) = φ3 +
a1

b2
φ− a2

1

b2
= 0, R (θ) = θ3 +

a2

b1
θ − a2

2

b1
= 0.

We know from Lemma 2.2 that each of the last equations has the unique real root such that φ = u
and θ = w, respectively. Hence, the result follows by (53).

The following corollary is a straightforward result of Theorem 2.6.

Corollary 2.8. Every positive solution of the system (3) tends to its periodic solution with prime
period two which is given by (50).

We give the following numerical example to support our theoretical results.

Example 2.9. In the following Figures, we illustrate the solutions of the systems in (3) and (7)
which corresponds to the values of initial conditions x−1 = u0 = 3.1, x0 = v0 = 2.3, y−1 = w0 = 5,
y0 = t0 = 3.4 and to the values of parameters a1 = 13, b1 = 5,a2 = 7, b2 = 3.
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Figure 1. a1 = 13, b1 = 5,a2 = 7, b2 = 3.
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