T.C.
NEVŞEHİR HACI BEKTAŞ VELİ ÜNİVERSİTESİ
FEN BİLİMLERİ ENSTİTÜSÜ

KONYA ANA TAHLİYE KANALINDA AğIR METAL
KÍRLİLİĞİNİN İZLENMESİ

Tezi Hazırlayan
Zehra CEYLAN

Tez Danışmanı
Yrd. Doç. Dr. Erkan KALIPCI

Çevre Mühendisliği Anabilim Dalı
Yüksek Lisans Tezi

Şubat 2016
NEVŞEHİR
KONYA ANA TAHLİYE KANALINDA AĞIR METAL KİRLİLİĞİNİN İZLENMESİ

Tezi Hazırlayan
Zehra CEYLAN

Tez Danışmanı
Yrd. Doç. Dr. Erkan KALIPCI

Çevre Mühendisliği Anabilim Dalı
Yüksek Lisans Tezi

Bu çalışma, Nevşehir Hacı Bektaş Veli Üniversitesi, BAP tarafından NEÜLÜP15F4 numaralı proje kapsamında desteklenmiştir.

Şubat 2016
NEVŞEHİR

04.08.2016

JÜRİ

Başkan : Prof. Dr. Haydar ÖZTAŞ

Üye : Yrd.Doç. Dr. Hüseyin CÜCE

Üye : Yrd. Doç. Dr. Erkan KALIPCİ

ONAY:
Bu tezin kabulü Enstitü Yönetim Kurulunun 26.02.2016...tarih ve 2016/034106 sayılı kararı ile onaylanmıştır.

AV. 01.08.2016
Doç. Dr. Ahlan ÖZTÜRK
Enstitü Müdürü
TEZ BİLDİRİM SAYFASI

Tez yazım kurallarına uygun olarak hazırlanan bu çalışmada yer alan bütün bilgilerin bilimsel ve akademik kurallar çerçevesinde elde edilerek sunulduğunu ve bana ait olmayan her türlü ifade ve bilginin kaynağına eksiksiz atf yaptığıni bildirim.

Zehra CEYLAN
TEŞEKKÜR

Çalışmanın her aşamasına katkısı olan bilgi, tecrübe ve hoşgörüsünü esirdemeyen hocam, tez danışmanım Yrd. Doç. Dr. Erkan KALIPÇI’ya, önerileriyle ve tecrübeleriyle çalışmalarımı yönlendiren, değerli hocam Doç. Dr. Serkan ŞAHİNKAYA’ya, bana huzurlu bir çalışma ortamı sağlayan, maddi manevi desteği esirdemeyen aileme tüm desteklerinden dolayı sonsuz teşekkürlerimi sunarım.

Teknik ve idari yardımcılarından dolayı Nevşehir Hacı Bektaş Veli Üniversitesi Rektörlüğü’ne, Fen-Edebiyat Fakültesi Dekanlığı’na, Biyoloji Bölüm Başkanlığı’na ve Nevşehir Hacı Bektaş Veli Üniversitesi BAP Birimi’ne teşekkür ederim.
ÖZET

Anahtar kelimeler: Konya Ana Tahliye Kanalı, Atıksu, Ağır metal, Su kalitesi.

Tez Danışman: Yrd.Doç. Dr. Erkan KALIPCİ

Sayfa Adeti: 165
INVESTIGATION OF HEAVY METAL POLLUTION IN KONYA MAIN DISCHARGE CHANNEL

(M. Sc. Thesis)

Zehra CEYLAN

NEVŞEHİR HACI BEKTAŞ VELİ ÜNİVERSİTY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
February 2016

ABSTRACT

In the studies carried out until today, it was determined that wastewater sourced from Konya city reached to Salt Lake via D.S.I. irrigation channels and therefore, heavy metal concentration present in the wastewater led to heavy metal pollution in Salt Lake. In this present study; analysis of heavy metal parameters through Konya Main Discharge Channel were carried out and the results were evaluated seasonally. Within the context of this study, totally 20 heavy metal (Ag, Al, As, Ba, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Se, Sn, Zn, B, Hg, P) parameters were considered in 28 samples collected in four seasons being winter, summer, spring and autumn from 7 measurement stations in 2014. When the results of analysis were investigated, it was determined that the parameters of especially arsenic, barium, chromium, copper, nickel, lead, tin and boron in autumn were found differently higher than other seasons. It was also indicated that heavy metal concentrations in spring, summer and winter were generally close to each other. The distance between 1st pump and supply station was 30 km and so water comes by becoming rare since the distance between stations was the longest distance. Moreover, since the farmers use the wastewater for the aim of irrigation in this region, the water also becomes rare. Becoming rare continues in the stations of 2nd pump, 3rd pump and 4th pump. Also since this region always gets rain in every season, it was considered that becoming rare continues by increasing. It was observed that heavy metal results were lower than maximum heavy metal limits permitted in wastewater discharged to receiving environment indicated in Water Pollution Control Regulations. Moreover, when these analysis results were compared to limit values of toxic materials in Turkish Standard Institution (TSI), World
Health Organization (WHO) and USA Environmental Protection Agency (US EPA), it was determined that the results were lower than these values.

As a result of analysis and investigations; formation of heavy metal pollution in Salt Lake due to wastewater sourced from Konya seemed not possible. In using the channel water for the aim of agriculture, there seemed no problem in terms of heavy metal pollution. After taking constructed Konya Wastewater Treatment Plant into operation, it was determined that the quality of wastewater given to State Hydraulic Works (SHW) channels was improved seriously. The reason for analysis results to be found lower than standards according to ‘Water Pollution Control Regulations’ was that the domestic wastewater was given to the channel after treated in Konya Wastewater Treatment Plant and also industrial wastewater of Konya Organized Industry was given to the channel after treatment. Since the wastewater of large scale industrial factories the numbers of which are increasing day by day in Konya region is also pre-treated by Konya Wastewater Treatment Plant and given to water supply network, it is considered that this has non-negligible benefits. In order to investigate social, economic, agricultural, ecological and cultural dimensions of this subject profoundly, it is necessary to perform a detailed SWOT analysis (strengths, weaknesses, opportunities and threats) of the current situation.

Keywords: Konya Main Relief Canal, wastewater, heavy metals, water quality.

Thesis Supervisor: Assist. Prof. Dr. Erkan KALIPCİ

Page Number: 165
İÇİNDEKİLER

KABUL VE ONAY SAYFASI ... I
TEZ BİLDİRİM SAYFASI ... II
TEŞEKKÜR .. III
ÖZET ... IV
ABSTRACT .. VI
TABLOLAR LİSTESİ ... XI
ŞEKİLLER LİSTESİ ... XIII
RESİMLER LİSTESİ ... XVII
SİMGYE VE KISALTMALAR LİSTESİ .. XIX

1. BÖLÜM
GİRİŞ .. 1

2. BÖLÜM
AĞIR METALLER VE ATIKSULAR'DAN ARITIM TEKNOJİLERİ 2
2.1. Atıksularda Bulunan Bazı Ağır Metaller .. 2
 2.1.1. Arsenik .. 4
 2.1.2. Çinko ... 5
 2.1.3. Bakır .. 6
 2.1.4. Krom ... 7
 2.1.5. Bor ... 8
 2.1.6. Kurşun ... 9
 2.1.7. Nikel ... 10
 2.1.8. Demir ... 11
 2.1.9. Baryum ... 11
 2.1.10. Kadmium ... 11
2.1.11. Kobalt .. 12
2.1.12. Selenyum ... 13
2.1.13. Lityum .. 13
2.2. Ağır Metaller ve Çevresel Etkileri .. 13
2.2.1. Ağır metal kirliliğinin sucul canlılara etkisi ... 14
2.2.2. Ağır metal stresine karşı biyolojik yantlar ... 16
2.2.3. Ağır metallerin insan sağlığına etkileri .. 19
2.2.4. Ağır metallerin sudaki toksik etkileri .. 21
2.3. Ağır Metal İçeren Atıksuların Arıtım Yöntemleri ... 23
2.3.1. Fiziksel arıtma üniteleri ... 24
2.3.2. Kimyasal arıtma üniteleri .. 24
2.3.3. Biyolojik arıtma üniteleri .. 25
2.3.4. İleri arıtma yöntemleri ... 25
2.4. Ağır Metal İçeren Sular İçin Kalite Kriterleri ... 29
2.5. Konya Kapalı Havzası ve Tuz Gölü ... 32
2.6. Konya Bölgesi Arıtma Tesisleri ... 36
2.7. Konu ile İlgili Daha Önce Yapılmış Çalışmalar ... 45
2.8. Konya Ana Tahliye Kanalına Atıksu Veren Kuruluşlar .. 46

3. BÖLÜM
MATERIAL VE YÖNTEMLER .. 48
3.1. Konya Ana Tahliye Kanalının Yeri ve Bölümleri ... 48
3.2. Numunelerin Alınması ve Analiz Yöntemleri .. 49

4. BÖLÜM
BULGULAR .. 66
4.1. Ağır Metal Analiz Sonuçlarına Ait Bulgular ... 66

X
4.2. Mevsimsel Analiz Sonuçları ile ph-Sıcaklık Verilerine Ait Bulgular 145

5. BÖLÜM

TARTIŞMA, SONUÇ VE ÖNERİLER .. 151

KAYNAKLAR .. 157

ÖZGEÇMİŞ ... 164
TABLOLAR LİTESİ

<table>
<thead>
<tr>
<th>Tablo No.</th>
<th>Açıklama</th>
<th>Sayfa No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tablo 2.1</td>
<td>Temel Endüstriyelden Atılan Metal Türleri</td>
<td>14</td>
</tr>
<tr>
<td>Tablo 2.2</td>
<td>Vücut Ağır Metallerin Sucul Organizmalardaki Stres Etikleri</td>
<td>17</td>
</tr>
<tr>
<td>Tablo 2.3</td>
<td>Tayini Yapılan Ağır Metal İyonlarının İnsan Sağlıkına Olan Etkileri</td>
<td>22</td>
</tr>
<tr>
<td>Tablo 2.4</td>
<td>TSE, WHO ve ABD Çevre Koruma Ajansına Göre Toksik Maddelerin Sınır Değerleri, (mg/l)</td>
<td>30</td>
</tr>
<tr>
<td>Tablo 2.5</td>
<td>Suların Genel Sınıflanması ve Kalite Parametreleri, (mg/l) (Su Kirliliği Kontrolü Yönetmeliği)</td>
<td>30</td>
</tr>
<tr>
<td>Tablo 2.6</td>
<td>Alıcı Ortama Deşarj Edilen Atıksada İzin Verilebilir Maksimum Ağır Metal Limitleri, (mg/l)</td>
<td>31</td>
</tr>
<tr>
<td>Tablo 2.7</td>
<td>Ağır Metallerin Topraka Bulunan Toplam Tolore</td>
<td>31</td>
</tr>
<tr>
<td>Tablo 2.8</td>
<td>Günlük Besinlerle Vücuta Kabul Edilebilir Ağır Metal Konsantrasyonları, (mg/gün)</td>
<td>32</td>
</tr>
<tr>
<td>Tablo 2.9</td>
<td>Konya OSB AAT Analiz Sonuçları</td>
<td>40</td>
</tr>
<tr>
<td>Tablo 2.10</td>
<td>OSB’de Yapılan Analizlere Ait Parametre ve Metod Listesi</td>
<td>41</td>
</tr>
<tr>
<td>Tablo 2.11</td>
<td>Mevcut AAT Analiz Sonuçları ve Artıma Verimi</td>
<td>43</td>
</tr>
<tr>
<td>Tablo 3.1</td>
<td>Numunelerin Alınmasında Kullanılan Parametre ve Metod</td>
<td>51</td>
</tr>
<tr>
<td>Tablo 3.2</td>
<td>Dalga Boyları, Tahmini Alet Tarama Limitleri Ve Önerilen</td>
<td>52</td>
</tr>
<tr>
<td>Tablo 3.3</td>
<td>100 Mg/L Seviyesindeki Girişkenlerden Kaynaklanan Çevrimiçi</td>
<td>53</td>
</tr>
<tr>
<td>Tablo 3.4</td>
<td>Kalibrasyon Çözeltisinin Hazırlanması İçin Gerekli Dalga Boyları</td>
<td>56</td>
</tr>
<tr>
<td>Tablo 4.1</td>
<td>İlkbahar Mevsmi (Mayıs Ayı) Analiz Sonuçları</td>
<td>146</td>
</tr>
<tr>
<td>Tablo 4.2</td>
<td>Yaz Mevsmi (Temmuz Ayı) Analiz Sonuçları</td>
<td>147</td>
</tr>
</tbody>
</table>
Tablo 4.3. Sonbahar Mevsimi (Ekim Ayı) Analiz Sonuçları.......................... 148
Tablo 4.4. Kış Mevsimi (Temmuz Ayı) Analiz Sonuçları.............................. 149
ŞEKİLLER LISTESİ

Şekil 2.1. Ağır metallerin insan vücudunda etki mekanizması .. 21
Şekil 2.2. Mevcut AAT İş Akım Şeması ... 42
Şekil 2.3. Mevcut Atıksu Arıtma Tesisi Akış Diyagramı ve Yerleşim Planı.............. 44
Şekil 4.1. Gümüş parametresinin mevsimlere göre değişimi (ilkbahar mevsimi)... 66
Şekil 4.2. Gümüş parametresinin mevsimlere göre değişimi (yaz mevsimi) 67
Şekil 4.3. Gümüş parametresinin mevsimlere göre değişimi (sonbahar mevsimi). 68
Şekil 4.4. Gümüş parametresinin mevsimlere göre değişimi (kış mevsimi) 69
Şekil 4.5. Alüminyum parametresinin mevsimlere göre değişimi (ilkbahar mevsimi)... 70
Şekil 4.6. Alüminyum parametresinin mevsimlere göre değişimi (yaz mevsimi). 71
Şekil 4.7. Alüminyum parametresinin mevsimlere göre değişimi (sonbahar mevsimi)... 72
Şekil 4.8. Alüminyum parametresinin mevsimlere göre değişimi (kış mevsimi)... 73
Şekil 4.9. Arsenik parametresinin mevsimlere göre değişimi (ilkbahar mevsimi).. 74
Şekil 4.10. Arsenik parametresinin mevsimlere göre değişimi (yaz mevsimi) 75
Şekil 4.11. Arsenik parametresinin mevsimlere göre değişimi (sonbahar mevsimi) 76
Şekil 4.12. Arsenik parametresinin mevsimlere göre değişimi (kış mevsimi) 77
Şekil 4.13. Baryum parametresinin mevsimlere göre değişimi (ilkbahar mevsimi). 78
Şekil 4.14. Baryum parametresinin mevsimlere göre değişimi (yaz mevsimi) 79
Şekil 4.15. Baryum parametresinin mevsimlere göre değişimi (sonbahar mevsimi) 80
Şekil 4.16. Baryum parametresinin mevsimlere göre değişimi (kış mevsimi) 81
Şekil 4.17. Krom parametresinin mevsimlere göre değişimi (ilkbahar mevsimi).... 82
Şekil 4.18. Krom parametresinin mevsimlere göre değişimi (yaz mevsimi) 83
Şekil 4.19. Krom parametresinin mevsimlere göre değişimi (sonbahar mevsimi).... 84

XIV
Şekil 4.20. Krom parametresinin mevsimlere göre değişimi (kış mevsimi) 85
Şekil 4.21. Bakır parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) 86
Şekil 4.22. Bakır parametresinin mevsimlere göre değişimi (yaz mevsimi) 87
Şekil 4.23. Bakır parametresinin mevsimlere göre değişimi (sonbahar mevsimi) 88
Şekil 4.24. Bakır parametresinin mevsimlere göre değişimi (kış mevsimi) 89
Şekil 4.25. Demir parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) 90
Şekil 4.26. Demir parametresinin mevsimlere göre değişimi (yaz mevsimi) 91
Şekil 4.27. Demir parametresinin mevsimlere göre değişimi (sonbahar mevsimi) ... 92
Şekil 4.28. Demir parametresinin mevsimlere göre değişimi (kış mevsimi) 93
Şekil 4.29. Potasyum parametresinin mevsimlere göre değişimi (ilkbahar mevsimi)94
Şekil 4.30. Potasyum parametresinin mevsimlere göre değişimi (ilkbahar mevsimi)94
Şekil 4.31. Potasyum parametresinin mevsimlere göre değişimi (yaz mevsimi) 95
Şekil 4.31. Potasyum parametresinin mevsimlere göre değişimi (sonbahar mevsimi)

.. 96
Şekil 4.32. Potasyum parametresinin mevsimlere göre değişimi (kış mevsimi) 97
Şekil 4.33. Lityum parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) .. 98
Şekil 4.34. Lityum parametresinin mevsimlere göre değişimi (yaz mevsimi) 99
Şekil 4.34. Lityum parametresinin mevsimlere göre değişimi (yaz mevsimi) 99
Şekil 4.35. Lityum parametresinin mevsimlere göre değişimi (sonbahar mevsimi) 100
Şekil 4.36. Lityum parametresinin mevsimlere göre değişimi (kış mevsimi) 101
Şekil 4.37. Magnezyum parametresinin mevsimlere göre değişimi (ilkbahar mevsimi)
.. 102
Şekil 4.38. Magnezyum parametresinin mevsimlere göre değişimi (yaz mevsimi) 103
Şekil 4.39. Magnezyum parametresinin mevsimlere göre değişimi (sonbahar mevsimi)

.. 104

XV
Şekil 4.40. Magnezyum parametresinin mevsimlere göre değişimi (kış mevsimi). 105
Şekil 4.41. Mangan parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) 106
Şekil 4.42. Mangan parametresinin mevsimlere göre değişimi (yaz mevsimi) 107
Şekil 4.43. Mangan parametresinin mevsimlere göre değişimi (sonbahar mevsimi) ... 108
Şekil 4.44. Mangan parametresinin mevsimlere göre değişimi (kış mevsimi) 109
Şekil 4.45. Sodyum parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) 110
Şekil 4.46. Sodyum parametresinin mevsimlere göre değişimi (yaz mevsimi)...... 111
Şekil 4.47. Sodyum parametresinin mevsimlere göre değişimi (sonbahar mevsimi) ... 112
Şekil 4.48. Sodyum parametresinin mevsimlere göre değişimi (kış mevsimi) 113
Şekil 4.49. Nikel parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) 114
Şekil 4.50. Nikel parametresinin mevsimlere göre değişimi (yaz mevsimi) 115
Şekil 4.51. Nikel parametresinin mevsimlere göre değişimi (sonbahar mevsimi)... 116
Şekil 4.52. Nikel parametresinin mevsimlere göre değişimi (kış mevsimi) 117
Şekil 4.53. Kurşun parametresinin mevsimlere göre değişimi (ilkbahar mevsimi). 118
Şekil 4.54. Kurşun parametresinin mevsimlere göre değişimi (yaz mevsimi) 119
Şekil 4.55. Kurşun parametresinin mevsimlere göre değişimi (sonbahar mevsimi) 120
Şekil 4.56. Kurşun parametresinin mevsimlere göre değişimi (kış mevsimi) 121
Şekil 4.57. Selenyum parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) .. 122
Şekil 4.58. Selenyum parametresinin mevsimlere göre değişimi (yaz mevsimi) 123
Şekil 4.59. Selenyum parametresinin mevsimlere göre değişimi (sonbahar mevsimi) ... 124
Şekil 4.60. Selenyum parametresinin mevsimlere göre değişimi (kış mevsimi) 125

XVI
Şekil 4.61. Kalay parametresinin mevsimlere göre değişimi (ilkbahar mevsmi)... 126
Şekil 4.62. Kalay parametresinin mevsimlere göre değişimi (yaz mevsmi) 127
Şekil 4.63. Kalay parametresinin mevsimlere göre değişimi (sonbahar mevsmi). 128
Şekil 4.64. Kalay parametresinin mevsimlere göre değişimi (kiş mevsmi) 129
Şekil 4.65. Çinko parametresinin mevsimlere göre değişimi (ilkbahar mevsmi). 130
Şekil 4.66. Çinko parametresinin mevsimlere göre değişimi (yaz mevsmi) 131
Şekil 4.67. Çinko parametresinin mevsimlere göre değişimi (sonbahar mevsmi). 132
Şekil 4.68. Çinko parametresinin mevsimlere göre değişimi (kiş mevsmi) 133
Şekil 4.69. Bor parametresinin mevsimlere göre değişimi (ilkbahar mevsmi) 134
Şekil 4.70. Bor parametresinin mevsimlere göre değişimi (yaz mevsmi) 135
Şekil 4.71. Bor parametresinin mevsimlere göre değişimi (sonbahar mevsmi) 136
Şekil 4.72. Bor parametresinin mevsimlere göre değişimi (kiş mevsmi) 137
Şekil 4.73. Civa parametresinin mevsimlere göre değişimi (ilkbahar mevsmi) 138
Şekil 4.74. Civa parametresinin mevsimlere göre değişimi (yaz mevsmi) 139
Şekil 4.75. Civa parametresinin mevsimlere göre değişimi (sonbahar mevsmi) ... 140
Şekil 4.76. Civa parametresinin mevsimlere göre değişimi (kiş mevsmi) 141
Şekil 4.77. Fosfor parametresinin mevsimlere göre değişimi (ilkbahar mevsmi) .. 142
Şekil 4.78. Fosfor parametresinin mevsimlere göre değişimi (yaz mevsmi) 143
Şekil 4.79. Fosfor parametresinin mevsimlere göre değişimi (sonbahar mevsmi) . 144
Şekil 4.80. Fosfor parametresinin mevsimlere göre değişimi (kiş mevsmi) 145
Şekil 4.81. İlkbahar mevsmi (mayıs ayı) analiz sonuçları 146
Şekil 4.82. Yaz mevsmi (temmuz ayı) analiz sonuçları .. 147
Şekil 4.83. Sonbahar mevsmi (ekim ayı) analiz sonuçları 148
Şekil 4.84. Kiş mevsmi (aralık ayı) analiz sonuçları ... 149

XVII
RESİMLER LİSTESİ

Resim 3.1. Konya atıksu arıtma tesisi ile Tuz Gölü arası genel uyu görüntüşi 49
Resim 3.2. Numune alma noktaları uyu görüntüşi .. 50
Resim 3.3. Konya atıksu kanal çıkış numune alma noktası .. 62
Resim 3.4 Konya atıksu kanal çıkış .. 63
Resim 3.5. Konya atıksu kanal çıkışının pH ve sıcaklık ölçümü ... 63
Resim 3.6. P1 pompa istasyonu çıkış görüntüşi .. 64
Resim 3.7. Kanaldan numune alma görüntüsü ... 64
HARİTA LİSTESİ
Harita 1:Tuz Gölü Havzası Genel Durum Planı... 156
SİMGE VE KISALTMALAR LİSTESİ

<table>
<thead>
<tr>
<th>Sımbol</th>
<th>İsim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Debi</td>
</tr>
<tr>
<td>T</td>
<td>Sıcaklık</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>mg</td>
<td>Miligram</td>
</tr>
<tr>
<td>ppb</td>
<td>Milyarda bir kısmı</td>
</tr>
<tr>
<td>ppm</td>
<td>Milyonda bir kısmı</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>ml</td>
<td>Mililitre</td>
</tr>
<tr>
<td>mg/l</td>
<td>Miligram litre</td>
</tr>
<tr>
<td>sn</td>
<td>Saniye</td>
</tr>
<tr>
<td>C⁰</td>
<td>Santigrat derece</td>
</tr>
<tr>
<td>Km</td>
<td>Kilometre</td>
</tr>
<tr>
<td>mm</td>
<td>Milimetre</td>
</tr>
<tr>
<td>m/sn</td>
<td>Metre/Saniye</td>
</tr>
<tr>
<td>Fe</td>
<td>Demir</td>
</tr>
<tr>
<td>Mn</td>
<td>Mangan</td>
</tr>
<tr>
<td>Cd</td>
<td>Kadmiyum</td>
</tr>
<tr>
<td>Ni</td>
<td>Nikel</td>
</tr>
<tr>
<td>Cu</td>
<td>Bakır</td>
</tr>
<tr>
<td>Cr</td>
<td>Krom</td>
</tr>
<tr>
<td>Zn</td>
<td>Çinko</td>
</tr>
<tr>
<td>Co</td>
<td>Kobalt</td>
</tr>
<tr>
<td>Pb</td>
<td>Kurşun</td>
</tr>
<tr>
<td>Ag</td>
<td>Gümüşş</td>
</tr>
<tr>
<td>Sn</td>
<td>Kalay</td>
</tr>
<tr>
<td>As</td>
<td>Arsenik</td>
</tr>
<tr>
<td>Be</td>
<td>Berilyum</td>
</tr>
<tr>
<td>Hg</td>
<td>Civa</td>
</tr>
<tr>
<td>Ni</td>
<td>Nikel</td>
</tr>
</tbody>
</table>

XX
Se Selenyum
V Vanadyum
H+ Hidrojen iyonu
OH⁻ Hidroksil İyonu
AKM Askıda katı madde
KOİ Kimyasal oksijen ihtiyacı
1. BÖLÜM

GİRİŞ

“Atık suyun içindeki ağır metaller ve benzeri zehirli maddeler, yörenin iklim şartlarına ve toprak özelliklerine bağlı olarak topraka birikebilir. Çok düşük konsantrasyonlarda bile kuvvetli zehir etkisine sahip olan ağır metaller, kirilenmiş sulara metal, katyon, tuz ve kısmen anyon şeklinde bulunurlar. Bunlar; hem kirilenmiş suların kendiliğinden temizlenmesini engelleyebilir, hem de bu suların arttılmış halde sulamada kullanılmasını ve arıtmacamurlarının gübre olarak kullanılmasını sınırlandırabilirler” [1].

Bu çalışmada; Konya Ana Tahliye Kanalı boyunca, dört ayrı mevsimde alınan numunelerde, kimyasal ve ağır metal parametrelerinin analizi yapılarak sonuçlar mevsimsel olarak değerlendirilmiştir. Özellikle kanal boyundaki çiftçilerin söz konusu kanaldan sulama amaçlı su çekerek sebze-meyveleri bu sularla sulamaları nedeniyle; yapılan bu çalışmanın çevre ve insan sağlığı açısından öneni büyültür.
2. BÖLÜM

AĞIR METALLER VE ATIKSULARDAN ARITIM TEKNOLOJİLERİ

2.1. Atıksularda Bulunan Bazı Ağır Metaller

“Ekolojik dengeyi bozan kirleticı unsurlar; bazı organik maddeler, endüstriyel atıklar, petrol ve türevleri, yapay türmsal gübreler, deterjanlar, radyoaktive, pestisitler, yapay organik kümarsal maddeler, ağır metaller ve atık ısı olarak bilinen maddelerdir. Bu maddeler doğal dengeyi olumsuz yönde tehdit eden unsurlardır. Birçok ağır metal sanayi de kullanılmakta ve atık olarak doğaya terk edilmektedir. Özellikle son on yıldaki endüstriyel gelişmeler deniz çevrelерinin ağır metal tarafından kirletildiği ve bu kirilenleninin besin zıncırına de yansıldığı görünen ortaya koymaktadır. Su ve besinler ile bünuyeye alınan ağır metaller canlılarda birikerek tüm yaşam aktivitelerine zarar verebilme ve değiştirilebile potansiyeline sahip tirler” [3].

“Su içerisinde mevcut olan her türlü madde belirli bir konsantrasyonu aşdığı zaman sağlık için zararlıdır. Eser miktardında bile sakınca olabilen bu maddelerin en önemli grubunu ağır metaller diye adlandırılan Pb, Ag, As, Be, Cd, Cr, Pb, Mn, Hg, Ni, Se, V, Zn gibi elementler oluşturur” [4].

“Ağır metallerin önemli bir kirleticı grubu oluşturdukları bilinmektedir. Bunların toksik ve kanserojen etkileri olduğu gibi, canlı organizmalarında birikme eğilimi de söz konusudur. Krom, civa, kuruş, kadmium, mangan, kobalt, nikel, bakır ve çinko gibi metaller doğada genellikle sulfür, oksit, karbonat ve silikat mineralleri şeklinde bulunmaktadır. Bunların suda çözünürülükleri oldukça dışuktur” [1].

“Zehir etkisi gösteren maddeler, suda düşük konsantrasyonlarda bulunmaları durumunda bile insan sağlığına zararlı hastalıklara ve hatta ölümlere yol açabilmektedir. Eser miktarda bile toksik etkisi yapabilen bu maddeler arasında en önemli grupu; Ag, As, Be, Cd, Cr, Pb, Mn, Hg, Ni, Se, V, Zn gibi elementler oluşturur. Söz konusu elementlerin çoğunluğu ağır metal grubuna girmektedir. Ağır metallerin önemli bir kirleticı grubu oluşturdukları 2

2.1.1. Arsenik

“Arsenik ve arsenikli bileşikleri, metalurji endüstrisi, cam eşya ve seramik üretimi, deri işlemlerı, boyan, pestisit üretimi, bazı organik ve inorganik kimyasal üretimi, petrol rafinerileri ve nadir toprak metalleri endüstrileri atıksu sularında bulunabilmektedir. Atıksularдан arsenik kimyasal çözüürme ile giderilir. pH 6-7’de sodyum veya hidrojen sülfür ilavesi ile arsenik, sülfürü şeklinde çözüür. Çözüürme sonrası artırılmış su çıkışında arsenik seviyesi 0.05 mg/l olur. Deşarj limitlerini sağlamak için filtreleme gereklidir. Düşük miktarda arsenik aktif karbonla filtrleme ile de düşürilebilir. Bu yöntemle arseniğin 0.2 mg/l den 0.06 mg/l ye düştüğü belirtmektedir. Arseniğin Fe(OH)3 floklarına bağlanarak da giderimi mümkündür. Bu prosesle 0.005mg/l nin altında çıkış suyu arsenik miktarlarına ulaşılmıştır” [7].
“Ayrıca ev atığı deterjanlarda bir miktar arsenik kapsayabilmektedirler. Yüksek toksisiteli arsenik bileşiklerine tüm farklı pestisitler gibi fungisit, herbisit, insektisitler mükemmel bir kaynak teşkil edebilirler” [4].

“Arsenat toprağa bağlanma şekli; arsنينin topraklardan kolaylkla uzaklaştırılamayacağı, topraklarda çok yoğun bir şekilde arsenat birikimi ve dolayısı ile arsenat kirliliği olabileceğini göstermektedir. Toprakta bulunan arsنينin toplam tolere edilebilecek miktarları 50 mg/kg civarındadır” [8].

Arsenik bileşikleri; solunum, sindirim ve daha az ölçüde de deri yoluyla alınmaktadır. Özellikle toz halinde olan arsenik zehirsz kabul edilmektedir. Ancak toz halindeki arsنينin nemli ortamlarında arsenik trioksitine dönüşmesi ile zehirli bir bileşik oluşmaktadır.

“Vücuda alınan arsنين %95'inden fazlasi kanda hemoglobinin proteini tarafından bağlanmakta ve birçok enzimin faaliyetini engellemektedir. Arsenik; saç, tırmak, karaciğer ve böbrekler gibi organizmanın her tarafında birikim gösterir. Arsenik bileşiklerinin ayrıca kanserojen etkiye gösterdiği bilinmektedir” [8].

2.1.2. ᄀinko

“Çinko tüm memelilerde ve insan vücudunda en bol bulunan elementtir. Birçok enzim sistemlerinde bulunmaktadıır. Çinko; prostat, saç, kemik (kuruşun gibi depolanır), karaciğer, böbrek, kaslar, pankreas, mide, bağırsak traktüsü, dalak ve kan sırası ile dokularda çoktan aza sıralanabilir” [10].

“Çinko özellikle, çelik çalışmaları ipek iliği, fiber üretimi ve katot arıtımı uygulayan resirküllasyon soğutma sistemleri ile metal kaplama ve metal proses atık sularında bulunur” [12]. Ayrıca; mürekkep, kopia kağıtları, kozmetik, boya, lastik, muşamba, maden sanayi gibi pek çok sanayide kullanılır. Çinko yoğun endüstri alanlarında bırakılan atık sularla, kanalizasyon aracılığıyla toprağa ulaşmaktadır [13]. Çinko mürekkeplerde, karbon kağıtlarında kozmetikte, boya maddelerinde, silgi ve muşamba üretiminde de kullanılır. Çinko atıklarının başlıca kaynağı elektrolitik kaplama banyolarıdır. Bu banyoların çoğunluğu çinko siyanür içeren bazı çözeltilerdir. Metal kaplama ve alaşımlarda kullanılan çok önemli bir element olan çinko, yoğun endüstri alanlarında bırakılan atık sular, kanalizasyon suları ve asitli yağışların çinko içeren madde üzerine yapmış olduğu aşındırıcı etkisi sonucu çevrede konsantrasyon artan ve toksik düzeylere ulaşan bir iz elementtir” [4].

“Metal çinkonun erime noktasının üzerinde bir ısı ile ısıtılması sonucu ortaya çıkan çinko oksit buharlarının solunması sonucu, önemli zararlar meydana gelir. Çinko klorür dumanları ise ancak yüksek konsantrasyonlarda olduğu etkide bulunur [15]. Hayvanlar yüksek düzeyde Zn alma kısa tolerans gösterebilirler. Çinko toksisitesi hayvanların cinsine göre farklılık gösterir. Çinko zehirlenmesi ile birlikte hayvanlarda kansızlık, istahsızlık, beslenme bozuklukları, pankreaslarda düzensizlik ve gelişmede gerileme gibi çok sayıda önemli rahatsızlıklar ortaya çıkar” [16]. “Bitkilerde çinko toksitesi, kök büyümesi ve yaprak dağılымında bir gerilemeye yol açmakta, bunu klorez takip etmektedir” [8].

5
2.1.3. Bakır

“Bakırın kaynakları; elektrik kablolari, otomotörler, elektronik aksamlarda, bakır ve piritç Kaplanma atıkları [6]. Endüstrilerde bakır önemli rol oynamasının nedeni çok farklı özelliklere sahip olmasıdır. Bakırın en önemli özelliklerinin arasında yüksek elektrik ve ısı iletkenliği, aşınma ve korozyon direnci, çekilebilme ve dövülebilme özellikleri sayılabilir. Ayrıca oluşumları çok çeşitli olup endüstride (otomotiv, basınçlı sistemler, borular, vanalar, elektrik santralleri ve elektrik, elektronik vd.) değişik amaçlı kullanılmaktadır” [17].

“Bakır toprak parçacıklarına kuvvetli bir şekilde bağlandığından oldukça hareketsizdir. Bu nedenle çoğu toprakların Cu içeriği alt profilde doğru azalma göstermektedir. Çok çeşitli kullanım alanları olan bakır çevreye endüstri tozları, fungisitler ve atıkler ile bırakılmaktadır. Özellikle CuS04, tarımsal amaçlar olarak yaygın miktarlarda kullanılmaktadır. Yine CuS04 kümə hayvanlarının beslenmesinde de kati maddesi olarak kullanılır” [8].

2.1.4. Krom

“Krom paslanmaz çelik üretim, çeşitli lehim ve pas engelleycilerin üretim ile ilgili metalurji endüstrisinde, boya, cila, cam ve seramik malzemelerinde, deri endüstrisinde kullanılmaktadır. Doğal olarak toprakta bulunmaktadırdır. Ana materyale göre değişmekte birliktə topraka 5-100 mg/kg oranlarında bulunur” [19].

“Krom endüstrisinin hemen her dalında rastlanır. Isı değiştiricilerinde korozyon inhibütörü olarak, soğutma sularında pompalar korumak için birçok alanının yapısında ve metal kaplamalarında tekstil boyalarında krom bileşiklerine çok rastlanır. Su ortamına giren krom (3+) ve krom (6+) iyonları doğal oluşum ve insan aktivitelerinden kaynaklanmaktadır.
Krom (3+) organizmalar için gerekli element olmasına karşılık, krom (6+) toksik etki ederek kansere neden olabilmektedir. Krom (3+)’ün organizmaların birikimi çok fazla olduğunda da toksik etkisi de söz konusu olmaktadır. İnsanlar kromu teneffüs yoluyla, yeme ve içme yollarıyla aldıkları gibi deri yolu ile de alabilirler” [6].

“Krom, insan vücudunda hemen hemen tüm dokulara yer almaktadır. İnsanların günlük besinlerle alması kabul edilebilir krom düzeyi 50-200 mg/gün cıvarmadır [1]. Vücutta insulin hareketini sağlayan karbohidrat, su ve protein metabolizmasını etkileyen krom, doğada her yerde bulunan bir metal olup havada >0.1 mg/m³ ve kirilmiş suda ortalamama 1 mg/L bulunur. Krom içeren minerallerin endüstriyel oksidasyonu ve fosil yakıtların, ağaç ve kağıt ürünlerin yanmasının neticesinde doğada altı değerli krom oluşmaktadır. Okside krom havada ve saf suda nispeten kararlı iken ekosistemdeki organik yapılarla, toprakta ve suda üç değerliğe geri redüklendir. Kromun kayalardan ve topraktan suya, ekosistemle, havaya ve tekrar toprağa olmak üzere doğal bir dönüşümü vardır. Ancak yılda yaklaşık olarak 6700 ton krom bu çevrimden ayrılarak denize akar ve okyanus tabanına çöker” [17].

2.1.5. Bor

“Bor mineralleri, sanayide sayısı çabuk kadar çok çeşitli işlerde kullanılmaktadır. Bor minerallerinden elde edilen boraks ve borik asit; özellikle nükleer alanda, savunma sanayinde, jet ve roket yakıtı, sabun, deterjan, lehim, fotoğrafcılık, tekstil boyaları, cam elyafı ve kâğıt sanayinde kullanılmaktadır” [20].

ortaya çıkartılması adıdadır. Görülen en önemli rahatsızlıklar arasında deri ile ilgili hastalıklar, büyümenin gecikmesi ve tavşan ve farelerin üreme sisteminde olumsuz etkiler sayılabilir” [21].

“Bor bileşikleri; vücudu solunum ve sindirim yollarıyla veya mukoz membranlar (sindirim ve solunum organlarının iç yüzeyini kaygan bir madde ile örtlenmiş) aracılığı ile girer. Çözünen bor bileşikleri alınmasından sonra, beyin omurilik sıvısının derişimi artar, en yüksek derişimlere beyin, karaciğer ve yağ dokularında rastlanır. En fazla kemiklerde birikir. Genellikle üre, dışkı, süt ve ter ile vücuttan atılır. İnsan üzerinde borik asit ve boraks etkisi, mide bulantu, şiddetli kusma, karın ağrısı ve ishal ile akut zehirlenmenin belirtilerini gösterir. Karakteristik diğer bir belirtide deri döküntüleri ile sonuçlanan kızağı vardır. Ciddi durumlarda tahakküd ve akteriyal basınçta düşme ile çok olabilir. Öldürücü doz çocuklar için 5-6 g, yetişkinler için ise 10-25 g'dir” [22].

“Bor kaynaklarından alınan dozlar, insanlarda ve hayvanlarda akut toksiteye neden olacak düzeyde değildir. Ancak bor iyonu, yaşayan organizmalar üzerinde zehirli etkiler yapmakta ve suda yaşayan canlılara zehirli etkisi ile çok büyük zararlar verebilir” [23].

“Tarımsal sulamada yalnız uygulanan sulama yöntemi, sulama zamanı ve sulama suyun miktarı değil, aynı zamanda kullanlan suyun kalitesi de son derece önemlidir. Tarımsal faaliyetler ve diğer sektörler gelİŞtikçe ne yazık ki çevresel kirlenmeler de artmaktadır. Bitkiler için gerekli olan, ancak özellikle 1 ppm'den fazla bor içeriğine sahip suların sulamada kullanılması bitkilerde ve topraklarda sorun yaratabilmektedir” [24].

2.1.6. Kırsal Sular

“Kırsal suların faaliyetleri ile ekolojik sisteme en önemli zararlı ilk element olma özelliği taşımaktadır. Kırsal suların benzin ve boya maddelerinin yanı sıra yiyecekler ve su da kırsal kaynağı olabilmektedir. Özellikle endüstriyel ve şehir merkezlerine yakın yerlerde yetişen yiyecekler; tahıllar, baklagiller, bahçe meyveleri ve birçok et ürünü bünyesinde normal seviyelerin üzerinde kırsal sular bulundurur. Su borularında kullanılan kırsal kaynaklar ve eski evlerde bulunan kırsal tesisatlarda, kırsalın suya karışmasına sebep olabilmektedir [17].
Kurşun elementi bitkiler için mutlak gerekli olmayıp, toprakta 15-40 ppm dozunda bulunur. Topraktaki kurşun konsantrasyonu 150 ppm’i aşmadığı sürece insan ve bitki sağlığı açısından tehlike oluşturmayar. Ancak 300 ppm’i aşığında potansiyel olarak insan sağlığı açısından tehlilikidir” [26].

2.1.7. Nikel

“Nikel; kimya endüstrisinde, petrol endüstrisinde, çatal, birçok takımları, çekici, pense gibi aletlerle diğer birçok ev ve hastane aletlerinin yapımında kullanılır. Nikel süper alaşımları yüksek ısıda basınç ve korozyona dayanıklı olduğundan, uçakların gaz türbinlerinde, jet motorlarının yapımında, ayrıca uçakların elektrolizle kaplanan bölgelerinde ve gemi yapımında tuz korozyonuna karşı engelleyici olarak kullanılır. Yapı malzemelerinde, sıvı ve katı yağlarda hidrojenerasyonu sağlamak üzere batarya ve yakıt hücrelerinde ve seramik malzemelerde emaye ile demir arasında bağlayıcı olarak kullanılır” [27].

“Nikelin organik formu ve inorganik formundan daha zehirleyicidir. Deriye tahriş etmesinin yanında kalp damar sistemine zararlı ve kanserojen bir metaldır. Zararlı etkilerine rağmen nikel tuzlarıyla zehirlenme nadir rastlanan bir vakadır” [28].

“Nikel hem altın için mükemmel bir beyazlayıcı olduğu gibi hem de bakır ile birlikte kullanılığında mekanik özellikleri, işlenebilirliği ve döküm özellikleri iyi olan bir alaşım elementidir” [29].

2.1.8. Demir

“Demirin zehirliliği çok yüksek değildir. Bu konuda yapılan çalışmalarında bazı metallerin zehirliliği büyükten küçüğe doğru Hg>Zn=Cd=Cu>Co=Al>Fe>Mn olarak bildirilmiştir” [6].

2.1.9. Baryum

2.1.10. Kadmiyum

“İnsan yaşamını etkileyen önemli kadmiyum kaynakları; sigara daması, Rafine edilmiş yiyecek maddeleri, su boruları, kahve, çay, kımı, kabuklu deniz ürünleri, tohum aşamasında kullanılan gubreler ve endüstriyel üretim aşamalarında oluşan baca gazlarıdır. Endüstriyel olarak kadmiyum zehirlenmesi kaynak yapımı esnasında kullanılan asshole bileşimleri, elektrokimyasal kaplamalar, kadmiyum içeren boyalar ve kadmiyumlu piller nedeniyledir. Kadmiyum önemli miktarda gümüş kaynaklarında ve sprey boyalarında da kullanılmaktadır” [6].

“Kadmiyum metal alışamları, seramik, elektrokaplama, fotoğraf, pigment, tekstil, boya, kimya sanayi ve kürşün madeni dren sularında bulunur. Atık sulardan kadmiyum çocukme veya iyon değiştirme ile uzaklaştırılır. Atıksu konsantrine ise elektrolitik ve buharlaştırma
geri kazanım yöntemleri de uygulanabilir. Alkali pH’da kadmiyum çözünme ve stabil hidroksiti formuna dönüşür. Çözeltideki kadmiyum pH=8’de 1 mg/l, pH=10-11’de ise 0.05 mg/l’ dir. Demir hidroksit ile pH=6’da birlikte çöktürme sonucu kadmiyum 0.008mg/l’ye düşerken, pH=8.5 da demir hidroksit ile 0.05’e düşer. Atıksuda siyanür gibi kompleks oluşturucu iyon mevcutsa kadmiyum çökmek. Bu durumda bu kompleks yapıcı iyonun kadmiyumun çöktürülmesi öncesi atıksadan uzaklaştırılması gerekir. Siyanür durumunda, önce siyanürü oksitleyip ardından kadmiyum oksit oluşumuna sağlayan, hidrojen peroksitli oksidasyon-çöktürme yöntemi ile kadmiyumun ekonomik olarak geri kazanımı mümkün olmaktadır” [30].

2.1.11. Kobalt

2.1.12. Selenyum
“Selenyum temel kullanım alanı, elektronik ve elektrik endüstrisidir. Ayrıca boya ve kozmetik sanayinde de kullanılmaktadır. Yetişkin bir insanda yaklaşık 0.29 mg/kg
selenyum içermektedir. En yüksek selenyum konsantrasyonuna böbrek ve karaciğerlerde rastlanmaktadır” [4].

“Selenyum, çeşitli kaçıklarda, kuru (is) ve metalik sülfür cevherlerinde bulunur. Atık sulardan pH=6.6 da sülfürü şeklinde çöktürülerek uzaklaştırılır. Artmış su çıkışında 0.05 mg/l seviyelerindedir” [30].

2.1.13. Lityum

Eğer yüzey ya da yer altı suları sulamada kullanılıyorsa, ürünler ağaç yapraklarına zararlı olan yüksek bor ve lityum konsantrasyonları ile olumsuz etkilenir.

2.2. Ağır Metaller ve Çevresel Etkileri

“Ağır metallerin çevreye yayınının da etken olan en önemli endüstriyel faaliyetler çimento üretimi, demir çelik sanayi, termik santraller, cam üretimi, çöp ve atık çamur yakma tesisleridir. Tablo 1’de temel endüstrilerden atılan metal türleri genel olarak gösterilmiştir. Havaya atılan ağır metaller, sonucı karaya ve buradan bitkiler ve besin zinciri yolu ile hayvanlara ve insanlara ulaşır ve aynı zamanda hayvan ve insanlar tarafından havadan aerasol olarak veya toz halinde solunurlar. Ağır metaller endüstriyel atık suların içme sularına karışması yoluya veya ağır metallerle kirlenmiş partiküllerin toplama yoluya da hayvan ve insanlar üzerinde etkin olurlar” [28].

<table>
<thead>
<tr>
<th>Endüstri</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Hg</th>
<th>Pb</th>
<th>Ni</th>
<th>Sn</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kağıt Endüstrisi</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Petrokimiya</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Klor-alkali Üretimi</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gübre Sanayi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Demir-Çelik San</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Enerji Üretimi (Termik)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
“Ağır metallerin doğaya yayılımını dikkate alındığında çok çeşitli sektörlerden farklı işlem kademelerinden biyosfere ağır metal atılımı gerçekleştiği bilinmektedir. Bunlar Metal Kullanan İşletmeler, Gübre Sanayi, Termik Santraller, Çöp ve Atık Çamur Yakma Tesisleri, Ulaşım Araçları, Demir Çelik, Çimento, Cam Üreten İşletmeler üretimleri sonucu çıkardıkları ürünün atıklarını, hava yoluyla bitkilere, hayvanlara ve insanlara ulaşmaktadır” [17]. “Ülkemizde evsel ve endüstriyel atık sular çoğunlukla hiçbir artış yapılmaksızın tarımsal alanlarda sulama suyu olarak kullanılmaktadır. Kirli su kaynakları ile yapılan tarımsal sulamalar nedeniyle toprak verimliliği ve bitki kalitesi olumsuz yönde etkilenmektedir. Toprakta ağır metallerin toksik düzeyde zenginleşmesi, bitki gelişimini ve kalitesini bozmağa, gıda zehirlenmesine, bitki gelişimini ve kalitesini bozmağa, gıda zehirlenmesine, bitki kalitesini bozmağa, gıd

2.2.1. Ağır metal kirliliğinin sucul canlılara etkisi

“Ekolojik dengeyi bozan kirleticiler, bazı organik maddeler, endüstriyel atıklar, petrol ve türevleri, yapay tarımsal gübreler, deterjanlar, radyoaktivite, pestisitler, inorganik tuzlar, yapay organik kimyasal maddeler, ağır metaller ve atık ısı olarak bilinen maddelerdir. Bu maddeler doğal dengeyi olumsuz yönde tehdit eden unsurlardır. Birçok ağır metal sanayide kullanılmakta ve atık olarak doğaya terk edilmektedir. Özellikle son on yılda endüstriyel gelişmeler deniz çevreslerinin ağır metaller tarafından kirletildiği ve bu kirlenmenin besin zincirine de yansıdıgı görülüyor ortaya koymaktadır. Su ve besinler ile bünüyeye alınan ağır metaller canlılarda birikerek tüm yaşam aktivitelerine zarar verebilme ve değişirebilme potansiyeline sahiptirler” [33].

“Ağır metaller su canlılarında hücresel ve moleküler düzeyde yapışal işlev bozukluklarına ve DNA kirlımları frekanslarında artış sebebi olmaktadır” [34].

“Balık dokuları (kas, karaciğer, böbrek, gonad, mide vs) deniz ortamındaki ağır metal konsantrasyon derecesini belirlemek için indikatör olarak kullanılmaktadır. Özellikle karaciğer dokusu balığın diğer organlarına göre su kirliliğinin çevresel indikatörü olarak sıkılıkla tavlısiye edilmektedir. Karaciğer dokusu ağır metal birikiminde büyük öneme sahiptir [37]. Bazı ağır metallerin sucul canlılar üzerindeki etkileri farklı açıklanabilir. Örneğin; arseninin etki mekanizması kükürt ihtiyaçı eden enzimlerle reaksiyona girmesine bağlılmaktadır. Arsenik özellikle karaciğer, kemik doku, deri veırına birikmektedir [38]. Deniz ürünlerinde arsenik miktarı tolerans sınırları üzerine çıkabilir. Örneğin Morina’nın karaciğer yağında, yengeç ve planktonik organizmalarında yüksek oranda arsiniğin saptandığı bazı çalışmalar vardır [39]. Arseniğin organizmaldaki birikimi ve etkileri, arsenik bileşliğinin özelliklerine bağlıdır ve embriyolarda kronik etkilerle, DNA hasarlarına veya kanserlere sebeb olabilir” [40].

“Ağır metaller sucul ortamlarda birbirlerinden bağımsız halde bulunmadıklarından ağır metal karışımlarının sucul organizmalar üzerine yaptığı etkilerin incelendiği araştırmaların sayısı da arttırmaktadır” [34]. ‘Yapılan bir çalışmada, Tatlısu çipürası (Oreochromis niloticus)’ın bakır-kadmium karışıının etkisinde balıkların solunça, karaciğer, böbrek ve kas dokularında oluşan bakır biri- kimlerini incelemişlerdir. Bakır birikiminin, bakırın tek başına etkisinde saptanan birikim ile karşılaştırıldığında dalgalanma gösterdiğini belirtmişlerdir. Bu çalışmının sonuçunda gerek bakır, gerekse bakır-kadmium karışıının etkisinde, bakırın en fazla karaciğer ve en az kas dokusunda biriktiği
bildoirilmişdir. Araştırmacılar bu metallerin etkisinde inceledikleri doku ve organlarda, metal bağlayıcı proteinlerin sentezinde artış gözlemmişlerdir” [41].

2.2.2. Ağır metal stresine karşı biyolojik yanıtlar

“Stres kavramı bir canlıın normal halini tehlkiye sokan, kapasitesini azaltıcı ve zorlayıcı olarak değerlendirilen, canlı ve çevre arasındaki etkileşim olarak tanımlanabilir. Stresin oluşması için, canlıların içinde bulunduğu ya da yaşamını sürdüştüğü ortam ve çevrede meydana gelen değişimlerin, canlıyı belli düzeyde etkilemesi gerekir. Birçoğunda stres yanıtları, stres etkenlerine karşı koymak ve onunla başa çıkmaya çalışmak amacıyla doku ve organ fonksiyonlarında değişimlerle başlar ve homeostasis sürecinden uzaklaşma ile sonlanır. Sözu edilen bu değişimler bireyler arasında farklılık gösteren ama benzer karakteristige sahip fizyolojik yanıtlarlarının” [42].

“Çevresel stres yaratan faktörler etkisi ile balıkların lökosit ve hematokrit miktarında önemli azalmalar olduğunu ve bağışıklık sistemlerinin zayıfladığını gösteren bir çalışmada biyokimyasal analizler sonucunda elde edilen veriler bazen sözu edilen kirleticilerden mi yoksa çevresel (yaş, üreme zamanı, sıcaklık, tuzluk vs) bazı faktörlerden mi kaynaklanmaktadır tam olarak anlaşılamamaktadır [43]. Böyle durumlarda histolojik incelemeler organizmaların dokuları hakkında daha belirgin veriler sağlamaktadır. Aşağıdaki tabloda ağır metal ve tuzlardan etkilenen organizmaların gösterdikleri biyolojik tepkileri ve yanıtları toplu halde görmek mümkündür” (Tablo 2.2) [44].
<table>
<thead>
<tr>
<th>STRES ETKENİ</th>
<th>SUÇUL ORGANİZMA</th>
<th>ORGAN - DOKU</th>
<th>GÖRULEN BIYOLOJİK YANITLAR</th>
<th>KAYNAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaAsO₂</td>
<td>Lepomis macrochirus (Mavi soluğaç güneş balığı)</td>
<td>Ovaryum</td>
<td>Sitoplasmik kümeler, Yumurtanın karyolizi</td>
<td>[45]</td>
</tr>
<tr>
<td>Kadmium</td>
<td>Salvenilus fontinalis (Kaynak alabalığı)</td>
<td>Testis</td>
<td>Testis boyunca mor-kahve beneklenme, Tübüler sınır hücrelerin nekrozu, Kanama, Vazodilatasyon</td>
<td>[46]</td>
</tr>
<tr>
<td>Kadmium</td>
<td>Salvenilus fontinalis (Kaynak alabalığı)</td>
<td>Testis</td>
<td>Leydig hücrelerinde nekroz, Germinal epitelinin deformasyonu, Normal primordiyal germ hücreleri</td>
<td>[47]</td>
</tr>
<tr>
<td>Kadmium</td>
<td>Carassius auratus (Japonbalancesı)</td>
<td>Kan</td>
<td>Eritrosit oluşumunun Engellenmesi</td>
<td>[48]</td>
</tr>
<tr>
<td>Kadmium</td>
<td>Cyprinus carpio(Sazanbalancesı)</td>
<td>Kan</td>
<td>Düşük Hemoglobin ve hematokrit, Anemik belirtileri, Karaciğerde doku hasarı</td>
<td>[49]</td>
</tr>
<tr>
<td>Kursun Ve Kadmiyum</td>
<td>Clarias batrachus (Yüreğen kedi balancesı)</td>
<td>Testis</td>
<td>Testiküler hasar, Spermatozoidin yavaşlaması (Cd), Üreme kapasitesinde düşüş (Pb)</td>
<td>[50]</td>
</tr>
<tr>
<td>Kadmium</td>
<td>Salmo gairdneri (Gökkuşağı balancesı)</td>
<td>Kan</td>
<td>Kanda glikojen seviyesinde azalma, karaciğerde büyüme</td>
<td>[51]</td>
</tr>
<tr>
<td>Kadmium</td>
<td>Perca fluviatilis (Tatlısu levreği)</td>
<td>Karaciğer</td>
<td>Normastik ve Normokromik anemi</td>
<td>[52]</td>
</tr>
<tr>
<td>Kadmium</td>
<td>Mytilus galloprovincialis (Akdeniz midyesi)</td>
<td>Larva</td>
<td>Larvaların %97’inde gelişim bozukluğu</td>
<td>[53]</td>
</tr>
<tr>
<td>Civa klorür</td>
<td>Clarias batrachus (Yüreğen kedi balancesı)</td>
<td>Testis</td>
<td>Seminifer tübbülerde küçülme, Leydig hücrelerinde piknosis, Gonadal aktivitenin engellenmesi (Hg)</td>
<td>[54]</td>
</tr>
<tr>
<td>Metil civa</td>
<td>Clarias batrachus (Yüreğen kedi balancesı)</td>
<td>Karaciğer</td>
<td>Karaciğer ve böbrekte en kısa sürede, Kas dokuda en uzun sürede etki</td>
<td>[55]</td>
</tr>
<tr>
<td>Kadmium</td>
<td>Cyprinus carpio (Sazan balancesı)</td>
<td>Karaciğer Böbrek, Kas</td>
<td>En fazla karaciğerde, en az kas dokuda ağır metal birikimi.</td>
<td>[41]</td>
</tr>
<tr>
<td>Bakır ve kadmium karşıımı</td>
<td>Oreochromis niloticus (Tatlısu çiçikası)</td>
<td>Solunum Karaciğer Börek Kas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kadmium</td>
<td>Palaemon serratus (Teke karidesi)</td>
<td>Yumuşak Doku ve Kabuk</td>
<td>Kabuklarda, dokulara göre daha fazla kadmium birikimi</td>
<td>[56]</td>
</tr>
<tr>
<td>Kadmium, Çinko ve Bakır</td>
<td>Carassius auratus (Japon balancesı)</td>
<td>Testis</td>
<td>Ortama farklı metallerin katılması durumunda fizyolojik etkilerin artması</td>
<td>[57]</td>
</tr>
<tr>
<td>Organizmalar</td>
<td>Organizmaların adı</td>
<td>Organizmaların adı</td>
<td>Organizmaların adı</td>
<td>Organizmaların adı</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Kadmiyum</td>
<td>Gobius niger</td>
<td>Kan</td>
<td>Eritrositlerde fusiform ve küresel</td>
<td>58</td>
</tr>
<tr>
<td>Kadmiyum</td>
<td>Cyprinus carpio</td>
<td>Serum</td>
<td>Serum aspartat aminotransferaz,</td>
<td>59</td>
</tr>
<tr>
<td>Bakır</td>
<td>Clarias lazera</td>
<td>Kas</td>
<td>Doku glikojen ve serum glukoz</td>
<td>60</td>
</tr>
<tr>
<td>Kadmiyum</td>
<td>Lymnaea</td>
<td>Embriyo</td>
<td>Embriyolarda gelişim bozukluğu</td>
<td>61</td>
</tr>
<tr>
<td>Güneş, krom, nikel,</td>
<td>Penaeus semisulcatus</td>
<td>Kas, solunum ve</td>
<td>Yaşa ve cinsiyete bağlı olarak</td>
<td>62</td>
</tr>
</tbody>
</table>

Sucul organizmaların çevre şartlarındaki değişikliklere kısa sürede biyolojik yanıt vermeleri ve organizmanın klinik statüsü hakkında bilgi vermesi hematolojik parametreleri elde etmenin öneminini artırmaktadır.

“Bakır ve çinko organizmanın bünyesinde yetersiz miktarlarda bulunduğuunda büyüme anormallikler ve material zarar veren toksik maddeleri ise toksik olabilmektedir. Ağır metaller bir organizmanın dokularında biriktiği zaman, gelişen metabolik olaylar bu ağır metalleri toksik potansiyellerine ve yararlılık oranlarına bağlı olarak kullanmak, elimine etmek veya dışarıya atmak zorundadır. Sucul organizmaların ağır metal birikim ve hasarlarının incelendiği araştırmaların yapılması, bu metalleri karşı duyarlılığı yüksek olan türlerin belirlenmesinin yanı sıra organizmanda meydana gelebilecek biyokimyasal, fizyolojik, yapışal ve işlevsel bozuklukların belirlenmesi açısından da önem taşımaktadır. Çevre kirliliğinin bir göstergesi olarak canlılarda ölçülen metalik kırleticiler özellikle su ürünlerinde sıkılaıkla yüksek seviyelere ulaşabilir. Bu şekilde besinlerle birlikte düşük düzeylerde ama sürekli olarak alınan civa, kadmiyum ve kuruş gibi metal karıncıları çevre ve insan sağlığını önemli derecede etkilemektedir” [43]
2.2.3. Ağır metallerin insan sağlığına etkileri
Son 50 yıldaki teknolojik gelişmeler yaşam koşullarını esksesine göre çok kolaylaştırmasının yanı sıra, çevre kirliliğinde büyük bir artışa sebep olmuştur. Şehir havası otomobil egzozlarından çıkan yüz binlerce ton ksilen ve toluen tarafından, içme suyu sistemleri uçucu organik maddeler tarafından, kursal alanlar pestisidler ve herbisidler tarafından, ormanlar ve balıkçılık alanları küürt ve azot emisyonları tarafından kirletilmektedir.

Endüstriyel işlem ve ürünlerde ağır metal kullanımını son yıllarda hızla artmış ve buna bağlı olarak insanlar üzerindeki etkisi de tehlikeli değerlere ulaştırılmıştır. Günlük hayatta o kadar çok ağır metal içeren ürün kullanıyoruz ki şimdilik bunlardan kurtulmamız mümkün gözükmüyor. Civa-amalgam diş dolgusu, kurşunlu boya, musluk suyu, yiyecek prosesleri, kimyasal tortu ve kişisel bakım ürünleri (kozmetik ürünleri, şampuan, saç ürünleri, gargarası sıvısı, diş macunu, sabun vb) her gün kullanıdığımızdan sadece birkaç. Bunun yanında insanlar evde, dışarıda, birçok iş sahasında her gün ağır metallerin etkisine maruz kalmaktadır.

Ağır metaller bioakumülatiftir ve insan vücudunda herhangi bir olumlu fonksiyonu olmayıp fazla toksik etkiye neden olurlar. Solunum beslenme ve deri emilimi yoluyla insan vücuduna girerek dokularda birikmeye başlarlar. Bu metaller vücudtan uzaklaştırılamaz ve zaman içinde toksik değere ulaşırlar.

"Denekler üzerinde yapılan çalışmalar sonucunda ağır metallere maruz kalın insanlarda, ruhsal ve nörolojik etkilere bağlı davranış bozuklukları, nörotansmitter üretimi ve bunların fonksiyonunda düzensizlikler ortaya çıkması ve daha birçok metabolizma sorunu gözlemlenmiştir. Daha sonraları, maruz kalınan ağır metal oranına göre saktıklıklar ve bazı organların görevini yapamaması gibi ciddi rahatsızlıklar ortaya çıkmıştır" [63].
Ağır metallerin insan metabolizmasına oluşturdukları etki ve etkin oldukları aşamaları ana sistemler açısından kısa ve alırsak bünü):
Kimyasal reaksiyonlara etki edenler,
Fizyolojik ve Taşınım sistemlerine etki edenler,
Kanserojen ve mutojen olarak yapı taslarına etki edenler,
Alerjen olarak etki edenler,
Spesifik etki edenler,
olarak sıralamak mümkündür. Yukarıda sayılan bu reaksiyon sistemlerini Şekil 2.1 de şematik olarak göstermek mümkündür.
Şekil 2.1 Ağır metallerin insan vücudunda etki mekanizması [17]

2.2.4. Ağır metallerin sudaki toksik etkileri

"Kentsel atık sular, suya oranla çok daha küçük konsantrasyonda suda asılı veya çözünmüş halde organik ve inorganik maddeler içerirler. Atık sularda bulunan organik maddeler arasında; karbonhidratlar, lignin, yağlar, sabun, sentetik deterjanlar, proteinler ve bunların ayrışmasından oluşan ürünler ile çeşitli doğal ve sentetik organik kimiyasallar yer almaktadır. Kanalizasyon sistemleriyle toplanan kentsel atık sular içerisinde, gerek evsel gerekse de endüstriyel kaynaklı çeşitli inorganik maddeler de bulunmaktadır. Özellikle endüstriyel atık suların kanalizasyon sistemine verilmesi durumunda arsenik, kadmium, krom, bakır, kurşun, cıva, çinko gibi toksik etkiye sahip inorganik maddeler içerebilirler. Toksik kimiyasalların konsantrasyonu insan sağlığını etkilemeyecek düzeyde olsa bile,
bitkiler üzerinde toksik etkide bulunabilirler. İnsan sağlığı yönünden bakıldığında atık suların tarımsal sulama kullanımdında dikkat edilmesi gereken en önemli kirleticiler patojen mikroorganizmalarıdır” [64]. “Tarımda atık suların kullanılması genellikle tarımsal ve ekonomik açısından değerlendirilmiştir. Ancak, halk sağlığı ve çevre üzerinde olumsuz etkilerini en aza indirmek veya ortadan kaldırmak için atık suların kullanılmasında dikkatli olunmalı ve koruyucu önlemler uygulanmalıdır” [65].

Ağır metaller suda çok az mikarda bulunurlar. Suda yaşayan canlılar için toksitirler. Çoğu 1 ppm sınırlında öldürücüdür. Ağır metallerin toksik etkileri aşağıdaki Tablo 2.3’de verilmiştir.

| Tablo 2.3. Tayini yapılan ağır metal ioniynların insan sağlığına olan etkileri [8-15] |
|---------------------------------|---------------------------------|
| **Li** | Nórolojik yan etkiler, yorgunluk, kas güçsüzüğü konstantrasyon gücü, entellektüel yetersiziğiz. |
| **Ba** | Ba, en çok kemiklerde, beyin ve böbreklerde yoğunlaşır. Bağırşakların içihr eder kalbin durmasına neden olur. |
| **Pb** | Diş eti mavileşmesi, kansızlık, kas kilitlenmesi, inme, akl bozukluğu, beyin kanaması, sinir sistemi hastalıkları. |
| **Cu** | Karin ağrısi, kusma, kanama, bitkinlik, kansızlık, sarılık, soluma zorluğu, akyuvar çoklaması |
| **Se** | Asırı dozda solunum artar. Ölüm nefes kesilmesi ile olur. Kan zehirleri grubundadır. |
| **Mn** | Akut zehirlenmelerde sindirim, böbrek ve kalpte bozukluklar belirir. Akciğer ve beyinde depolanır. |
| **B** | Bor'un 8 gr't bulantu ve bel ağrısı yapar, 20gr't düşük yapar. |
| **Cd** | Böbrek ıstü bezi etkileri, kansızlık, indirgenme hemoglobin düzeyleri. |
| **Fe** | Özelikle sanayi bölgelerinin çevresinde yaşayan insanlarda zaman zaman demir toksisitesine rastlanır. Bazı alerjik rahatsızlıklar ve sıroz gibi hastalıklar ortaya çık ar. |
| **As** | Arsenik solunum sindirim ve deri yoluyla alınırlar. Saç, tırmak, karaciğer ve böbreklerde birikim gösterir. Kanserojen etkiye sahiptir. |
| **Co** | Kobalt toksikliği yok nadir görülen bir olaydır. Kobalt düzeyinin 3000 katı kobalt konstantrasyonlarında ortaya çıkar. |
| **Zn** | Buharlarının solumması ile akut metal dumanıhumması, boğaz tahırsı, öksürme, solunum gücü, adale ve eklem ağrılari, mide tahırsı, peptik ülserler ve çeşitli karaciğer etkileri Çinkonun kötü etkileridir. |
| **Cr** | Deri lezyonları, ülser, kanser, sindirim yaralan, solunum yolları zedelenmesi. |
| **Ni** | Asırı dozları kansere sebep olabilimekte. |
2.3. Ağır Metal İçeren Atıksuların Artırm Yöntemleri

İnsan, doğal çevre ve sosyal gelişime üzerinde su, önemli rol oynamaktadır. Suyun kullanımını sonucu evsel ve endüstriyel atık sular oluşmaktadır. Artırmadan alıcı ortamlara verilen atık sular, su kaynaklarını kirletir ve tekrar kullanımını kısıtlar.

Endüstriyel tesislerden salanan atık sular içindeki kadmiyum, krom, cıva ve kurzun gibi ağır metaller, çevre üzerinde çok toksik etkiye sahiptir. Bakır, nikel ve çinko gibi ağır metaller, çevre sağlığı üzerinde orta düzeyde toksik etki yaparlar. Dolayısıyla bu tür ağır metalleri içeren atık sular artırmadan göl, dere, kanalizasyon gibi alıcı ortamlara deşarj edilmemelidir.

Paslanmaz çelik üretimi, krom kaplama, deri sanayi, nikel kaplama, pirinç alışımlı, lastik üretimi, cam boyaması, demir alışımlarının sertleştirilmesi, seramik emaye ve galvanizleme gibi çeşitli metal sanayi kollarında üretim sonucu oluşan atık suların ağır metal içermesi kuvvetle muheme edilir. Bu tür küçük, orta ve büyük ölçekli sanayi tesislerine ait atık sular artırmadan başta kanalizasyon sistemleri olmak üzere derelere, göllere ve toprağa verilmemelidir. Bu tür sanayi tesislerinin atık suları artırmadan belediyelere ait kanalizasyon sistemine deşarj edildiğinde;

-Evsel atıksu artırmalı tesisin verimliliği düşer,

-Evsel atıksu artırmalı tesis artırmalı cıvırında ağır metal konsantrasyonu sınır değerlerine üzerine çıkar. Bu tür artırmalı cıvırların tehlikeli atık sınıfına girmesi kuvvetle muheme edilir.

Metal sanayi atık sularındaki ağır metallerin çevreye ve evsel atık su artırmalı tesislerine zarar vermemesi için önceden artırmalı gereklidir. Artırmalı cıvırların tehlikeli atık olmaması için atık su içindeki ağır metallerin mutlaka önceden artırmalı gereklidir.

Suların çeşitli kullanımlar sonucunda atıksu haline dönüşerek yitirdikleri fiziksel, kimyasal ve bakteriyolojik özelliklerinin bir kısmını veya tamamını tekrar kazandıracak ve/veya boşaldıkları alıcı ortamın doğal fiziksel, kimyasal, bakteriyolojik ve ekolojik özelliklerini değiştirmeyerek hale getirebilmek için fiziksel, kimyasal ve biyolojik artırmalı işlemlerin biri veya birkaçı uygulanabilir.

“Ağır metal kirliliğine neden olan metal sanayi tesislerine ait atık sular başta belediyeler olmak üzere İl Çevre ve Orman Müdürlüğü tarafından sıkı şekilde denetlenmelidir. Artırmalı olmayan metal sanayi tesislerinin çalışmasına izin verilmemelidir. Bu tür tesislerde atık su
artıma tesi kurmak ve işletmek zor ve pahalı değildir. Toksik ağır metal içeren yukarıda sıralanan metal sanayi atık sularının artımda çeşitli metotlar uygulanmaktadır” [66].
Atık su bünyesinde kirliliğe neden olan yabancı maddeler, tane boyutlarına bağlı olarak çökümleri, koloidal olarak askıda olmaları ve çözünmeleri mümkündür. Her madde grubu değişik metodlarla atık sudan uzaklaştırılabilir. Atık su artımda uygulanan metotları fiziksel, kimyasal ve biyolojik olmak üzere üç ana grupta toplamak mümkündür.
“Bunlardan fiziksel artımda, çöktürme ve flotasyon işlemlerinde çöken, yüzeyinde tanecikleri ayırmak; kimsenin artımda çözünmüş ya da koloidal boyuttaki tanecikleri pürtüleriyle yumuşatılarak çöken, hale getirilmekte; biyolojik artımda ise çözünmüş maddeler kimsenin biyolojik küttelerin bir araya gelerek oluşturduğu kolay çöken, yumak, kimsenin de mikroorganizmaların enerji ihtiyaçlarını için yaptıkları solunum sırasında çıkan gazlara ve diğer stabilize olmuş son ürünlerle dönüşümdedir” [67].

2.3.1. Fiziksel artıma üniteleri
Artıma tesişlerinde uygulanan fiziksel artıma üniteleri İzgaralar, elektrik, kum tutucular, yüzey madde tutucular, dengeleme, çökelme ve yüzdürme havuzlardır. İzgaralar su içerisinde bulunan kaba maddelerin pompa, boru ve teçhizata zarar vermemesi; diğer artıma kısımlarına gelen yükün hafiflemesi veya yüzüley kaba maddelerin sudan ayrılmı gibi amaçlarla kullanılır. İzgara yapıları çubuk aralıklarına göre ince ve kaba izgaralar; temizleme şekline göre ise, elle veya mekanik yolla temizlenecek izgaralar olarak sınıflandırılır. Çubuk aralıkları ince izgaraları 15-30 mm, kaba izgaraları 40-100 mm’ dir. Kum, çakılı gibi inorganik maddeler atık sudan ayrımak, artıma tesişlerindeki pompa ve benzeri teçhizatin aşınmasına ve çökelme havuzlarına tıkanma tehlikesine engel olabilmek için kum tutucular kullanılır. Kum tutuculara toplanan kum ve çakılı, büyük tesişlerde basınıçlı hava ile çalışan pompalar veya bantlı, kovalı ve helozonlu mekanizmalarla sürekli olarak, küçük tesişlerde ise elektromekanik temizlendirir.
Diğer fiziksel artırm yöntemleri ise yüzey madde tutucuları, dengeleme havuzları, çökelme havuzları ve flotasyondur.

2.3.2. Kimyasal artıma üniteleri
Kimyasal artıma atık sularında kirliliğe neden olan çözünmüş, koloidal ve askıdaki maddelerin uzaklaştırılması temin veya hızlandırmak amacıyla, çeşitli kimyasal reaksiyonlardan yararlanması esasına dayanan genel metotlardır. Kimyasal artıma suda
czyznumus halde bulunan kirleticilerin, kimsyasal reaksiyonlarla çözünürlüğü düşük bileşiklere dönüştürülmesi veya koloidal ve askidaki taneciklerin plıtı ve yumaklar oluşturarak çökeltmesini amaclarlar.

Yumaklaştırma işlemini hizland irmak amaçla kullanılan yumaklaştırmaçıların miktarlarını azaltma veya artma verimini arttırmak için kil, kalsit, polielektrolit, aktif silika çeşitli alkalı ve asitler gibi yumaklaştırına yardımcı maddeler (koagulant yardımcıı) kullanılır. Yumaklaştırıcı olarak en çok kullanılan kimsyasal maddeler Al₂(SO₄)₃, AlCl₃, Fe₂(SO₄)₃, FeCl₃, CaO, Ca(OH)₂ olup yardımcı madde olarak en fazla polielektrolitler kullanılmaktadır.

2.3.3. Biyolojik atıma üniterleri

2.3.4. İleri artırma metotları
“Atık suun çevre üzerindeki etkisinin daha iyı anlaşılmması ve daha gelişmiş analitik metotlarla gelişen ülkelerde ileri artırma daha yaygın hale gelmişdir. İlkinci artırma ve karbonlu kirleticilerin azaltılması artırma tesislerinde daha yaygın hale gelmiş ve diğer bir hedef ötrofikasyonun önlenmesi olmuştur” [68].

Dezenfeksiyon:
Azot giderme:

Fosfor giderme:

Filtrasyon:
Biyolojik ve kimyasal artırma işlemlerinde yeterince giderilememeyen askıda katı maddeleri ve kolloidlerin tutulması amacıyla uygulanır. Suyun granüler filtre yatağından geçiş ile maddeler tutulur. Filtre yatağında biriken katı maddelerin giderilmesi amacıyla geri yıkama işlemi uygulanır. Filtrelerde kum, çakıl, granit vb. dolgu malzemeleri kullanılır. Filtreler akış doğrultusuna göre aşağı ve yukarı aşılı kullanılarak filtre malzemesine göre aşılı ve yukarı aşılı, kullanılan filtre malzemesine göre tabakalı veya tek tip malzemeden oluşan filtreler, hidrolik şartlara göre serbest yüzeyli ve basınçlı filtreler olarak sınıflandırılır.

Ters Osmoz:
Atksuyun yeniden kullanılabilmesini sağlamak amacıyla, genellikle endüstriyel atksu artırımında kullanılan çözünmüş anorganik ve organik maddelerin sudan uzaklaştırılması ya da geri kazanım amacıyla yüksek basınçlık uygulanan bir sistemdir. Ters osmozun temel üniteleri yari geçirgen membran destekleme yapısı basınçlı kap ve yüksek basınçlı pompadır. Membran malzemesi olarak selüloz asetat ve naylon kullanılır.
Ultrafikasyon:
Yarı geçirgen membranların ters osmoz işlemini benzeyen basınçlı membran fitrasyon metodudur. Ancak daha düşük basınç uygulanır. Bileşiminde makromolekül ve kolloid özellikleri madde bulunan atıksularda kullanılır [69].

Adsorpsiyon:

Adsorpsiyon olayı sabit sıcaklık ve sabit basınçta kendiliğinden gerçekleştiği için, adsorpsiyon sırasında serbest entalpide değişimi daima negatif işaretlidir. Metaller ve plastikler de dahil olmak üzere bir kristal yapıya sahip olsun yada olmasın tüm katlar az veya çok adsorplama gücüne sahiptirler. Adsorplama gücü yüksek olan bazı doğal katlar kömürler,killer, zeolitler ve çeşitli metal filizleri yapay katlar ise aktif kömür, moleküler elektrik (yapay zeolitler), silikajeller, metal oksitleri katalizörler ve bazı özel seramikler şeklinde sıralanabilir. Adsorplayan madde yüzeyi ile adsorplanan kimyasal arasındaki çekim kuvvetlerine bağlı olarak gerçekleşen üç tür adsorpsiyon işlemi tanımlanmaktadır.

Fiziksel adsorpsiyon türü, katı yüzey ile adsorplanan madde molekülleri arasındaki çekim kuvvetlerinin etkisiyle gerçekleşir. Düşük sıcaklık aralığında oluşabilirdiği gibi çok tabakalı ve rejenerasyonu kolay bir adsorpsiyon türüdür.

Kimyasal adsorpsiyon, adsorplanan madde ve katı yüzey arasında kimyasal bağ oluşumu sonucu görülen adsorpsiyon tipidir. Kimyasal adsorpsiyon, tersinmez ve tek tabakalı olup genellikle yüksek sıcaklık aralığında gerçekleşir.

İyonik adsorpsiyon, elektrostatik çekim kuvvetlerinin etkisiyle, yüzeydeki yükü bölgelere iyonik özelliklere sahip adırsıbatların tutunması olarak tanımlanabilir.

Fiziksel, kimyasal ve iyonik adsorpsiyon arasında kesin bir ayrımdan çıkmaz, üçü aynı anda veya ard arda görülebilir.

İyon Değiştirme Yöntemi

Atık su içindeki bakır, kurşun, kadmiyum, nikkel, çıva gibi ağır metal fonksiyon gruplarını gidermek için uygun iyon değiştiriciler seçilmelidir. Ağırl metallerin gideriminde genel olarak kuvvetli asidik kadyonik iyon değiştiriciler kullanılmaktadır.

İdirgenme çökeltme yöntemi

"İdirgenme çökeltme yönteminde yüksek değerli metal çökelisen bir şekilde indirildikten sonra nötralize edilir. Reaktifin aşısı metali çökeltir. Bu işlemde kararlı blokülasyon koyulaştırma ve süzme işlemlerini yapar. Özellikle kromlu atıkların artırımda kullanılır" [18].

Yükseltme çökeltme yöntemi

"Bu yöntemde indirgenmiş metal kararlı yükseltgenmiş ve çözülmeyen şekillerine dönüştürülür. Bu tür bir atık artırma prosesinde havalandırma-sedimentasyon-filtrasyon

27
olmak üzere üç basamak vardır. Kolayca yükseltgenmeyen metaller için söz konusu prosese kimyasal yükseltgenme basamağını da eklemek gerekir. Bu yöntem özellikle demir mangan içeren atıkların artırımında kullanılır” [18].

Nötralizasyon çökelte yöntemi

“Krom (VI), Bakır (II), Çinko (II), Nikel (II), Demir (II), Kadminyum (II) gibi ağır metal iyonları ortama kireç soda katılarak nötralize edilir. Hidroksitleri şeklinde çokturlerek atıksadan uzaklaştırılır” [18].

2.4. Ağır Metal İçeren Sular İçin Kalite Kriterleri

Tablo 2.4. TSE, WHO ve ABD Çevre Koruma Ajansına Göre Toksik Maddelerin Sınır Değerleri, (mg/l) [67]

<table>
<thead>
<tr>
<th>Parametre</th>
<th>Türk standartları TSE 266</th>
<th>Dünya Sağlık Teşkilatı (fl(l))</th>
<th>ABD Çevre Koruma Ajansı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Cr(Toplam)</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Mn</td>
<td>0,10</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Ba</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Li</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Co</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Zn</td>
<td>5,00</td>
<td>---</td>
<td>5,00</td>
</tr>
<tr>
<td>Ni</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>V</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Se</td>
<td>---</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>B</td>
<td>0,30</td>
<td>0,30</td>
<td>0,30</td>
</tr>
<tr>
<td>Pb</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Cu</td>
<td>3,00</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>As</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Fe</td>
<td>0,30</td>
<td>0,10</td>
<td>0,30</td>
</tr>
<tr>
<td>Pfl</td>
<td>6,5-9,2</td>
<td>6,5-8,5</td>
<td>6,5-8,5</td>
</tr>
</tbody>
</table>

Tablo 2.5. Suların Genel Sınıflanması ve Kalite Parametreleri, (mg/l) [67]

<table>
<thead>
<tr>
<th>Parametre</th>
<th>1. SINIF</th>
<th>2. SINIF</th>
<th>3. SINIF</th>
<th>4. SINIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>0,01</td>
<td>0,01</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Pb</td>
<td>0,01</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>As</td>
<td>0,02</td>
<td>0,05</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>V</td>
<td>0,05</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Se</td>
<td>0,01</td>
<td>0,01</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>B</td>
<td>0,30</td>
<td>0,30</td>
<td>0,60</td>
<td>1,00</td>
</tr>
<tr>
<td>Ba</td>
<td>1,00</td>
<td>2,00</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Mn</td>
<td>0,10</td>
<td>0,50</td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Cu</td>
<td>0,02</td>
<td>0,05</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Cr(Toplam)</td>
<td>0,02</td>
<td>0,05</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Co</td>
<td>0,01</td>
<td>0,02</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Ni</td>
<td>0,02</td>
<td>0,05</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Zn</td>
<td>0,20</td>
<td>0,50</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Fe</td>
<td>0,30</td>
<td>1,00</td>
<td>5,00</td>
<td>5,00</td>
</tr>
</tbody>
</table>

29
Tablo 2.6. Alıcı Ortama Deşarj Edilen Atıksuda izin Verilebilir Maksimum Ağır Metal Limitleri, (mg/l) [67]

<table>
<thead>
<tr>
<th>Parametre</th>
<th>İzin verilen Maks. Sınır</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>5,00</td>
</tr>
<tr>
<td>Zn</td>
<td>10,0</td>
</tr>
<tr>
<td>Fe</td>
<td>10,0</td>
</tr>
<tr>
<td>Mn</td>
<td>3,00</td>
</tr>
<tr>
<td>B</td>
<td>3,00</td>
</tr>
<tr>
<td>Co</td>
<td>5,00</td>
</tr>
<tr>
<td>Cr</td>
<td>5,00</td>
</tr>
<tr>
<td>Pb</td>
<td>3,00</td>
</tr>
<tr>
<td>Ni</td>
<td>5,00</td>
</tr>
<tr>
<td>Se</td>
<td>2,00</td>
</tr>
<tr>
<td>V</td>
<td>3,00</td>
</tr>
<tr>
<td>Ba</td>
<td>3,00</td>
</tr>
<tr>
<td>Li</td>
<td>2,00</td>
</tr>
<tr>
<td>Cd</td>
<td>5,00</td>
</tr>
<tr>
<td>As</td>
<td>3,00</td>
</tr>
</tbody>
</table>

Tablo 2.7 ve Tablo 2.8'de ağır metallerin toprakta bulunabilecek maksimum izin verilebilir miktarları ile günlük besinlerle vücuta kabul edilebilir miktarları hakkında bilgi verilmiştir.

Tablo 2.7. Ağır Metallerin Tопракта Bulunan Toplam Tolore Edilebilir Miktarları, (mg/kg) [8]

<table>
<thead>
<tr>
<th>Parametre</th>
<th>Toprakta Bulunanabilecek Değer</th>
<th>İzin Verilen Max Sınurlar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>100</td>
<td>180</td>
</tr>
<tr>
<td>Zn</td>
<td>300</td>
<td>1840</td>
</tr>
<tr>
<td>Fe</td>
<td>300</td>
<td>4600</td>
</tr>
<tr>
<td>As</td>
<td>50</td>
<td>90</td>
</tr>
<tr>
<td>Cd</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Se</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>B</td>
<td>100</td>
<td>680</td>
</tr>
<tr>
<td>Ba</td>
<td>300</td>
<td>600</td>
</tr>
<tr>
<td>V</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>Mn</td>
<td>300</td>
<td>920</td>
</tr>
<tr>
<td>Co</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>Cr</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Pb</td>
<td>300</td>
<td>4600</td>
</tr>
<tr>
<td>Ni</td>
<td>100</td>
<td>920</td>
</tr>
</tbody>
</table>
Tablo 2.8. Günluck Besinlerle Vücuta Kabul Edilebilir Ağır Metal Konsantrasyonları, (mg/gün) [8]

<table>
<thead>
<tr>
<th>Parametre</th>
<th>İzin Verilen Max Sınırlar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0,6-2,5</td>
</tr>
<tr>
<td>Zn</td>
<td>5-19</td>
</tr>
<tr>
<td>Fe</td>
<td>6-15</td>
</tr>
<tr>
<td>Mn</td>
<td>0,3-5</td>
</tr>
<tr>
<td>Cr</td>
<td>10-100</td>
</tr>
<tr>
<td>Pb</td>
<td>10</td>
</tr>
<tr>
<td>Se</td>
<td>2</td>
</tr>
<tr>
<td>v</td>
<td>5</td>
</tr>
<tr>
<td>Ba</td>
<td>1</td>
</tr>
<tr>
<td>Cd</td>
<td>3</td>
</tr>
<tr>
<td>As</td>
<td>1</td>
</tr>
</tbody>
</table>

2.5. Konya Kapalı Havzası ve Tuz Gölü

“Tuz Gölü, İç Anadolu Bölgesinde, Ankara’nın yaklaşık 150 km güney- güneydoğusunda doğudan Kızılırmak Masifii, güneyden Obruk, batıdan Cihanbeyli ve kuzeyden Haymana plolarıyla çevrili, çukur alanın kuzeydoğusundaki en alçak bölümünde yer almaktadır. Tuz Gölü havzası, Konya Kapalı Havzasını oluşturan 3 alt havzadan (Ereğli Alt Havzası, Beyşehir Gölü Alt Havzası ve Tuz Gölü Alt Havzası) birisidir” [71]. Konya kapalı havzasının bir parçası olan ve bu havzanın kuzeyinde yer alan Tuz Gölü Alt Kapalı Havzası; kuzeybatıdan Sakarya, kuzeyden Kızılırmak, doğu güney ve güneybatıdan havzaya ait yükselticilerle çevrilmştir. Su toplama alanı 20 200 km² dir. Tuz Gölü Alt Kapalı Havzasının yaklaşık olarak % 70’ inden fazlası ova stepleri ve kuru tarım alanlarından oluşmaktadır. Göl ve göl ile ilişkisi bulunan tuz stepleri havzanın merkezinde yer almakta ve havzanın yaklaşık olarak % 19’ unu kaplamaktadır. Havzadaki en önemli yapay arazi kullanını kentsel ve endüstriyel kullanımla birlikte sulu tarım olarak karşımıza çıkılmaktak ve havzanın güney kısmında yoğunlaşan sulu tarım alanları toplam alanın yaklaşık olarak % 6,2’ sini oluşturmaktadır.

Havzanın kuzeyindeki en çukur yerinde yurdumuzun ikinci büyük tabii göl olan Tuz Gölü yer alıp ortalama yüzeyi 1 600 km², su kütü 905,00 m, su derinliği ortalama 1.00 m’ dir. Tuz Gölü’nün hem yerüstü suları ve hem de yer altı suları ile beslenmesi, yer altı suyu akışlarının bir kısmının önemli tuz formasyonlarından geçmesiyle izlediği yol boyunca tuza doymasını, gölün sürekli olarak tuzlu su ile beslenmesine olanak sağlar. Yer altı suyunun 31
sonucunda konunun teknik düzeyde ele alınması kararlaştırılmış ve 1978 yılında Apa Barajı çıkışından başlamak üzere kanal üzerinde beslenen 7 istasyondan 1 yıl süreyle ve her ay alınan su örneklerinin ağır metal, mikrobiyoloji, pestisit, kimyasal ve biyokimyasal analizleri yapılmıştır. Analiz sonuçlarına göre; Apa Barajı’ndan temiz olarak çıkan su, Konya kenti sanayi ve evsel atıklarının kanala karıştığı nokta olan 2. örnek alma kesitinde kirlenmeye uğramakta, organik kirlilik kısmen aylarında olduğu gibi göle intikal etmektede; yaz aylarında ise kanal boyunca kendi kendine temizlenerek kirlilik parametreleri göl girişinde zararsız sınır değerlerine inmektedir.

İnorganik kirlilik ise artarak göle kadar ulaşmaktadır. Ova topraklarının yıktaması sonucu kanal suyunu intikal eden tuzlardan en etkeni olan önemli miktarda sülfat ve süspansiyon madde göle kanal yoluyla taşınmaktadır. Konya kenti geçişinde kanala intikal eden demir, alüminyum, kurşun ve cıva gibi ağır metaller göle ulaşmadan çökerek sudan ayrılmaktadır. Sanayi ve evsel atıkların karışmasından sonra kanal suyu mikroorganizmalarının bile yaşamayacağı toksik bir ortama dönüsemekle beraber pestisit değerleri limitlerin altında kalmaktadır.

DSİ tarafından Apa Barajı Çıkışı, P1 Pompa İstasyonu Girişİ, Tutup Beli Tünel Çıkışı ve Gölyazı Köprüsü olarak belirlenen istasyonlardan su numuneleri alınımaka su kalitesi veri tabanına kaydedilmiştir.

“P1 pompa istasyonundan Tuz Göllü’ne kadar olan kesimde köylüler Devlet Su İşleri’ nin müsaadesi dışında, motopomplarla ve su kabartma yapıları ile su alarak arazilerini sulamaktadırlar. Bu durum, arazilerin çöküşünün olup olmadığını ve ayrıca bazı bulaşıcı hastalıkların oluşması ve yayılması açısından bir tehlike teşkil etmektedir. Pompa istasyonları arasındaki su seviyesi farklılıkları da kontrolsüz sulamaların yapıldığını desteklemektedir” [72].

Konya Su ve Kanalizasyon İdaresi (KOSKİ) tarafından, Konya kenti atıksularının artırılması için atıksu arıtma tesisı kurulmuş ve atıksular artırıldıktan sonra DSİ kanalına verilmeye devam edilmektedir. Yapılan analizlerden de görüleceği üzere, KOSKİ Atıksu arıtma tesisinin kanala bağlantı noktasından Tuz Göllü’ne deşarj noktasına kadar kirlilik seyrelerek devam etmektedir.

“Konya havzasında muhtelif depolama tesislerinin teknik ve ekonomik yapılırlıklarını ortaya konulması Konya-Cumra Projesi III. Merhale kapsamında arazilerin sulanması, sulamaya tahsis edilen sulardan kısmen enerji üretilmesi, Konya-Cumra Projesi I.

“Söz konusu raporda; proje sahası sulama ve içme suyu temini, enerji üretimi, taşın kontrolü yanında Tuz Gölü ve çevresinin korunması, su kalitesinin artırılması amaçlarına hizmet edecek tarzda incelemler de yapılmıştır. Bu bağlama halen Tuz Gölü’ne verilmekte olan Konya kenti kanalizasyon suları için gölün kirliliğini artırmıştından dolayı başka alıcı ortamlar araştırılmış, bu amaçla Sakarya havzasına derivasyon konusu da incelenmiştir. Ancak Sakarya havzasına derivasyonun enerji üretim tesislerinde meydana getireceği etkiler ve ilave 61 km uzunluğunda derivasyon kanalı ile 13 500 kW kurulu gücünde pompa istasyonunun inşa edilecek olması bu alternatif uygun kılınamamıştır” [75].

“Raporda Konya kentine ait 2030 yılı itibariyle yıllık ortalama 175 hm³ atık suyun artırılduktan sonra tekrar sulama sahalarına verilmesi dolayısıyla mansaptaca çok az miktarda kirli suyun Tuz Gölü’ne yönlendirilmesi önerilmiştir” [74].

“Tuz Gölü ile ilgili olarak 2003 yılında TBMM Tuz Gölü Meclis Araştırma Komisyonu tarafından hazırlanan raporda, gölün yoğun bir kirlilik ile karşı karşıya olduğunu hususunun gerek geçmişte yapılan araştırmalardan ve gerekse komisyonun yaptığı çalışmalarından kesin olarak anlaşıldığı ifade edilerek, kirliliğin bertaraf edilmesi için alınması gereken önlemlerin kalkışı olması gerektiğini vurgulanmıştır. Kısa, orta ve uzun vadede yapılması gereken faaliyetlerin belirlendiği raporda, önemli olan hususun uygulamadaki kararlılık olduğu kanaati belirtilmiş ve böylesine ulusal bir konuda gerekten etkin önlemlerin alınmaması ve yeterli kaynak aktarımamasının çalışmaların hedefine ulaşması engelleyeceği hususu ifade edilmiştir” [76].

2.6. Konya Bölgesi Arıtıma Tesisleri

Konya Atıksu Arıtıma Tesisı

Konya Atıksu arıtıma tesisinin birinci kademesi 200.000 m³ gün debi ve 1.000.000 eş değer nüfusa göre tasarlanmıştır. Tesis karbon giderimi ve kısmi azot giderimine göre ileri biyolojik arıtıma metoduna göre dizayn edilmiştir. Çıkış suları UV dezenfeksiyon sisteminden geçilerek deşarj edilmektedir.

“Konya AAT projesi ile Konya kenti atıksularının insan ve çevre sağlığına uygun ve verimli arıtılması dışarı edilecek arıtmış su ve stabilize edilecek arıtma çamura ile güvenilir çevre koşullarının sağlanması amaçlanmaktadır” [77].

Projenin Faydaları;
-Çıkış suyunun dışarı edildiği Keçili kanalı ile bu kanalın 122 km sonra ulaştığı Tuz Gölü ve çevresinden insan ve çevre sağlığı şartlarının iyileşmesinde önemli katkılar sağlayacaktır.
-Yıllık en az 50 milyon m³ sulama suyu üretecektir.
-Tesisten çıkacak stabilize olmuş çamura tarımsal gübre ve toprak islahı amacıyla kullanılacaktır.

Tesis aşağıdaki ünitelerden oluşmaktadır:

Mekanik Ön Arıtma Üniteleri

- Atıksu giriş yapısı, kaba izgara, giriş pompa istasyonu
- Kaba ve ince izgaralar
- Havadanırmalı kum ve yağ tutucu
- Ön çökeltme havuzları

Biyolojik Arıtma Üniteleri

- Havadanırmalı havuzları
- Son çökeltme havuzları

Çamur Arıtımı ve Enerji Kazanımı

- Çamur yoğunlaştırma havuzları
Anaerobik çamur çürütme tankları
Biyogaz depolama tankları
İşte merkez ve enerji kazanım ünitesi
Çamur susuzlaştırma tesisı

Dezenfeksiyon
Açık kanal UV dezenfeksiyon sistemi

Konya Organize Sanayi Bölgesi Atık Su Tesis Bilgileri
Konya Organize Sanayi Bölgesine ait Atıksu Artıma tesis; Temmuz 2010 tarihinde 7.000 m³/gün kapasiteli olarak devreye alınmış olup sayıları her geçen gün artan ve şuan aktif olan yaklaşık 420 firmaya hizmet vermektedir. Atıksu Artıma Tesisisi fiziksel, kimyasal, biyolojik ve ileri artırma sistemleri üniteleri ile çamur susuzlaştırma ünitelerinden oluşmaktadır. Burada artırılan sular Su Kirliliği Kontrolü Yönetmeliği Tablo19’a uygun olarak Tümosan Kanalına deşarj edilmektedir.
Fiziksel Artıma Ünitesi aşağıda verilen birimlerden oluşmaktadır.
 • Otomatik Temizlemeli Kaba İzgara (20 mm aralıklı)
 • Otomatik Temizlemeli İnce İzgara (3 mm aralıklı)
 • Otomatik temizlemeli ince / Kalın İzgara(by-Pass hattı)
 • Havalandırmalı Kum-Yağ Tutucu
 • Debi Ölçümü
 • Dengeleme Havuzu

Mevcut Terfi Havuzundan terfi edilen atıksu, izgara kanalına basılarak kaba ve ince ızgaralardan geçirilmektedir. Izgaralarda tutulan katı maddeler konveyör vasıtasıyla taşınarak atık konteynerinde toplanmaktadır. İnce Izgaradan geçen atıksular Kum-Yağ Tutucu Havuzuna alınmakta, burada atıksu içinde bulunan yağ-gres gibi hafif maddeler

Kimyasal Artırmı Ünitesi aşağıda verilen birimlerden oluşmaktadır.

1. Hızlı Karıştırma (Koagülasyon) Havuzları
2. Yavaş Karıştırma (Flokülasyon) Havuzları
3. Kimyasal Çöktürme Havuzu

Biyolojik Artırmı Ünitesi aşağıda verilen birimlerden oluşmaktadır.
Anaerobik/Selektör Havuzu
Dağıtım Yapısı
Havalandırma Havuzları

Biyolojik Çöktürme Havuzları

Tablo 2.9. Konya OSB Çıkış Suyu Analiz Sonuçları [78]

<table>
<thead>
<tr>
<th>Parametreler</th>
<th>Birim</th>
<th>Analiz Sonuçları</th>
<th>TABLO:19 SINIR DEĞERLERİ Kompozit Numune 24 Saatlik</th>
<th>Metot</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>6,70</td>
<td>6-9</td>
<td>SM 4500-H⁺ B</td>
</tr>
<tr>
<td>Kimyasal Oksijen İhtiyacı (KOİ)</td>
<td>mg/L</td>
<td>44,8</td>
<td>300</td>
<td>SM 5220 C</td>
</tr>
<tr>
<td>Askıda Kati Madde (AKM)</td>
<td>mg/L</td>
<td>34</td>
<td>100</td>
<td>SM 2540 D</td>
</tr>
<tr>
<td>Yağ-Gres</td>
<td>mg/L</td>
<td><10</td>
<td>10</td>
<td>SM 5520 D</td>
</tr>
<tr>
<td>Toplam Fosfor (P)</td>
<td>mg/L</td>
<td>0,8</td>
<td>1</td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Toplam Krom (Cr)</td>
<td>mg/L</td>
<td>0,05</td>
<td>1</td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Kurşun (Pb)</td>
<td>mg/L</td>
<td>0,01</td>
<td>1</td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Cıva (Hg)</td>
<td>mg/L</td>
<td><0,0025</td>
<td>0,05</td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Kadmiyum (Cd)</td>
<td>mg/L</td>
<td>0,02</td>
<td>-</td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Demir (Fe)</td>
<td>mg/L</td>
<td>0,2</td>
<td>-</td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Bakır (Cu)</td>
<td>mg/L</td>
<td><0,0054</td>
<td>-</td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Çinko (Zn)</td>
<td>mg/L</td>
<td>0,12</td>
<td>-</td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Toplam Siyanür (CN)⁺</td>
<td>mg/L</td>
<td><0,005</td>
<td>0,5</td>
<td>SM 4500 C</td>
</tr>
<tr>
<td>Florür (F⁻)</td>
<td>mg/L</td>
<td>0,03</td>
<td>-</td>
<td>SM 4110 B</td>
</tr>
<tr>
<td>Sulfat (SO₄)</td>
<td>mg/L</td>
<td>304,6</td>
<td>1500</td>
<td>SM 4110 B</td>
</tr>
<tr>
<td>Toplam Kjeldahl Azotu⁺</td>
<td>mg/L</td>
<td>1,1</td>
<td>15</td>
<td>TS 7924 EN 2566-3 :1997</td>
</tr>
<tr>
<td>Renk</td>
<td>Pt-Co</td>
<td>50,1</td>
<td>260</td>
<td>SM 2120 C</td>
</tr>
</tbody>
</table>

OSB topraklarının kirlilik yükü ile ilgili herhangi bir çalışma yapılmamış olup, bölgede faaliyet gösteren tesislerden kaynaklanan atıkların (Tehlikeli ve Özel İşleme Tabi Atıklar vb) gelişigüzel atıtlaması için denetimler yapılmakta ve kontrol altında lisanslı firmalara verilmesi sağlanmaktadır. OSB’de yapılan analizlere ait parametre ve metod listesi Tablo 2.10’da verilmiştir.
Tablo 2.10. OSB’de Yapılan Analizlere Ait Parametre ve Metod Listesi

<table>
<thead>
<tr>
<th>Parametreler</th>
<th>Ölçüm Yapılan Cihaz</th>
<th>Metot</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>MULTI ÇOKLU</td>
<td>SM 4500-H⁺ B</td>
</tr>
<tr>
<td>Sıcaklık</td>
<td>PARAMETRE ÖLÇER</td>
<td>SM 2550 B</td>
</tr>
<tr>
<td>Toplam Krom</td>
<td></td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Kurşun</td>
<td></td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Arsenik</td>
<td></td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Kadmiumyum</td>
<td></td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Bakır</td>
<td></td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Nikel</td>
<td></td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Kalay</td>
<td></td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Gümüş</td>
<td></td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Çinko</td>
<td></td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Civa</td>
<td></td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Klorür</td>
<td></td>
<td>SM 4110 B</td>
</tr>
<tr>
<td>Sülфat</td>
<td></td>
<td>SM 4110 B</td>
</tr>
<tr>
<td>Fenol</td>
<td></td>
<td>SM 4500 Norg B</td>
</tr>
</tbody>
</table>

Çumra Şeker Fabrikasına Ait AAT Özellikleri

“Konya Çumra Şeker fabrikası faaliyetleri sonucu oluşan atık sular 250.000 m³ su alma kapasitesine sahip olan lagünler tarafından toplanıp, bir nevi dengeleme havuzu olarak kullanılmakla beraber, aynı zamanda da AAT’ne olabilecek aşırı yüklenmeyi önlemek ve AAT’nin randimanlı bir şekilde çalıştırılabilmesi amacıyla kullanılmaktadır. Bu lagünlerde biriken atıksular detayları aşağıda verilen atıksu artıma tesisinin kapasitesi de dikkate almak, AAT’ne alınmaktadır” [79].

Ağırlıklı olarak Şeker Fabrikasından kaynaklanan atıksuların artırılması amacıyla kurulan atıksu artırma tesi; 2 adet 150 m³/h.adet ve 10.000 mg/l KİO ye göre tasarlanmış anaerobik artırma sistemi ve bunun çıkışında 2 reaktörden gelen sular ve daha az kirli suların birleştiği 500 m³/h lik aerobik (denitrifikasyon, nitrifikasyon azot giderimi için) sistem bulunmaktadır.

Mevcutta tesislerden kaynaklanan ve lagünlerde bekletilip dengelenerek AAT’ne alınan atıksular; 120 m³/h pancar yıkama suyu, 50-70 m³/h diğer tesislerden gelen çok kirli sular (5000-8000 mg/l KOİ), 100-150 m³/h diğer tesislerden gelen az kirli sular, (500-1000 KOİ) olarak özetlenmektedir.

Konya Çumra şeker fabrikası atıksu artırma tesisine ait iş akım şeması Şekil 2.2 de verilmiştir.
Şekil 2.2. Mevcut AAT İş Akım Şeması
Söz konusu atıksu arıtma tesisinden; çevre izni aşamasında alınan giriş ve çıkış numunelerine ait analiz raporları aşağıda sunulmuştur. Analiz sonuçlarını tablo halinde özetleyecek olursak; atıksu arıtma tesisinin KOİ (Kimyasal Oksijen İhtiyacı) giderim verimi %94, AKM (Askıda Katı Madde) giderim verimi %88’dir.

Tablo 2.11. Mevcut AAT Çıkış Suyu Analiz Sonuçları ve Arıtma Verimi

<table>
<thead>
<tr>
<th>AAT GİRİŞ NUMUNESİ</th>
<th>Analiz Sonucu (mg/l)</th>
<th>AAT ÇIKIŞ NUMUNESİ</th>
<th>Analiz Sonucu (mg/l)</th>
<th>Arıtma Verimi</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALİZ DEĞERLERİ</td>
<td>KOI</td>
<td>7318</td>
<td>ANALIZ DEĞERLERİ</td>
<td>KOI</td>
</tr>
<tr>
<td></td>
<td>AKM</td>
<td>219</td>
<td></td>
<td>AKM</td>
</tr>
</tbody>
</table>

Konya Çumra şeker fabrikası atıksu arıtma tesiş Akış Diyagramı ve Yerleşim Planı Şekil 2.3 de verilmiştir.
Şekil 2.3. Mevcut Atıksu Artıma Tesisi Akış Diyagramı ve Yerleşim Planı
2.7. Konu İle İlgili Daha Önce Yapılmış Çalışmalar

Yıldız (2004)’de yapılmış olduğu, ‘Konya Ana Tahliye Kanalında Ağır Metal Kirliliğinin ICP-AES Tekniği ile İncelenmesi’ çalışmasına; atıksu, sediment ve tuz numuneleri üzerine yapılan analizler sonucunda, Fe, Cr, V, B, Li, Ni’in atıksularda yüzeySEL sular için öngörülen kriterlerin üzerinde çıktığını belirtmiştir. Tahliye kanalının herhangi bir arıtma tabi tutulmadan Tuz gölune döküldüğünü ve kanalın sularının sulama suyu olarak kullanılabileceğini bildirmiştir. Analiz sonuçlarını yüzeySEL su kriterleriyle kıyaslarken uzun vadede kirilenmenin tehlikeli boyutlara ulaşmaması için Konya Atıksu Arıtma Tesisinin en kısa zamanda yapılması gerektiğiğini belirtmiştir [4].

Büyük Yıldız (1997)’de “Kum ve Çakıl Filtre modelleri ile Konya ana tahliye kanal sularının artılması konusunda çalışmıştır. Bu çalışmada; çeşitli filtre yatağı malzemelerinden oluşan üç ayrı filtre kolonu teşkil ederek, bu filtrelerden kum filtresi 0,1m/h, kum+çakıl filtresi 0,3m/h, çakıl filtresi 0,5m/h hızında çalıştırılmıştır. Giriş suyu ve her bir filtre kolonunun çıkış sularında haftada üç kez olmak üzere biyokimyasal oksijen, kimyasal oksijen ihtiyaci, çözünmüş oksijen, amonyak azotu, nitrit azotu, nitrat azotu, pH ve bulanıklık ile askıdaki katı madde analizlerini yapmıştır. Deney sonunda; Konya Ana Tahliye Kanalı suları alıcı ortam ve Tuz Gölü’ne dökülmeden önce filtrasyon işlemine tabi tutulduğunda su kalitesinde meydana gelen iyileşme, huzla kirilenen ve çeşitli açılardan bir tehdit unsuru haline gelen Tuz Gölü’nün kirilenme oranını da kirlilik giderimi açısından en uygun filtrerin kum filtresi olduğunu tespit etmiştir” [81].

Aydın ve ark. (2002)’de yapmış olduğu, ‘‘Konya ana tahliye kanalında su ve sedimette organoklorlu pestisitler (OCPs) çalışmasıında; Konya ana tahliye kanalı boyunca belirlenen 6 farklı noktada alınan su ve sedimet numunelerinden tarımsal faaliyetler esnasında siklikla kullanılan lindan, heptachlär, aldrin, o,p.-DDE, diëldin; p.p.-DDD, p,p-DDT, metoxychlor ve minex gibi organoklorlu pestisitleri araştırılmıştır. Yapılan analizler sonucunda; Pestisitlerin kullanımı esnasında kalıcı etkinliği fazla ve besinlerde birikme özelliği fazla olan pestisitlerin yerine kısa sürede ayrılrabilen ve kalıcı özelliklerini az olan pestisitlerin kullanılması, geniş spektrumu ilaclar yerine problemi çözecek, seçici ilaçların kullanılmasını gerektirmiştir’’ [82].

Karataş (2004)’de ‘‘Konya Ana Tahliye kanalı ile sulanan arazilerdeki toprak ve bitki ağır metal birikmesinin tespiti amacı ile yaptığı araştırmada; ağır metallerin 1 mg/L’den düşük konsantrasyonda olduğunu bulmuştur. Araştırma sonunda, topraktaki ağır metal konsantrasyonu kanal suyuna göre daha fazla olduğu, buğday bitkisindeki ağır metal konsantrasyonu ise zehir etkisi yapacak seviyeye ulaşmadığını tespit etmiştir. Uzun süren kanalizasyon suyu uygulamaları sonucu toprak ve bitkide metal artışına neden olacağını ve zehir etkisi yapacak seviyeye ulaşmadığını belirtmiştir” [1].
2.8. Konya Ana Tahliye Kanalına Atıksu Veren Kuruluşlar
OSB’lerden yıllık 97.287.000 m³ atıksu oluşmaktadır. Bu atıksuların %75'i artırılmaktadır. OSB’lerde atıksu kirliliği fabrikalarda çalışan personelin kullanılmıyla (banyo, tuvalet, mutfak) ortaya çıkan ve fazla miktarda organik madde (C, N, P) içeren evsel atıksular ile fabrikalardaki prosese bağlı olarak (tekstil, gıda, metal) değişik miktar ve özellikteki (ağır metaller, yağ-gres, evsel atıksulara göre yüksek KOİ) endüstriyel atıksularдан oluşmaktadır.

“Pek çok değişik sektörü barındıran organize sanayi bölgelerinden çıkan atıksular verildikleri dere, nehir vb. gibi alıcı ortamları kısa sürede kirletmeye ve bu suların geçtiği yerlerdeki tarım alanlarının zarar görmesine neden olmaktadır. Bu nedenle organize sanayi bölgelerinde yapılacak araştırmanın ardından sektör türüne göre ön arıtma ve nihai ortak arıtma ile bu zararların önlenmesi mümkündür” [83].

“Konya Sanayi Odası internet sitesinde nace kodlarına göre faaliyet gösteren özel küçük ve orta ölçekli sanayi kuruluşlarının sektörlerle göre adet olarak dağılımı şöyledir. Madencilik sektörüne ait 84 adet firma, kümes hayvanları yetiştiriciliği 63 adet firma, gıda firmaları 920 (un, süt, yoğurt, makarna, bakliyat vs.), hayvan yemi üreticisi 135 adet firma, tekstil üzerine faaliyet gösteren 470 firma, ahşap ve ağaç işleri kolunda 100 firma, kaşık ve selüloz üretiminde faaliyet gösteren 125 firma, ambalaj ve paketleme üzerine 57, kömür ürünleri 35 firma, petrol ürünleri ve maden yağlar üzerine faaliyet gösteren 35 firma, sanayii gazları üreten 3 firma, gübre üreten 3 firma, kauçuk ve plastik sanayii 117 adet firma, zirai ilaç üretimi yapan 3 firma; boya, vernik üzerine 5 firma, kimyevi madde üreticileri 12 firma, cam üreteç ve yapan 10 firma; çimento, hazır beton, mermer sanayii 80 firma; demir çelik, metal sanayi 360 firma, otomotiv yedek parça ve makine sektöründe 567 firma, geri dönüşüm firmaları 75 adet, inşaat malzemeleri üretimi 39 firma bulunmaktadır” [84].

“Konya Organize Sanayi Bölgesi Müdürlüğünü verilerine göre Konya Sanayi Odası kayıtlı olup organize sanayi bölgesi içinde yer alan firmalar şöyledir; ambalaj sanayi 20 adet, boya sanayi 4 adet, dehisren makinaları üzerine 17 adet, diğer kuruluşlar 21 adet, dorse ve damper sanayi 14 adet, döküm sanayi 74 adet, geri dönüşüm 5, gıda 38, enerji güneş sistemleri 3 adet, hidrolik 17 adet, ısıtma ve soğutma sistemleri 9 adet, inşaat 28 adet, kağıt 5, kauçuk ve lastik 8, kimya 15, kozmetik 4, madeni yağ 3, makine 61, metal 40, mobilya
ve ahşap ürünleri 18, otomotiv yedek ve ahşap ürün 18, plastik 34, tarım makinaları ve ekipmanları 47, tekstil 8, yem ve tohumçuluk 8” [78].
3. BÖLÜM

MATERİAL VE METOD

3.1. Konya Ana Tahliye Kanalının Yeri ve Bölümleri

“Konya Ovası Ana Tahliye Kanalı inşaatına 1969 yılında başlanılmış ve her biri 2640 HP kurulu güçte üç pompa istasyonu, birinci pompadan itibaren Tuz Gölü‘ne kadar 25m³/s kapasiteli 122,624 km uzunluftaki ana tahliye kanalı, Aslım-Keçeli, Arapçayırı ve Alakova kolları 1974 yılında işletmeye açılmıştır. Daha sonra Alemdar-Sakyatan ve Yarma-İsmil kollarının da tamamlanmasıyla toplayıcı ana tahliye kanalı uzunluğu 137 km‘ye ulaşmıştır” [85].

“Ana tahliye kanalının, Konya‘ dan Tuz Gölüne kadar uzunluğu 122 km dir. Kanal boyunca 3 adet (Her birinin terfi yüksekliği 6 m) terfi istasyonu bulunmaktadır” [80].

Terfi Kanalı

“Terfi kanalı Karakaya köyünün takriben 5 km kuzey-batısında 1 numaralı pompa istasyonundan tutup tüneline kadar 22,3 km uzunluğundadır” [80].

Tünel

“Üç numaralı pompa istasyonunun 3,2 km mansabında Tutupbeli tüneli vardır. Tünel 3507 m uzunluğunda olup, kesiti at naktı şeklindedir” [80].

Mansab Kanalı

“Tutupbeli Tüneli‘nden Tuz Gölü‘ne kadar 96+571 km uzunluğunda toprak kanalıdır. Bu kanal üzerinde gerekiğinde, Bolluk ve Tersakan gollerine su verme amacı ile her biri 500L/s kapasiteli iki adet priz vardır” [81].
3.2. Numunelerin alınması ve analiz teknikleri
Çalışmada kullandığımız atık su numuneleri; ana tahliye kanalının başlangıcı olan terfi merkezi, P1 pompa, P2 pompa, P3 pompa, P4 pompa, P5 pompa istasyonları ve Tuz gölü girişi olmak üzere 7 noktadan alınmıştır. Numune alınan ölçüm noktalarının koordinatları Magellan Explorist 710 GPS cihazı ile belirlenmiş olup koordinatlar aşağıda verilmiştir. Söz konusu numune alma noktalarını ve KOSKİ Atıksu Aritma Tesisi ile Tuz Gölü’ne kadar olan hattı gösteren uydı fotoğrafları Resim 3.1. ve Resim 3.2.’de verilmiştir.

Resim 3.1. KOSKİ Atıksu Aritma Tesisi ile Tuz Gölü arası genel görünüm
Numunelerin analizinde kullanılan standartlar EPA 200.7 (Eddüktif Eşleşmiş Plazma Atomik Emisyon Spekrometrisi İle Sular ve Atlıklardaki Metallerin ve İz Elementlerin Saptanması-Epa 200.7 Standardı) dir [86].

Yapmış olduğumuz çalışma kapsamında numunelerin alınmasında kullanılan parametre ve metodlar aşağıda Tablo 3.1 'de verilmiştir.

Resim 3.2. Numune alma noktaları uydu görüntüsü
Tablo 3.1. Numunelerin alınmasında kullanılan parametre ve metod

<table>
<thead>
<tr>
<th>PARAMETRE</th>
<th>METOD</th>
<th>STANDART</th>
<th>CİHAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>Elektrometrik Metod</td>
<td>SM 4500-B</td>
<td>WTW</td>
</tr>
<tr>
<td>İletkenlik</td>
<td>Laboratuvar Metod</td>
<td>SM 2510-B</td>
<td>WTW</td>
</tr>
<tr>
<td>Ağır Metaller</td>
<td>ICP-OES Metodu</td>
<td>EPA 200.7</td>
<td>Thermo ICP-OES</td>
</tr>
</tbody>
</table>

Bu standart, alüminyum, antimon, arsenik, baryum, berilyum, bor, kadmiyum, kalsiyum, seryum, krom, kobalt, bakır, demir, kurşun, lityum, magnezyum, mangan, çiva, molibden, nikel, fosfor, potasyum, selenyum, silikon, gümüş, sodyum, stronsiyum, kalay, titanyum, vanadyum, çinko elementlerinin tayinini kapsamaktadır.

Standart ilavesiyle kalibrasyon

Tayin edilecek numune içine, en az cihazın tayin sınırının 10 katı olacak şekilde (en fazla 100 katı) standart ilave edilmesi geri kazanma veriminin %90-%110 veya numuneye ait matriks kabul edilen kontrol sınırları içinde olması için gereklidir. Aksi takdirde matriks etkisinden şüphelenilecektir. Analizde standart ilave etme işleminin kullanılması bu etkiye genellikle azaltmaktadır. Analizler yapılırken hazırlanan standartda kullanılan dalga boyları Tablo 3.2. de verilmiştir.
Tablo 3.2. Dalga Boyları, Tahmini Alet Tarama Limitleri ve Önerilen Kalibrasyon

<table>
<thead>
<tr>
<th>Analit</th>
<th>Dalga Boyu(^a) (nm)</th>
<th>Tahmini Tarama Limiti(^b) (μg/L)</th>
<th>Kalibrasyon (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alüminyum</td>
<td>308.215</td>
<td>45</td>
<td>10</td>
</tr>
<tr>
<td>Antimon</td>
<td>206.833</td>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td>Arsenik</td>
<td>193.759</td>
<td>53</td>
<td>10</td>
</tr>
<tr>
<td>Baryum</td>
<td>493.409</td>
<td>2,3</td>
<td>1</td>
</tr>
<tr>
<td>Berilyum</td>
<td>313.042</td>
<td>0,27</td>
<td>1</td>
</tr>
<tr>
<td>Bor</td>
<td>249.678</td>
<td>5,7</td>
<td>1</td>
</tr>
<tr>
<td>Kadmiyum</td>
<td>226.502</td>
<td>3,4</td>
<td>2</td>
</tr>
<tr>
<td>Kalsiyum</td>
<td>315.887</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Seryum</td>
<td>413.765</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>Krom</td>
<td>205.552</td>
<td>6,1</td>
<td>5</td>
</tr>
<tr>
<td>Kobalt</td>
<td>228.616</td>
<td>7,0</td>
<td>2</td>
</tr>
<tr>
<td>Bakır</td>
<td>324.754</td>
<td>5,4</td>
<td>2</td>
</tr>
<tr>
<td>Demir</td>
<td>259.940</td>
<td>6,2</td>
<td>10</td>
</tr>
<tr>
<td>Kuşuncu</td>
<td>220.353</td>
<td>42</td>
<td>10</td>
</tr>
<tr>
<td>Lityum</td>
<td>670.784</td>
<td>3,7</td>
<td>5</td>
</tr>
<tr>
<td>Mağnezyum</td>
<td>279.079</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Manganez</td>
<td>257.610</td>
<td>1,4</td>
<td>2</td>
</tr>
<tr>
<td>Civa</td>
<td>194.227</td>
<td>2,5</td>
<td>2</td>
</tr>
<tr>
<td>Molibden</td>
<td>203.844</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Nikel</td>
<td>231.604</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Fosfor</td>
<td>214.914</td>
<td>76</td>
<td>10</td>
</tr>
<tr>
<td>Potasyum</td>
<td>766.491</td>
<td>700</td>
<td>20</td>
</tr>
<tr>
<td>Selenyum</td>
<td>196.090</td>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td>Silis(SiO(_2))</td>
<td>251.611</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>Gümüşş</td>
<td>328.068</td>
<td>7,0</td>
<td>0,5</td>
</tr>
<tr>
<td>Sodyum</td>
<td>588.995</td>
<td>29</td>
<td>10</td>
</tr>
<tr>
<td>Stronsiyum</td>
<td>421.552</td>
<td>0,77</td>
<td>1</td>
</tr>
<tr>
<td>Talyum</td>
<td>190.864</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>Klay</td>
<td>189.980</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>Titanyum</td>
<td>334.941</td>
<td>3,8</td>
<td>10</td>
</tr>
<tr>
<td>Vanadyum</td>
<td>292.402</td>
<td>7,5</td>
<td>2</td>
</tr>
<tr>
<td>Çinuko</td>
<td>213.856</td>
<td>1,8</td>
<td>5</td>
</tr>
</tbody>
</table>

(a) Listelenen dalga boyları ve duyarlılıkları bütünüyle kabul edilebilir olduklarından önerilir. Diğer dalga boyları, eğer ihtiyaç duyulan duyarlılıkları sağlayabiliyorsa ve spektral girişim için aynı doğru tekniklerle uygulanırsa, bu önerilen dalga boylarının...
yerine kullanılabilir.
(b) Bu tahmin edilen 3-sigma alet tarama limitleri, sadece aletse limitlere bir kılavuz olarak saptandı. Metod tarama limitleri, örneklerde göre görecelidir ve örnek matriks değişimleriyle aynı şekilde değişebilir.

Tablo 3.3. 100 Mg/L Seviyesindeki Girişkenlerden Kaynaklanan Çevrimiçi Metod Elementler Arası Spektral Girişimleri

<table>
<thead>
<tr>
<th>Analit</th>
<th>Dalga Boyu (nm)</th>
<th>Girişken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>328.068</td>
<td>Ce, Ti, Mn</td>
</tr>
<tr>
<td>Al</td>
<td>308.215</td>
<td>V, Mo, Ce, Mn</td>
</tr>
<tr>
<td>As</td>
<td>193.759</td>
<td>V, Al, Co, Fe, Ni</td>
</tr>
<tr>
<td>B</td>
<td>249.678</td>
<td>None</td>
</tr>
<tr>
<td>Ba</td>
<td>493.409</td>
<td>None</td>
</tr>
<tr>
<td>Be</td>
<td>313.042</td>
<td>V, Ce</td>
</tr>
<tr>
<td>Ca</td>
<td>315.887</td>
<td>Co, Mo, Ce</td>
</tr>
<tr>
<td>Cd</td>
<td>226.502</td>
<td>Ni, Ti, Fe, Ce</td>
</tr>
<tr>
<td>Ce</td>
<td>413.765</td>
<td>None</td>
</tr>
<tr>
<td>Co</td>
<td>228.616</td>
<td>Ti, Ba, Cd, Ni, Cr, Mo, Ce</td>
</tr>
<tr>
<td>Cr</td>
<td>205.552</td>
<td>Be, Mo, Ni</td>
</tr>
<tr>
<td>Cu</td>
<td>324.754</td>
<td>Mo, Ti</td>
</tr>
<tr>
<td>Fe</td>
<td>259.940</td>
<td>None</td>
</tr>
<tr>
<td>Hg</td>
<td>194.227</td>
<td>V, Mo</td>
</tr>
<tr>
<td>K</td>
<td>766.491</td>
<td>None</td>
</tr>
<tr>
<td>Li</td>
<td>670.784</td>
<td>None</td>
</tr>
<tr>
<td>Mg</td>
<td>279.079</td>
<td>Ce</td>
</tr>
<tr>
<td>Mn</td>
<td>257.610</td>
<td>Ce</td>
</tr>
<tr>
<td>Mo</td>
<td>203.844</td>
<td>Ce</td>
</tr>
<tr>
<td>Na</td>
<td>588.995</td>
<td>None</td>
</tr>
<tr>
<td>Ni</td>
<td>231.604</td>
<td>Co, Ti</td>
</tr>
<tr>
<td>P</td>
<td>214.604</td>
<td>Cu, Mo</td>
</tr>
<tr>
<td>Pb</td>
<td>220.353</td>
<td>Co, Al, Ce, Cu, Ni, Ti, Fe</td>
</tr>
<tr>
<td>Sb</td>
<td>206.833</td>
<td>Cr, Mo, Sn, Ti, Ce, Fe</td>
</tr>
<tr>
<td>Se</td>
<td>196.099</td>
<td>Fe</td>
</tr>
<tr>
<td>SiO₂</td>
<td>251.611</td>
<td>None</td>
</tr>
<tr>
<td>Sn</td>
<td>189.980</td>
<td>Mo, Ti, Fe, Mn, Si</td>
</tr>
<tr>
<td>Sr</td>
<td>421.552</td>
<td>None</td>
</tr>
<tr>
<td>Ti</td>
<td>190.864</td>
<td>Ti, Mo, Co, Ce, Al, V, Mn</td>
</tr>
<tr>
<td>Ti</td>
<td>334.941</td>
<td>None</td>
</tr>
<tr>
<td>V</td>
<td>292.402</td>
<td>Mo, Ti, Cr, Fe, Ce</td>
</tr>
<tr>
<td>Zn</td>
<td>213.856</td>
<td>Ni, Cu, Fe</td>
</tr>
</tbody>
</table>
Çalışmada kullanılan ekipman ve cihazlar

1. ICP-OES (Tam Otomatik, Autosampler’a sahip, Bilgisayar Kontrollü ITEVA Software programı ile çalışan, CCD Dedektörlü, Sequential Cihaz)
2. Argon Gazi (%99,99 Saflıkta)
3. Azot Gazi (%99,99 Saflıkta)
4. Atomlaştırıcıya örnekleri ve standartları göndermek için peristaltık pompa
5. Plazma Soğutucu
6. Havalandırma
7. Kompresör
8.2 – 5000 µl aralığında otomatik pipetler (uçları ile birlikte)
9. Balon joje, Beher, Saklama şişeleri, Mezür (Cam ve/veya polipropilen)
10. Su Banyosu
11. Termometre
12. Manyetik Karıştırıcılı Isıtıcı
13. Membran Süzme Sistemi (0,45 µm)
14. Santififüj

Reaktifler:
1000 ppm Tekli Standart Stok Metal Çözeltileri
Ultra Pure Saf su
HCl (%37-Ekstra Saf)
HNO₃ (%65-Ekstra Saf)
Sodyum Bor Hidrür
Potasyum İyodür
Askorbik Asit
Sodyum Hidroksit
AuCl₃ ve/veya K₂Cr₂O₇

Reaktiflerin hazırlanması

% 1,5’lik (v/v) HNO₃ Çözeltisi : % 65 ‘lik HNO₃ çözeltisinden 15 mL alır ve 1000 ml ‘ye ultra pure saf su ile tamamlanır. Yıkama çözeltisi olarak kullanılır.

% 20’lik (v/v) HNO₃ Çözeltisi : % 65 ‘lik HNO₃ çözeltisinden 200 mL alınır ve 1000 ml ‘ye ultra pure saf su ile tamamlanır. Yıkama çözeltisi olarak kullanılır.
% 5’ lik KI + Askorbik Asit: 5 gr Askorbik Asit + 5 gr KI tartılıp, 100 ml ultrapure su ile tamamlanır.

NaBH₄ (Sodyum Bor Hidür): 0,5 gr NaOH + 2 gr NaBH₄ tartılıp, 1000 ml’ ye ultrapure su ile tamamlanır.

Standart çözeltielerin hazırlanması

Numuneler laboratuvara getirildikten sonra ağır metallerin tespiti ve grafiklerin oluşturulması için aşağıdaki şekilde standartlar hazırlanarak, standart çözelti ile kalibrasyon yapılmıştır. Blank 0, Standart 5, Standart 4, Standart 3, Standart 2, Standart 1 kullanılarak lineer bir kalibrasyon eğrisi çizilip grafikler oluşturulmuştur.

Multi ara standart hazırlanmasında; ara standart ve kalibrasyon standartları ultrapure su ile veya %1,5’ lik (v/v) HNO₃ kullanılmıştır. MIX ile çalışırken cihazın yıkama suyu için %1,5’ lik (v/v) HNO₃ çözeltisi kullanılmıştır.

Kalibrasyon çözeltisinin hazırlanması;

STANDARD 5
Standart 1A,2,3,4A,4B,5’den 0,500 ml alınır ayrıca 1000μg/ml’lik Antimony standartından 0,250 ml alınarak →50 ml’ye %1,5 ’lik HNO₃ ile tamamlanır.

STANDART 4
Standart 5’den 25 ml alınarak 50 ml’ ye tamamlanır.

STANDART 3
Standart 4’den 20 ml alınarak 50 ml’ ye tamamlanır.

STANDART 2
Standart 3’den 25 ml alınarak 50 ml’ ye tamamlanır.

STANDART 1
Standart 2’den 10 ml alınarak 50 ml’ ye tamamlanır.
Tablo 3.4. Kalibrasyon Çözeltisinin Hazırlanması İçin Gereklı Dalga Boyları

<table>
<thead>
<tr>
<th>Dalga Boyu</th>
<th>Element</th>
<th>cal_1(ppm)</th>
<th>cal_2(ppm)</th>
<th>cal_3(ppm)</th>
<th>cal_4(ppm)</th>
<th>cal_5(ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>328,068</td>
<td>Ag</td>
<td>0,01</td>
<td>0,05</td>
<td>0,1</td>
<td>0,25</td>
<td>0,5</td>
</tr>
<tr>
<td>167,079</td>
<td>Al</td>
<td>0,2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>308,215</td>
<td>Al</td>
<td>0,2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>193,759</td>
<td>As</td>
<td>0,2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>249,678</td>
<td>B</td>
<td>0,02</td>
<td>0,1</td>
<td>0,2</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>455,403</td>
<td>Ba</td>
<td>0,02</td>
<td>0,1</td>
<td>0,2</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>493,409</td>
<td>Ba</td>
<td>0,02</td>
<td>0,1</td>
<td>0,2</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>313,042</td>
<td>Be</td>
<td>0,02</td>
<td>0,1</td>
<td>0,2</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>315,887</td>
<td>Ca</td>
<td>0,2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>226,502</td>
<td>Cd</td>
<td>0,04</td>
<td>0,2</td>
<td>0,4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>404,076</td>
<td>Ce</td>
<td>0,04</td>
<td>0,2</td>
<td>0,4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>456,236</td>
<td>Ce</td>
<td>0,04</td>
<td>0,2</td>
<td>0,4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>228,616</td>
<td>Co</td>
<td>0,04</td>
<td>0,2</td>
<td>0,4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>205,56</td>
<td>Cr</td>
<td>0,1</td>
<td>0,5</td>
<td>1</td>
<td>2,5</td>
<td>5</td>
</tr>
<tr>
<td>324,754</td>
<td>Cu</td>
<td>0,04</td>
<td>0,2</td>
<td>0,4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>259,94</td>
<td>Fe</td>
<td>0,2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>194,227</td>
<td>Hg</td>
<td>0,04</td>
<td>0,2</td>
<td>0,4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>766,49</td>
<td>K</td>
<td>0,4</td>
<td>2</td>
<td>4</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>670,784</td>
<td>Li</td>
<td>0,1</td>
<td>0,5</td>
<td>1</td>
<td>2,5</td>
<td>5</td>
</tr>
<tr>
<td>279,079</td>
<td>Mg</td>
<td>0,2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>257,61</td>
<td>Mn</td>
<td>0,04</td>
<td>0,2</td>
<td>0,4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>203,844</td>
<td>Mo</td>
<td>0,2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>588,995</td>
<td>Na</td>
<td>0,2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>589,592</td>
<td>Na</td>
<td>0,2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>231,604</td>
<td>Ni</td>
<td>0,04</td>
<td>0,2</td>
<td>0,4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>214,914</td>
<td>P</td>
<td>0,2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>220,353</td>
<td>Pb</td>
<td>0,2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>206,833</td>
<td>Sb</td>
<td>0,1</td>
<td>0,5</td>
<td>1</td>
<td>2,5</td>
<td>5</td>
</tr>
<tr>
<td>196,09</td>
<td>Se</td>
<td>0,1</td>
<td>0,5</td>
<td>1</td>
<td>2,5</td>
<td>5</td>
</tr>
<tr>
<td>189,989</td>
<td>Sn</td>
<td>0,08</td>
<td>0,4</td>
<td>0,8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>334,941</td>
<td>Ti</td>
<td>0,2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>190,856</td>
<td>Tl</td>
<td>0,1</td>
<td>0,5</td>
<td>1</td>
<td>2,5</td>
<td>5</td>
</tr>
<tr>
<td>292,402</td>
<td>V</td>
<td>0,04</td>
<td>0,2</td>
<td>0,4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>213,856</td>
<td>Zn</td>
<td>0,1</td>
<td>0,5</td>
<td>1</td>
<td>2,5</td>
<td>5</td>
</tr>
</tbody>
</table>
Kalite kontrol çözeltisinin hazırlanması

Ara stok çözeltisi; QCS-1’den 0,5 ml alınır 50 ml’ye %1,5 ’lik HNO₃ ile tamamlanır. Ara stok çözeltisinden 10 ml alınır 50 ml’ye %1,5’lik HNO₃ ile tamamlanır. Numunelerin hazırlanması ve muhafazası EPA Method 200.7 deki kurallar uygulanmıştır. Numune kapsları, eser elementlerin ölçümünde, yüzeydeki elementlerin çözeltiye geçmesi veya yüzey desorpsiyonu ve adsorpsiyon derişiminin azalması sebebiyle pozitif veya negatif hatalara sebep olabilir. Bu durum özellikle As, Ag, B, Sb, Se, Sn, Ti ‘de önem taşır. Numune kapsları dahiiki bütün laboratuvar cam malzemeleri kullanılmadan önce nitrik asitle (%1,5 luk) ve daha sonra iyonlarından arındırılmış su ile çalkalanmıştır. Numunenin alındığı anda veya numune alındıktan hemen sonra aşağıda belirtilen koruma ve ön işlem basamakları (süzme ve asitle koruma) uygulanmıştır.

Numunelerin analize hazırlanması şu şekilde öluşturulmuştur;

1- 1 NTU’ dan daha düşük bulanıklıkta sahip içme suyu örneklerindeki toplam geri kazanımlar analitlerin “doğrudan analizi” için, sızdırmış ve asitle korunmuş numunenin örnek hazırlama prosedürüne göre işlem görmesi sağlanmıştır. Tüm diğer su numunelerindeki toplam geri kazanımlar analitlerin belirlenmesinde veya analiz öncesinde içme sularının derişiminin artırılması için, aşağıdaki işlemler izlenmiştir.

2- İçme suları dışında bulanıklığı 1 NTU’ dan yüksek su numunelerindeki toplam geri kazanımlar analit belirlenmesinde, iyi karışımlı ve asitle korunmuş numuneden 100 ml (±1 ml) alınarak 250 ml’ lik Griffin beherine aktarılmıştır.

3- Örnek % 1’den daha fazla çözünmemiş katı içeriyorsa, 1 g’ dan daha fazla partikül madde içermeyen iyi karışımlı ve asitle korunmuş numunenin, yaklaşık olarak 10 ml’ ye kadar dikkatli bir şekilde buharlaştırılması ve daha önce belirtilen asit-karışım prosedürüne göre ekstrakte edilmiştir.

4- Ölçülmüş hacimde numune içeren behere behere 2 ml (1+1) nitrik asit ve 1 ml (1+1) hidroklorik asit eklenmiştir. Çozeltinin buharlaşması için, beher ısıtıcı üzerine yerleştirilmiştir. Isıtıcı (Hot plate), çeker ocağı içine yerleştirilip ve 85°C’den daha yüksek olmayacak sıcaklıkta buharlaşmayı sağlayacak şekilde ayarlanmıştır. Beherin ağzı saat camı ile kapatılmış ve çeker ocaq ortamından kaynaklanabilecek kirlemeleri engellemek amacıyla gerekli diğer işlemler uygulanmıştır.

57
5- Doğru istıma işlemini sağlamak amacıyla, sıcaklık kontrolünde 50 ml su içeren üstü açık Griffin beheri istiçin ortasına yerleştirilip sıcaklık 85°C’den daha düşük sıcaklıklarda kalması sağlanmıştır (Beherin üstü saat camı ile kapatıldığında, su sıcaklığı yaklaşık 95°C’ye yükselecektir).

6- 85°C’de yavaşça ısıtarak numune hacminin yaklaşık 20 ml’ye inmesi sağlanmıştır. 100 ml numunenin hızlı artan buharlaşma hızıyla yaklaşık 20 ml hacme inmesi için ortalamada 2 saat gibi bir süre beklenilmiştir (ölçek olarak 20 ml su içeren ayrı bir beher kullanılabılır).

7- Fazla buharlaşma azaltmak için beherin ağzı saat camıyla kapatılır ve numune 30 dakika boyunca yavaş bir şekilde geri dönüşüm yapılmıştır. Hafif bir kaynama söz konusu olabilir, ancak HCl-H₂O azeotropunun keybini engellemek için şiddetli kaynama önlenmedir.

8- Beherin soğuması için beklandi. Numune çözeltisi nicel olarak 50 ml balon jojeye aktarıldı, reaktif su ile hacme tamamlandi, kapatıp karıştırıldı.

9- Bir gece bekleterek çözünmemiş katların çözmesi sağlanır veya hazırlanmış örneğin bir kısmı berrak olana kadar santrifüj edildi. (Bekletme veya santrifüj sonunda numune, nebulizeri tıkayabilecek askıda katı madde içerdiği takdirde, analiz öncesi numunenin bir kısmı süzülebilir. Ayrıca, süzmeden kaynaklanabilecek olması kirlenme için önlem alınmalıdır). Numune, analize hazır hale getirilip, çeşitli matrislerin seyreltilmiş numunelerin karışılığı üzerindeki etkileri belirlenemediğinden, tüm analizler hazırlama işlemi tamamlanırken hemen sonra gerçekleştirmiştir.

Metallere olan girişimler ve giderilmeleri

Ag: Yüksek miktardaki alüminyum, permanganat, iyodat ve tungsat absorpsiyonu düşürüldü. Standardlar, numunedeği bu elementlerin konsantrasyonlarıyla eşleştirilmiştir.

Al: İyonlaşma düşük absorpsiyona neden olur ve bu yüzden kolay iyonlaştıran elementlerin varlığı absorpsiyonu arttırır. Bu etki %0.2 w/v KCl gibi iyonlaşma tamponunun numune ve standardlara eklenmesiyle giderilir. Fe ve/veya sülfürik asit absorpsiyonu düşürür, bu yüzden standardlar numunedeği konsantrasyonlarla eşleştirilmiştir.

As: Hava / asetilen alevinde çok fazla girişim vardır. Argon / hidrojen alevinde önemli negatif girişimler alüminyum, kalsiyum, krom, kobalt, bakır, demir, lityum, magnezyum, molibden, nikel, potasyum, silisyum, sodiyum, stronsiyum ve vanadyumdan gelir. Her iki
alev için standardlar numunedeki reaktifler ve önemli elementlerle eşleştirilmelidir. N₂O / asetilen alevinde fazla girişim olmaz ve bunun kullanımı çoğu elementler için tavsiye edilir. Dağıltmadan ileri gelen etkiler background düzeltmesiyle giderilir.

Cd: Yüksek miktardaki silikat kadmiyum absorpsiyonu düşürür. Standardlar numunedeki konsantrasyonla eşleştirilmelidir.

Cr: Farklı oksidasyon basamakları farklı absorpsiyonlar verir. Numune ve standardlardaki krom aynı oksidasyon basamağında olmalıdır (Cr⁶⁺ ya yükseltenmiş veya Cr³⁺ e indirgenmiş). Bazı geçiş metalleri yakıtı zengin hava / asetilen alevinde absorpsiyonu düşürür. Bu etki yakıtı az hava / asetilen alevinde (fakat hassaslık çok azalmış olur) numune ve standardlara NH₄Cl veya amonyum biflorur eklenerek veya N₂O+C₂H₂ alevi kullanılarak giderilir. İyonlaşma absorpsiyonu düşürür ve kolay iyonlaşan elementlerin varlığı absorpsiyonu artırır. Bu etki %0.1 w/v KCl gibi iyonlaşma tamponunun numune ve standardlara eklenmesiyle giderilir. Fosfat da absorpsiyonu düşürür, bunun etkisi %0.25 w/v kalsiyumun bütün çözeltilere eklenmesiyle veya N₂O / C₂H₂ alevi kullanılarak giderilmiştir.

Co: Aşırı miktardaki bazı geçiş elementleri absorpsiyonu etkiler. Standardlar, numunedeki bu elementlerle eşleştirilmelidir.

Cu: Mineral asitlerin varlığında geçiş elementlerinin aşırı miktarı absorpsiyonu düşürür. Standardlar, numunedeki bu elementlerle karşılaştırılmıştır

Fe: Perklorik asit, nitrik asit ve nikel absorpsiyonunun biraz düşmesine neden olur bu yüzden numune ve standardlarda aynı konsantrasyonda bulunmalıdır. Silisyum absorpsiyonu düşürür fakat etkisi %0.2 w/v CaCl₂ veya KCl’nün numune ve standardlara eklenmesiyle giderilir. Sıtrik asit absorpsiyonu düşürür. Bunu etkisi %0.5 v/v fosforik asitin numune ve standartlara eklenmesiyle giderilebilir. Alevin durumlarına bağlı olarak demirle ilgili birçok girişim etkisi tecrübe edilmiştir.

Hg: SnCl₂ gibi indirgeyiciler civa’yı civa (I)’e veya elementel civaya indirgerler. Bunlar civa II’den daha yüksek hassasiyet verir ve absorpsiyon artar. İndirgeyiciler varsa ya bütün çözeltilere aynı konsantrasyonda ilave edilir ya da aşırısi eklenir. Düşük konsantrasyonlardaki çalışmalar için hava / asetilen alevinde hassasiyet zayıftır. Soğuk buhar yöntemi kullanılmıştır.
K: İyonlaşma düşük absorpsiyona neden olur ve bu yüzden kolay iyonlaşan elementin varlığı absorpsiyonu arttırtır. Bu etki %0.1 w/v sodyum veya sezyum gibi iyonlaşma tamponunun numune ve standartlara eklenmesiyle giderilir. Yüksek konsantrasyonlu mineral asitler absorpsiyonu düşürür. Standartlar mineral asitleri numuneyle aynı konsantrasyona getirilmiştir.

Mn: Silisyum absorpsiyonu düşürür. %0.2 w/v CaCl₂’un numune ve standartlara ilave edilmesi etkiye azaltır; fakat standartların numunedeki silisyum konsantrasyonuyla eşleştirilmesi tercih edilir.

Na: İyonlaşma düşük absorpsiyona neden olur ve bu yüzden kolay iyonlaşan elementin varlığı absorpsiyonu arttırtır. Bu etki numune ve standartlara %0.1’lik KCl veya CsCl₂ ilave edilerek giderilebilir. Mineral asitler absorpsiyonu düşürür ve standartlar mineral asitleri numuneyeyle aynı konsantrasyonda içermelidir. Yüksek miktarlı kalsiyum 589.0 / 589.6 nm dalga boyunda kalsiyum hidroksid badının emisyonundan dolayı bozucu sinyal verir.

Ni: 232.0 nm’nin lineerliği, buna yakını 232.1 nm nikel hattı dolayısıyla nispeten düştürtür. 341.5 nm bu yüzden rutin işler için maksimum hassaslık gereklidir zamanlar sık sık kullanılır. Yüksek konsantrasyonlardaki demir absorpsiyonu artırır. Standartlar numunede kısmın konsantrasyonuyla eşleştirilmiştir.

Sb: 217.6 nm’de 1000 mg/l’den fazla Pb ve Cu bazı absorbsanslara neden olurlar, bu durumda diğer alternatif dalga boyları kullanılmalıdır. Asitler düşük absorpsiyona neden olurlar, bu yüzden standartlar numunedeki asit konsantrasyonuyla eşleştirilmiştir.

Si: İyonlaşma düşük absorpsiyona neden olur ve bu yüzden kolay iyonlaşan elementin varlığı absorpsiyonu artırır. Bu etki %0.5 w/v alkali metal klorürleri gibi iyonlaşma tamponunun eklenmesiyle giderilmiştir.

Sn: Hava / hidrojen alevi hassasiyeti artmasına rağmen, daha sıcak olan N₂O / C₂H₂ alevinden daha fazla girişim etkileri gösterir. Bunun için bu alev sulu çözeltiler dışında çoğu rutin analizlerde kullanılır. Daha düşük sıcaklıklı alev kullanıldığıında mineral asitler, amonyum iyonları, bakır, kurşun, nikel ve çinko absorpsiyonu etkiler ve bu nedenle numunede girişim yapan bu elementler standart çözelti de numune ile benzeştirilmelidir. (N₂O / C₂H₂ alevi hava / C₂H₂ alevine karşı tercih kullanmalıdır)

Se: Hava / C₂H₂ alevi bu dalga boyunda önemli miktarda ışık absorptar. Bu nedenle argon / hidrojen alevi kullanılabılır, fakat bunun düşük sıcaklığı ciddi girişim etkilerine sebep olur.
N₂O / C₂H₂ alevi oldukça düşük hassasiyet verir, fakat girişim etkilerinden uzaktır ve bunun kullanımı çoğu basit matriksler dışında hepsi için tavsiye edilir. N₂O / C₂H₂ alevi hava / C₂H₂ alevine karşı tercihen kullanılmıştır.

Zn: Yüksek miktardaki silisyum absorpsiyonu düşürür. Standartlar numunedeki bu elementlerin konsantrasyonlarıyla eşleştirilmiştir.

Numune çalışmasına başlamadan önce, en yüksek derişimdeki karışık referans standart çözeltisi, numune gibi kabul edilerek tekrar analiz edildi. Bu analizde elde edilen sonucun gerçek değeri den %15’den (veya kabul edilen kontrol sınırlarından hangisi düşüksse) daha fazla sapmaması sağlandı.

Sistem reagent blank çözeltisi ile yıkanı ve numune ile çalışmaya başlandı. Her numune alınmadan önce sistem tekrar reagent blank çözeltisi ile yıkanı. Her 10 numuneden sonra cihaz, kontrol standartı ve kalibrasyon tank çözeltisi kullanılarak kontrol edildi.

Numune kapları eser elementlerin belirlenmesinde yüzey desorpsiyonu veya sızmadan kaynaklanan kirletici Maddelerden dolayı adsorpsiyon süreci ile element derişiminin azalması ile pozitif ve negatif hatalar getirebilir. Tüm sarf malzemeler (cam, kuvars, polietilen, PTFE, FEP gibi) yeterince temizlenmelidir. Bu malzemelerin temizlenmesinde aşağıdaki basamaklar uygulanmıştır.

a) Deterjan çözeltisi ile yıkanı,

b) Çeşme suyu ile çalkalama,

c) 4 saat ya da daha fazla bir sürede % 20’lik (hacim/hacim) nitrik asit veya nitrık asit/HCl karışımı (1+2+9) karışım içinde bekletme,

d) Saf su ile yıkanı ve temiz saklama,

Hesaplama ve sonuçların gösterilmesi kısmında; bütün numune sonuçlarından reagent blank çözeltilerin sonuçları çıkarılır. Seyretleme yapılyorsa sonuçlar uygun bir faktör ile çarpılmıştır.
Sonuçlar, mg element/L numune veya µg element/L numune olarak ve üç anlamlı rakamla rapor edilmiştir.
Aşağıda Resim 3.3. ile Resim 3.7 de yaptığımız çalışmada numune aldığımız yerler gösterilmiştir.

Resim 3.3 Konya AtıkSU Kanalı Çıkışı Numune Alma Noktası
Resim 3.4 Konya Atıksu Kanalı Çıkışı

Resim 3.5 Atıksu kanal çıkışının pH ve sıcaklık ölçümü
Resim 3.6. P1 pompa istasyonu çıkışı

Resim 3.7. Kanaldan numune alma görüntüsü
4. BÖLÜM

BULGULAR

Çalışmamızın konusu olan bölgede daha önce yapılmış benzer çalışmalardan edilen sonuçlara bakacak olursak;
S. Yıldız, ‘‘2004 de yaptığı analiz sonuçlarına göre bugün için Tuz gölünden elde edilen tuzda insan sağlığı açısından tehlikeli boyutlarda ağır metal konsantrasyonları saptamamıştır. Ancak Tuz gölünün dışarıya akıtılması olmadığından, Ana tahliye kanalı vNhastası ile göle taşınan ağır metallerin göl içerisinde bulunan tuz tabakaları üzerine çokerek birikebileceğini belirtmiştir. Uzun vadede kirilenin tehlikeli boyutlara ulaşmasını önlemek amacıyla Konya atıksu arıtma tesisinin en kısa zamanda yapılması gerektiğini bildirmiştir” [4].
M. Karataş, ‘‘2004 de yaptığı analiz sonuçlarına göre ağır metallerin konsantrasyonlarını 1mg/L den düşük bulunmuştur. Tarımsal sulamanın yoğun olarak yapıldığı Mayıs-Haziran aylarında ağır metal konsantrasyonlarının diğer aylara oranla fazla olduğunu, uzun süren kanalizasyon suyu uygulamaları sonucunda toprak ve bitkide metal artışına neden olacağı bildirmiştir. Gerekli önlemlerin alınmazsa toprağın verimsizleşeceği, bu nedenle en kısa sürede atıksu arıtma tesisini yapılıarak kanal suyu sulama suyu kalitesine çıkarılabildiği son te tarımsal amaçlı kullanılması gerektiğini belirtmiştir” [1].
ÖZDEMİR (1998)’de yapmış olduğu çalışmasında, “BOİ, KOİ, toplam katı madde, organik madde TAKM ve yağ gres değerlerini standartların üzerinde, ağır metal, pH, sıcaklık ve nitrat değerlerinin ise kabul edilebilir düzeyde olduğunu ve taşıfiye tesisinin bir an önce yapılması gerektiğini vurgulamıştır” [80].
siki denetimler sonucu Konya çevresinde sayıları gün geçtikçe artan büyük çaptaki endüstriyel fabrikalarda atıkları ön arıtmadan geçirerek şubekeye vermesi göz ardı edilemeyecek faktörden olduğu düşünülmektedir. Gelişen sanayileşme ve yoğun nüfus artışi sonucu oluşan zararlı atıkların uygun artırma yöntemleri ile tekrar kullanılabılır hale gelerek geri dönüşümünün yapılabileceği çalışmamız neticesinde görülmüştür.

4.1. Ağır metal analizlerine ait bulgular

Çalışma kapsamında 7 adet ölçüm istasyonundan; İlkbahar, yaz, sonbahar, kış olmak üzere 4 mevsim alınan numunelerde 18 adet ağır metal (Ag, Al, As, Ba, Cr, Cu, Fe, K, Li, Mg, Mn, Ni, Pb, Se, Sn, Zn, B, Hg) ve 2 adet alkali metal (Na, P) parametresine bakılmıştır. Alınan her numune için mevsimlik olarak parametre değişimleri belirlenerek Şekil 4.1 ile Şekil 4.80 arasında verilmiştir.

Şekil 4.1. Gümüş parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) (mg/l)

Gümüş parametresinin değeri Terfi istasyonundan alınan numunede ilkbahar mevsiminde 0,096 mg/l çıkmıştır. 1.Pompa istasyonu ile terfi istasyonu arasındaki mesafe 30 km olarak istasyonlar arası en uzun mesafe olması nedeniyle su seyrelerek gelmektedir. Ayrıca bu

Şekil 4.2. Gümuş parametresinin mevslimle göre değişimi (yaz mevsimi) (mg/l)

Şekil 4.3. Gümüş parametresinin mevsimlere göre değişimi (sonbahar mevsimi) (mg/l)
Şekil 4.5. Alüminyum parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) (mg/l)

Şekil 4.6. Alüminyum parametresinin mevsimlere göre değişimi (yaz mevsimi) (mg/l)

Şekil 4.7. Alüminyum parametresinin mevsimler göre değişimi (sonbahar mevsimi) (mg/l)

Alüminyum parametresinin değeri Terfi istasyonunda sonbahar mevsiminde aldığımız numunede 0,3654 mg/l olmuştur. 1. Pompa’ da ise 0,0921mg/l değerine ulaşmaktadır. Sonbahar mevsiminde yağış durumuna göre seyrelme farklılık göstermekle birlikte; pompalar arasında seyrelme olmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler birbirine yakın çıkmıştır. Tuz gölünne ulaşan alüminyum ağır metalinin standartlarının çok altında 0,0269 mg/l’a kadar düştüğü görülmüştür.
Şekil 4.8. Alüminyum parametrelerinin mevsimlere göre değişimi (kış mevsimi) (mg/l)

Şekil 4.9. Arsenik parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) (mg/l)

Arsenik parametresinin değeri Terfi istasyonunda ilkbahar mevsiminde aldığımız numunede 0,0063 mg/l ve 1. Pompa’ da ise 0,0027 mg/l değerine ulaşmaktadır. Ayrıca ilkbahar mevsiminde yağışların yoğun olmasından dolayı seyrelme artmıştır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölüğe ulaşmaktadır. Dolayısıyla tuz gölüğe ulaşan alüminyum ağır metalinin numunelerdeki değeri standartların altında olup 0,0002 mg/l’e kadar düştüğü görülmüştür.
Arsenik parametresinin değeri Terfi istasyonunda yaz mevsiminde aldığımız numunede 0,0058 mg/l ve 1. Pompa’da ise 0,0022 mg/l değerine ulaşmaktadır. 2. Pompa, 3. Pompa, 4. Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölune ulaşmaktadır. Dolayısıyla tuz gölune ulaşan arsenik ağır metalinin numunelerdeki değeri standartların altında olup 0,0001 mg/l’e kadar düştüğü görülmüştür.

Şekil 4.10. Arsenik parametresinin mevsimlere göre değişimi (yaz mevsimi) (mg/l)
Şekil 4.11. Arsenik parametresinin mevsimlere göre değişimi (sonbahar mevsimi) (mg/l)

Arsenik parametresinin değeri Terfi istasyonunda sonbahar mevsiminde aldığımız numunede 0,0078 mg/l çıkmıştır. 1. Pompa’da 0,0047 mg/l değerine ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölüğe ulaşmaktadır. Bu bölgenin her mevsim sürekli yağış alan bir bölge olduğu düşünüldüğünde seyrelme devam ederek tuz gölüğe ulaşmaktadır. Tuz gölüğe ulaşan arsenik ağır metalinin numunelerdeki değeri standartların altında olup 0,0009 mg/l’e kadar düştüğü görülmüştür.
Şekil 4.13. Baryum parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) (mg/l)

Baryum parametresinin değeri Terfi istasyonunda ilkbahar mevsiminde aldığımız numunede 0,1404 mg/l çıkmıştır. 1. Pompa’dan 0,0949 mg/l değerine ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölune ulaşmaktadır. Tuz gölune ulaşan baryum ağır metalinin numunelerdeki değeri standartların altında olup 0,0214 mg/l’e kadar düştüğü görülmüştür.
BARYUM PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

Şekil 4.14. Baryum parametresinin mevsimlere göre değişimi (yaz mevsimi) (mg/l)

Baryum parametresinin değeri Terfä istasyonunda yaz mevsiminde aldığımız numunede 0,1386 mg/l çıkmıştır. 1. Pompa’da 0,0854 mg/l değerine ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölüğe ulaşmaktadır. Tuz gölüğe ulaşan baryum ağır metalinin numunelerdeki değeri standartların altında olup 0,0202 mg/l’e kadar düştüğü görülmüştür.
Baryum parametresinin değeri Terffi istasyonunda sonbahar mevsiminde aldığımız numunede 0,185 mg/l çıkmıştır. 1. Pompa’da 0,123 mg/l değere ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölünne ulaşmaktadır. Tuz gölünne ulaşan baryum ağır metalinin numunelerdeki değeri standartların altında olup 0,0421 mg/l’e kadar düştüğü görülmüştür.
BARYUM PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

Şekil 4.16. Baryum parametresinin mevsimlere göre değişimi (kış mevsimi) (mg/l)

Baryum parametresinin değeri Terfi istasyonunda kış mevsiminde aldığımız numunede 0,13 mg/l çıkmıştır. 1. Pompa’da 0,0901 mg/l değerine ulaşmaktadır. 2. Pompa, 3. Pompa, 4. Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölüne ulaşmaktadır. Tuz gölüne ulaşan baryum ağır metalinin numunelerdeki değeri standartların altında olup 0,0236 mg/l’e kadar düştüğü görülmüştür.

Şekil 4.17. Krom parametresinin mevsimlere göre değişimi (İlkbahar mevsimi) (mg/l)
Şekil 4.18. Krom parametresinin mevsimlere göre değişimi (yaz mevsimi) (mg/l)

Krom parametresinin değeri Terfi istasyonunda yaz mevsiminde aldığımız numunede 0,0402 mg/l çıkmıştır. 1.Pompa istasyonu ile terfi istasyonu arasında su kanal boyunca seyrelerken 1. Pompa’ da 0,0302 mg/l değere ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölüğe ulaşmaktadır. Tuz gölüğe ulaşan krom ağır metalinin numunelerdeki değeri standartların altında olup 0,0048 mg/l’e kadar düştüğü görülmüştür.
Şekil 4.19. Krom parametresinin mevsimlere göre değişimi (sonbahar mevsimi) (mg/l)

Krom parametresinin değeri Terfi istasyonunda sonbahar mevsiminde aldığımız numunede 0,0596 mg/l çıkmıştır. 1.Pompa istasyonu ile terfi istasyonu arasında su kanal boyunca seyrelerek 1. Pompa’da 0,0452 mg/l değerine ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölüğe ulaşmaktadır. Tuz gölüğe ulaştıran krom ağır metalinin numunelerdeki değeri standartların altında olup 0,0162 mg/l’e kadar düştüğü görülmüştür.
Şekil 4.20. Krom parametresinin mevsimlere göre değişimi (kış mevsimi) (mg/l)

Şekil 4.21. Bakır parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) (mg/l)

Bakır parametresinin değeri Terifi istasyonunda ilkbahar mevsiminde aldığımız numune de 0,0053 mg/l çıkmıştır. 1.Pompa istasyonundaki değeri 0,0142 mg/l değerine ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölüğe ulaşmaktadır. Tuz gölüğe ulaşan bakır ağır metalinin numunelerdeki değeri standartların altında olup 0,0028 mg/l’e kadar düştüğü görülmüştür.
Şekil 4.22. Bakır parametresinin mevsimlere göre değişimi (yaz mevsimi) (mg/l)

Şekil 4.23. Bakır parametresinin mevsimlere göre değişimi (sonbahar mevsimi) (mg/l)

Bakır parametresinin değeri Terfi istasyonunda sonbahar mevsiminde aldığımız numunede 0,0256 mg/l çıkmıştır. 1.Pompa istasyonu ile terfi istasyonu arasında su kanal boyunca seyrerek 1. Pompa’ da 0,0185 mg/l değerine ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölümne ulaşmaktadır. Tuz gölümne ulaşan bakır ağır metalinin numunelerdeki değeri standartların altında olup 0,0065 mg/l’e kadar düştüğü görülmüştür.

<table>
<thead>
<tr>
<th>TERFİ</th>
<th>1.POMPA</th>
<th>2.POMPA</th>
<th>3.POMPA</th>
<th>4.POMPA</th>
<th>5.POMPA</th>
<th>TUZ GÖLÜ GİRİŞİ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,0187</td>
<td>0,0125</td>
<td>0,0105</td>
<td>0,0085</td>
<td>0,0053</td>
<td>0,0028</td>
</tr>
</tbody>
</table>

Şekil 4.24. Bakır parametresinin mevsimlere göre değişimi (kış mevsimi) (mg/l)
Şekil 4.28. Demir parametresinin mevsimlere göre değişimi (kış mevsimi) (mg/l)

Şekil 4.29. Potasyum parametresinin mevsimlere göre değişimi (ilk bahar mevsimi) (mg/l)

Şekil 4.30. Potasyum parametresinin mevsimlere göre değişimi (yaz mevsimi) (mg/l)

Şekil 4.31. Potasyum parametresinin mevsimlere göre değişimi (sonbahar mevsimi) (mg/l)

Şekil 4.32. Potasyum parametresinin mevsimlere göre değişimi (kış mevsimi) (mg/l)
LİTYUM PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

Şekil 4.33. Lityum parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) (mg/l)

LİTYUM PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

Şekil 4.34. Lityum parametresinin mevsimlere göre değişimi (yaz mevsimi) (mg/l)

LITYUM PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

Şekil 4.35. Lityum parametresinin mevsimlere göre değişimi (sonbahar mevsimi) (mg/l)

LİTYUM PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

![Diagram](image)

Şekil 4.36. Lityum parametresinin mevsimlere göre değişimi (kış mevsimi) (mg/l)

Lütyum parametresinin değeri Terfi istasyonunda kış mevsiminde aldığımız numunede 0,6165 mg/l çıkmıştır. 1.Pompa istasyonu ile terfi istasyonu arasında su kanal boyunca seyrelerek 1. Pompa’da 0,1134 mg/l değerine ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölüne ulaşmaktadır. Tuz gölüne ulaşan lütyum ağır metalinin numunelerdeki değeri standartların altında olup 0,0102 mg/l’e kadar düştüğü görülmüştür.
Şekil 4.37. Magnezyum parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) (mg/l)

Şekil 4.38. Magnezyum parametresinin mevsimlere göre değişimi (yaz mevsimi) (mg/l)

Şekil 4.39. Magnezyum parametresinin mevsimlere göre değişimi (sonbahar mevsimi) (mg/l)

MANGAN PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

![Graph showing manganese parameter changes by season](image)

Şekil 4.41. Mangan parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) (mg/l)

Mangan parametresinin değeri Terfi istasyonunda sonbahar mevsiminde aldığımız numunede 0,52 mg/l çıkmıştır. 1.Pompa istasyonu ile terfi istasyonu arasında su kanal boyunca seyrelerek 1. Pompa’ da 0,09 mg/l değerine ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölüğine ulaşmaktadır. Tuz gölüğine ulaşan mangan ağır metalinin numunelerdeki değeri standartların altında olup 0,023 mg/l’e kadar düştüğü görülmüştür.

Şekil 4.43. Mangan parametresinin mevsimlere göre değişimi (sonbahar mevsimi) (mg/l)

Şekil 4.44. Mangan parametresinin mevsimlere göre değişimi (kış mevsimi) (mg/l)

Şekil 4.47. Sodyum parametresinin mevsimlere göre değişimi (sonbahar mevsimi) (mg/l)
NİKEL PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

Şekil 4.49. Nikel parametresinin mevsimlere göre değişim (ilkbahar mevsimi) (mg/l)

Şekil 4.50. Nikel parametresinin mevsimlere göre değişim (yaz mevsimi) (mg/l)

Şekil 4.51. Nikel parametresinin mevsimlere göre değişim (sonbahar mevsimi) (mg/l)

NİKEL PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

Şekil 4.52. Nikel parametresinin mevsimlere göre değişim (kış mevsimi) (mg/l)

Şekil 4.55. Kürşun parametresinin mevsimlere göre değişimi (sonbahar mevsimi) (mg/l)

KURŞUN PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

Şekil 4.56. Kurşun parametresinin mevsimlere göre değişimi (kıș mevsimi) (mg/l)

SELENYUM PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

Şekil 4.57. Selenyum parametresinin mevsimlere göre değişimi (ilkbahar mevşimi) (mg/l)

SELENYUM PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

Şekil 4.58. Selenyum parametresinin mevsimlere göre değişimi (yaz mevsimi) (mg/l)

Selenyum parametresinin değeri Terfi istasyonunda yaz mevsiminde aldığımız numunede 0,0015 mg/l çıkmıştır. 1.Pompa istasyonu ile terfi istasyonu arasında su kanal boyunca seyrelerek 1. Pompa’ da 0,001 mg/l değerine ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölüğe ulaşmaktadır. Tuz gölüğe ulaşan selenyum ağır metallerin numunelerdeki değeri standartların altında olup 0 mg/l’e kadar düştüğü görülmüştür.
Şekil 4.59. Selenyum parametresinin mevsimlere göre değişimi (sonbahar mevsimi) (mg/l)

KALAY PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

Şekil 4.61. Kalay parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) (mg/l)

Şekil 4.62. Kalay parametresinin mevsimlere göre değişimi (yaz mevsi) (mg/l)

Şekil 4.63. Kalay parametresinin mevsimlere göre değişimi (sonbahar mevsimi) (mg/l)

Şekil 4.64. Kalay parametresinin mevsimlere göre değişimi (kış mevsimi) (mg/l)

ÇİNKO PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

Şekil 4.65. Çinko parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) (mg/l)

ÇİNZKO PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

Şekil 4.66. Çinko parametresinin mevsimlere göre değişimi (yaz mevsimi) (mg/l)

Çinko parametresinin değeri Terfi istasyonunda yaz mevsiminde aldığımız numunede 0,0852 mg/l çıkmıştır. 1.Pompa istasyonu ile terfi istasyonu arasında su kanal boyunca seyrelerek 1. Pompa’ da 0,0786 mg/l değerine ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölüğe ulaşmaktadır. Tuz gölüğe ulaşan çinko ağır metalinin numunelerdeki değeri standartların altında olup 0,009 mg/l’e kadar düştüğü görülmüştür.
Şekil 4.68. Çinuko parametresinin mevsimlere göre değişimi (kış mevsimi) (mg/l)

Çinuko parametresinin değeri Terfi istasyonunda kış mevsiminde aldığımız numunede 0,083 mg/l çıkmıştır. 1.Pompa istasyonu ile terfi istasyonu arasında su kanal boyunca seyrelererek 1. Pompa’da 0,0758 mg/l değerine ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölüğine ulaşmaktadır. Tuz gölüğe ulaşan çinko ağır metalinin numunelerdeki değeri standartların altında olup 0,0083 mg/l'e kadar düştüğü görülmüştür.
BOR PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

Şekil 4.69. Bor parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) (mg/l)

Bor parametresinin değeri Terfi istasyonunda ilkbahar mevsiminde aldığımız numunede 0,9857 mg/l çıkmıştır. 1.Pompa istasyonu ile terfi istasyonu arasında su kanal boyunca seyyelerek 1. Pompa’da 0,2376 mg/l değerine ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölüne ulaşmaktadır. Tuz gölüne ulaşan bor ağır metalinin numunelerdeki değeri standartların altında olup 0,043 mg/l’e kadar düştüğü görülmüştür.
BOR PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

Şekil 4.70. Bor parametresinin mevsimlere göre değişimi (yaz mevsimi) (mg/l)

Bor parametresinin değeri Terfi istasyonunda yaz mevsiminde aldığımız numunede 0,8125 mg/l çıktmıştır. 1.Pompa istasyonu ile terfi istasyonu arasında su kanal boyunca seyrelerek 1. Pompa’da 0,203 mg/l değere ulaşmaktadır. 2. Pompa, 3. Pompa, 4. Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölünde ulaşmaktadır. Tuz gölünе ulaşan bor ağır metalinin numunelerdeki değeri standartların altında olup 0,036 mg/l’e kadar düştüğü görülmüştür.
Bor parametrelerinin değeri Terfi istasyonunda sonbahar mevsiminde aldığımız numunede 1,21 mg/l çıkmıştır. 1.Pompa istasyonu ile terfi istasyonu arasında su kanal boyunca seyrelerek 1. Pompa’ da 0,98 mg/l değerine ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölünə ulaşmaktadır. Tuz gölünə ulaşan bor ağır metalinin numunelerdeki değeri standartların altında olup 0,05 mg/l’e kadar düştüğü görülmüştür.
Şekil 4.72. Bor parametresinin mevsimlere göre değişimi (kış mevsimi) (mg/l)

Bor parametresinin değeri Terfi istasyonunda kış mevsiminde aldığımız numunede 0,813 mg/l çıkmıştır. 1.Pompa istasyonu ile terfi istasyonu arasında su kanal boyunca seyrelerek 1. Pompa’ da 0,22 mg/l değerine ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölüğe ulaşmaktadır. Tuz gölüğe ulaşan bor ağır metalinin numunelerdeki değeri standartların altında olup 0,036 mg/l’e kadar düştüğü görülmüştür.
CİVA PARAMETRESİNİN MEVSİMLERE GÖRE DEĞİŞİMİ

Şekil 4.73. Civa parametresinin mevsimlere göre değişimi (ilkbahar mevsimi) (mg/l)

Şekil 4.74. Civa parametresinin mevsimlere göre değişimi (yaz mevsimi) (mg/l)
Civa parametresinin değeri Terfi istasyonunda sonbahar mevsiminde aldığımız numunede 0,74 mg/l çıkmıştır. 1.Pompa istasyonu ile terfi istasyonu arasında su kanal boyunca seyrelerek 1. Pompa’da 0,0921 mg/l değerine ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölüne ulaşmaktadır. Tuz gölüne ulaşan civa ağır metallerin numunelerdeki değeri standartların altında olup 0,022 mg/l’e kadar düştüğü görülmüştür.
Şekil 4.76. Civa parametreinin mevsimlere göre değişimi (kış mevsimi) (mg/l)

Civa parametreinin değeri Terfi istasyonunda kış mevsiminde aldığımız numunede 0,475 mg/l çıkmıştır. 1.Pompa istasyonu ile terfi istasyonu arasında su kanal boyunca seyrelerek 1. Pompa’da 0,0736 mg/l değerine ulaşmaktadır. 2.Pompa, 3.Pompa, 4.Pompa ve 5. Pompa istasyonlarında değerler azalarak tuz gölüne ulaşmaktadır. Tuz gölüne ulaşan civa ağır metalinin numunelerdeki değeri standartların altında olup 0,008 mg/l’e kadar düştüğü görülmüştür.
Şekil 4.77. Fosfor parametreinin mevsimlere göre değişimi (ilkbahar mevsimi) (mg/l)

Şekil 4.78. Fosfor parametresinin mevsimlere göre değişimi (yaz mevsimi) (mg/l)

Şekil 4.79. Fosfor parametresinin mevsimlere göre değişimi (sonbahar mevsimi) (mg/l)

4.2. Mevsimsel Ağır metal Analiz Sonuçları ile ph ve Sıcaklık Verilerine Ait Bulgular

Yapmış olduğumuz çalışmada 7 adet ölçüm istasyonundan aldığımız toplamda 28 adet örnekleme numunelerinin mevsimsel ağır metal (Ag, Al, As, Ba, Cr, Cu, Fe, K, Li, Mg, Mn, Ni, Pb, Se, Sn, Zn, B, Hg,) ve alkali metal (Na, P) analiz sonuçları ile pH, sıcaklık, iletkenlik değerleri belirlenerek Tablo 4.1 ile Tablo 4.4’dede verilmiştir. Bu tablolara ait grafikler ise Şekil 4.81 ile Şekil 4.84’de verilmiştir.
<table>
<thead>
<tr>
<th>Parametreler</th>
<th>Birim</th>
<th>TERFİ</th>
<th>1. POMPA</th>
<th>2. POMPA</th>
<th>3. POMPA</th>
<th>4. POMPA</th>
<th>5. POMPA</th>
<th>TUZ GÖLÜ GİRİŞİ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>7,84</td>
<td>8,24</td>
<td>7,86</td>
<td>7,92</td>
<td>8,01</td>
<td>7,96</td>
<td>7,21</td>
</tr>
<tr>
<td>İletkenlik</td>
<td>µS/cm</td>
<td>2188</td>
<td>5900</td>
<td>5984</td>
<td>6020</td>
<td>6300</td>
<td>7103</td>
<td>8214</td>
</tr>
<tr>
<td>Sıcaklık</td>
<td>ºC</td>
<td>22</td>
<td>19,7</td>
<td>21,1</td>
<td>22,3</td>
<td>21,4</td>
<td>23,2</td>
<td>24,1</td>
</tr>
<tr>
<td>Gümüş(Ag)</td>
<td>mg/L</td>
<td>0,0096</td>
<td>0,0060</td>
<td>0,0050</td>
<td>0,0042</td>
<td>0,0031</td>
<td>0,0017</td>
<td>0,0009</td>
</tr>
<tr>
<td>Alüminyum (Al)</td>
<td>mg/L</td>
<td>0,3571</td>
<td>0,0833</td>
<td>0,0720</td>
<td>0,0510</td>
<td>0,0310</td>
<td>0,0203</td>
<td>0,0123</td>
</tr>
<tr>
<td>Arsenik (As)</td>
<td>mg/L</td>
<td>0,0063</td>
<td>0,0027</td>
<td>0,0016</td>
<td>0,0012</td>
<td>0,0007</td>
<td>0,0004</td>
<td>0,0002</td>
</tr>
<tr>
<td>Bariyum (Ba)</td>
<td>mg/L</td>
<td>0,1404</td>
<td>0,0949</td>
<td>0,0823</td>
<td>0,0560</td>
<td>0,0426</td>
<td>0,0347</td>
<td>0,0214</td>
</tr>
<tr>
<td>Bakır (Cu)</td>
<td>mg/L</td>
<td>0,0053</td>
<td>0,0142</td>
<td>0,0120</td>
<td>0,0096</td>
<td>0,0059</td>
<td>0,0043</td>
<td>0,0028</td>
</tr>
<tr>
<td>Demir (Fe)</td>
<td>mg/L</td>
<td>3,636</td>
<td>0,3717</td>
<td>0,313</td>
<td>0,103</td>
<td>0,095</td>
<td>0,064</td>
<td>0,042</td>
</tr>
<tr>
<td>Potasyum (K)</td>
<td>mg/L</td>
<td>49,70</td>
<td>35,06</td>
<td>26,45</td>
<td>18,23</td>
<td>18,23</td>
<td>15,56</td>
<td>0,987</td>
</tr>
<tr>
<td>Litiyum (Li)</td>
<td>mg/L</td>
<td>0,8907</td>
<td>0,1895</td>
<td>0,1756</td>
<td>0,0982</td>
<td>0,0460</td>
<td>0,0321</td>
<td>0,0156</td>
</tr>
<tr>
<td>Magnezyum(Mg)</td>
<td>mg/L</td>
<td>306,3</td>
<td>52,22</td>
<td>49,63</td>
<td>35,72</td>
<td>26,23</td>
<td>19,26</td>
<td>9,531</td>
</tr>
<tr>
<td>Mangan (Mn)</td>
<td>mg/L</td>
<td>0,4622</td>
<td>0,0767</td>
<td>0,0647</td>
<td>0,0541</td>
<td>0,0410</td>
<td>0,0315</td>
<td>0,0125</td>
</tr>
<tr>
<td>Sodyum (Na)</td>
<td>mg/L</td>
<td>1881,0</td>
<td>720,3</td>
<td>526,10</td>
<td>321,6</td>
<td>216,3</td>
<td>168,5</td>
<td>125,6</td>
</tr>
<tr>
<td>Nikel (Ni)</td>
<td>mg/L</td>
<td>0,0543</td>
<td>0,486</td>
<td>0,389</td>
<td>0,196</td>
<td>0,0981</td>
<td>0,0746</td>
<td>0,0513</td>
</tr>
<tr>
<td>Kursun (Pb)</td>
<td>mg/L</td>
<td>0,0029</td>
<td>0,0024</td>
<td>0,0017</td>
<td>0,0012</td>
<td>0,0008</td>
<td>0,0004</td>
<td>0,0001</td>
</tr>
<tr>
<td>Selênyum (Se)</td>
<td>mg/L</td>
<td>0,0018</td>
<td>0,0012</td>
<td>0,0010</td>
<td>0,0008</td>
<td>0,0006</td>
<td>0,0002</td>
<td>0,0000</td>
</tr>
<tr>
<td>Kalay</td>
<td>mg/L</td>
<td>0,0016</td>
<td>0,0011</td>
<td>0,0007</td>
<td>0,0004</td>
<td>0,0003</td>
<td>0,0002</td>
<td>0,0000</td>
</tr>
<tr>
<td>Çinko (Zn)</td>
<td>mg/L</td>
<td>0,0038</td>
<td>0,0869</td>
<td>0,0752</td>
<td>0,0520</td>
<td>0,0325</td>
<td>0,0235</td>
<td>0,0120</td>
</tr>
<tr>
<td>Bükür (B)</td>
<td>mg/L</td>
<td>0,9857</td>
<td>0,2376</td>
<td>0,216</td>
<td>0,102</td>
<td>0,091</td>
<td>0,076</td>
<td>0,043</td>
</tr>
<tr>
<td>Çrava (Hg)</td>
<td>mg/L</td>
<td>0,6060</td>
<td>0,0826</td>
<td>0,0724</td>
<td>0,052</td>
<td>0,034</td>
<td>0,026</td>
<td>0,014</td>
</tr>
<tr>
<td>Fosfor (P)</td>
<td>mg/L</td>
<td>29,50</td>
<td>6,600</td>
<td>5,426</td>
<td>3,461</td>
<td>2,197</td>
<td>1,968</td>
<td>1,523</td>
</tr>
</tbody>
</table>

Şekil 4.81. İlkbahar Mevzini (Mayıs Ayı) Analiz Sonuçları mg/L (Numune Alma Tarihi: 02/05/2014)
Tablo 4.2. Yaz Mevsimi (Temmuz Ayı) Analiz Sonuçları mg/L

<table>
<thead>
<tr>
<th>Parametreler</th>
<th>Birim</th>
<th>1. POMPA</th>
<th>2. POMPA</th>
<th>3. POMPA</th>
<th>4. POMPA</th>
<th>5. POMPA</th>
<th>TÜZ GÖLÜ GİRİŞİ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>7,16</td>
<td>8,25</td>
<td>7,96</td>
<td>7,52</td>
<td>7,21</td>
<td>7,14</td>
</tr>
<tr>
<td>İletkenlik</td>
<td>μs/cm</td>
<td>2250</td>
<td>4800</td>
<td>5210</td>
<td>6002</td>
<td>6241</td>
<td>6852</td>
</tr>
<tr>
<td>Sıcaklık</td>
<td>°C</td>
<td>24,1</td>
<td>23,5</td>
<td>23,8</td>
<td>24,3</td>
<td>23,2</td>
<td>23,7</td>
</tr>
<tr>
<td>Gümüş (Ag)</td>
<td>mg/L</td>
<td>0,0092</td>
<td>0,0052</td>
<td>0,0048</td>
<td>0,0039</td>
<td>0,0028</td>
<td>0,0013</td>
</tr>
<tr>
<td>Alüminyum (Al)</td>
<td>mg/L</td>
<td>0,203</td>
<td>0,0822</td>
<td>0,0710</td>
<td>0,0492</td>
<td>0,0303</td>
<td>0,0199</td>
</tr>
<tr>
<td>Arsenik (As)</td>
<td>mg/L</td>
<td>0,0058</td>
<td>0,0022</td>
<td>0,0013</td>
<td>0,0008</td>
<td>0,0006</td>
<td>0,0004</td>
</tr>
<tr>
<td>Baryum (Ba)</td>
<td>mg/L</td>
<td>0,1386</td>
<td>0,0854</td>
<td>0,0803</td>
<td>0,0542</td>
<td>0,0401</td>
<td>0,0326</td>
</tr>
<tr>
<td>Krom (Cr)</td>
<td>mg/L</td>
<td>0,0402</td>
<td>0,0302</td>
<td>0,0204</td>
<td>0,0184</td>
<td>0,011</td>
<td>0,0087</td>
</tr>
<tr>
<td>Bakır (Cu)</td>
<td>mg/L</td>
<td>0,0175</td>
<td>0,0134</td>
<td>0,0114</td>
<td>0,0082</td>
<td>0,0042</td>
<td>0,0035</td>
</tr>
<tr>
<td>Demir (Fe)</td>
<td>mg/L</td>
<td>2,52</td>
<td>0,326</td>
<td>0,287</td>
<td>0,085</td>
<td>0,071</td>
<td>0,052</td>
</tr>
<tr>
<td>Potasyum (K)</td>
<td>mg/L</td>
<td>41,63</td>
<td>31,25</td>
<td>22,54</td>
<td>16,87</td>
<td>15,23</td>
<td>14,21</td>
</tr>
<tr>
<td>Lityum (Li)</td>
<td>mg/L</td>
<td>0,7126</td>
<td>0,1622</td>
<td>0,1601</td>
<td>0,0951</td>
<td>0,0355</td>
<td>0,03</td>
</tr>
<tr>
<td>Magnezyum (Mg)</td>
<td>mg/L</td>
<td>254,53</td>
<td>47,58</td>
<td>45,32</td>
<td>33,21</td>
<td>22,45</td>
<td>17,52</td>
</tr>
<tr>
<td>Mangan (Mn)</td>
<td>mg/L</td>
<td>0,4221</td>
<td>0,0625</td>
<td>0,0613</td>
<td>0,0521</td>
<td>0,0385</td>
<td>0,0286</td>
</tr>
<tr>
<td>Sodyum (Na)</td>
<td>mg/L</td>
<td>1652</td>
<td>702,3</td>
<td>486,9</td>
<td>300,2</td>
<td>202,3</td>
<td>145,6</td>
</tr>
<tr>
<td>Nikel (Ni)</td>
<td>mg/L</td>
<td>0,486</td>
<td>0,421</td>
<td>0,365</td>
<td>0,172</td>
<td>0,08265</td>
<td>0,0652</td>
</tr>
<tr>
<td>Kursun (Pb)</td>
<td>mg/L</td>
<td>0,0022</td>
<td>0,0018</td>
<td>0,0016</td>
<td>0,0011</td>
<td>0,0007</td>
<td>0,0003</td>
</tr>
<tr>
<td>Selenyum (Se)</td>
<td>mg/L</td>
<td>0,0015</td>
<td>0,0010</td>
<td>0,0008</td>
<td>0,0007</td>
<td>0,0005</td>
<td>0,0000</td>
</tr>
<tr>
<td>Kalay</td>
<td>mg/L</td>
<td>0,0014</td>
<td>0,0008</td>
<td>0,0006</td>
<td>0,0003</td>
<td>0,0002</td>
<td>0,0000</td>
</tr>
<tr>
<td>Çinko (Zn)</td>
<td>mg/L</td>
<td>0,0852</td>
<td>0,0786</td>
<td>0,0721</td>
<td>0,0487</td>
<td>0,0302</td>
<td>0,020</td>
</tr>
<tr>
<td>Bor (B)</td>
<td>mg/L</td>
<td>0,8125</td>
<td>0,203</td>
<td>0,185</td>
<td>0,095</td>
<td>0,082</td>
<td>0,071</td>
</tr>
<tr>
<td>Çva (Hg)</td>
<td>mg/L</td>
<td>0,486</td>
<td>0,0745</td>
<td>0,0685</td>
<td>0,0512</td>
<td>0,03</td>
<td>0,02</td>
</tr>
<tr>
<td>Fosfor (P)</td>
<td>mg/L</td>
<td>25,46</td>
<td>5,89</td>
<td>4,75</td>
<td>3,21</td>
<td>1,96</td>
<td>1,91</td>
</tr>
</tbody>
</table>

Şekil 4.82. Yaz Mevsimi (Temmuz Ayı) Analiz Sonuçları mg/L (Numune Alma Tarihi: 08/07/2014)
Tablo 4.3. Sonbahar Mevsemi (Ekim Ayı) Analiz Sonuçları mg/L

<table>
<thead>
<tr>
<th>Parametreler</th>
<th>Birim</th>
<th>TERFI</th>
<th>1. POMPA</th>
<th>2. POMPA</th>
<th>3. POMPA</th>
<th>4. POMPA</th>
<th>5. POMPA</th>
<th>TÜZ GÖLU GİRİŞİ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>7,14</td>
<td>7,52</td>
<td>7,68</td>
<td>7,83</td>
<td>7,21</td>
<td>7,13</td>
<td>7,86</td>
</tr>
<tr>
<td>İletkenlik</td>
<td>Ός/cm</td>
<td>2480</td>
<td>3150</td>
<td>3201</td>
<td>4350</td>
<td>4682</td>
<td>4836</td>
<td>5982</td>
</tr>
<tr>
<td>Sıcaklık</td>
<td>°C</td>
<td>21,3</td>
<td>20,4</td>
<td>20,8</td>
<td>21,5</td>
<td>21,9</td>
<td>20,4</td>
<td>21,6</td>
</tr>
<tr>
<td>Gümüş(Ag)</td>
<td>mg/L</td>
<td>0,0121</td>
<td>0,0075</td>
<td>0,0063</td>
<td>0,0047</td>
<td>0,0038</td>
<td>0,0021</td>
<td>0,0015</td>
</tr>
<tr>
<td>Alüminyum (Al)</td>
<td>mg/L</td>
<td>0,3654</td>
<td>0,0921</td>
<td>0,0789</td>
<td>0,0621</td>
<td>0,0412</td>
<td>0,0352</td>
<td>0,0296</td>
</tr>
<tr>
<td>Arsenik (As)</td>
<td>mg/L</td>
<td>0,0078</td>
<td>0,0047</td>
<td>0,0036</td>
<td>0,0024</td>
<td>0,0018</td>
<td>0,0011</td>
<td>0,0009</td>
</tr>
<tr>
<td>Baryum (Ba)</td>
<td>mg/L</td>
<td>0,185</td>
<td>0,123</td>
<td>0,099</td>
<td>0,0852</td>
<td>0,0712</td>
<td>0,0623</td>
<td>0,0421</td>
</tr>
<tr>
<td>Krom (Cr)</td>
<td>mg/L</td>
<td>0,0596</td>
<td>0,0452</td>
<td>0,0386</td>
<td>0,0268</td>
<td>0,0225</td>
<td>0,0185</td>
<td>0,0162</td>
</tr>
<tr>
<td>Bakır (Cu)</td>
<td>mg/L</td>
<td>0,0256</td>
<td>0,0185</td>
<td>0,0162</td>
<td>0,0148</td>
<td>0,0113</td>
<td>0,0098</td>
<td>0,0065</td>
</tr>
<tr>
<td>Demir (Fe)</td>
<td>mg/L</td>
<td>4,2</td>
<td>0,39</td>
<td>0,36</td>
<td>0,285</td>
<td>0,121</td>
<td>0,087</td>
<td>0,065</td>
</tr>
<tr>
<td>Potasyum (K)</td>
<td>mg/L</td>
<td>52,32</td>
<td>44,71</td>
<td>31,23</td>
<td>25,82</td>
<td>21,54</td>
<td>19,6</td>
<td>1,21</td>
</tr>
<tr>
<td>Lityum (Li)</td>
<td>mg/L</td>
<td>1,21</td>
<td>0,4256</td>
<td>0,382</td>
<td>0,221</td>
<td>0,131</td>
<td>0,092</td>
<td>0,052</td>
</tr>
<tr>
<td>Magnesyum(Mg)</td>
<td>mg/L</td>
<td>321,2</td>
<td>60,21</td>
<td>52,32</td>
<td>48,21</td>
<td>30,13</td>
<td>24,74</td>
<td>9,91</td>
</tr>
<tr>
<td>Mangan (Mn)</td>
<td>mg/L</td>
<td>0,52</td>
<td>0,09</td>
<td>0,08</td>
<td>0,07</td>
<td>0,062</td>
<td>0,054</td>
<td>0,023</td>
</tr>
<tr>
<td>Sodyum (Na)</td>
<td>mg/L</td>
<td>1814</td>
<td>725,3</td>
<td>541</td>
<td>356</td>
<td>287,3</td>
<td>194,53</td>
<td>174,21</td>
</tr>
<tr>
<td>Nikel (Ni)</td>
<td>mg/L</td>
<td>0,65</td>
<td>0,53</td>
<td>0,42</td>
<td>0,26</td>
<td>0,14</td>
<td>0,096</td>
<td>0,071</td>
</tr>
<tr>
<td>Kursun (Pb)</td>
<td>mg/L</td>
<td>0,0036</td>
<td>0,0031</td>
<td>0,0022</td>
<td>0,0018</td>
<td>0,0011</td>
<td>0,0009</td>
<td>0,0007</td>
</tr>
<tr>
<td>Selenyum (Se)</td>
<td>mg/L</td>
<td>0,0021</td>
<td>0,0014</td>
<td>0,0011</td>
<td>0,0009</td>
<td>0,0008</td>
<td>0,0006</td>
<td>0,0002</td>
</tr>
<tr>
<td>Kalay</td>
<td>mg/L</td>
<td>0,0017</td>
<td>0,0014</td>
<td>0,0011</td>
<td>0,0009</td>
<td>0,0007</td>
<td>0,0005</td>
<td>0,0001</td>
</tr>
<tr>
<td>Çinko (Zn)</td>
<td>mg/L</td>
<td>0,092</td>
<td>0,0869</td>
<td>0,075</td>
<td>0,051</td>
<td>0,034</td>
<td>0,028</td>
<td>0,019</td>
</tr>
<tr>
<td>Bor (B)</td>
<td>mg/L</td>
<td>1,21</td>
<td>0,98</td>
<td>0,72</td>
<td>0,32</td>
<td>0,14</td>
<td>0,09</td>
<td>0,05</td>
</tr>
<tr>
<td>Çrva (Hg)</td>
<td>mg/L</td>
<td>0,74</td>
<td>0,0921</td>
<td>0,0812</td>
<td>0,067</td>
<td>0,052</td>
<td>0,041</td>
<td>0,022</td>
</tr>
<tr>
<td>Fosfor (P)</td>
<td>mg/L</td>
<td>31</td>
<td>7,54</td>
<td>6,12</td>
<td>4,98</td>
<td>3,21</td>
<td>2,36</td>
<td>1,86</td>
</tr>
</tbody>
</table>

Şekil 4.83. Sonbahar Mevsemi (Ekim Ayı) Analiz Sonuçları (Numune Alma Tarihi: 14/10/2014)
Tablo 4.4. Kış Mevsmi (Aralık Ayı) Analiz Sonuçları mg/L

<table>
<thead>
<tr>
<th>Parametreler</th>
<th>Birim</th>
<th>TERFI</th>
<th>1. POMPA</th>
<th>2. POMPA</th>
<th>3. POMPA</th>
<th>4. POMPA</th>
<th>5. POMPA</th>
<th>TUZ GÖLÜ GİRİŞİ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>6,98</td>
<td>7,01</td>
<td>7,25</td>
<td>6,99</td>
<td>7,12</td>
<td>7,44</td>
<td>7,68</td>
</tr>
<tr>
<td>İletkenlik</td>
<td>μs/cm</td>
<td>2850</td>
<td>3141</td>
<td>3586</td>
<td>3836</td>
<td>3921</td>
<td>4175</td>
<td>4231</td>
</tr>
<tr>
<td>Sıcaklık</td>
<td>°C</td>
<td>19,2</td>
<td>18,4</td>
<td>16,5</td>
<td>16,8</td>
<td>17,1</td>
<td>17,3</td>
<td>17,7</td>
</tr>
<tr>
<td>Gümüş (Ag)</td>
<td>mg/L</td>
<td>0,0091</td>
<td>0,005</td>
<td>0,0046</td>
<td>0,0032</td>
<td>0,0031</td>
<td>0,0012</td>
<td>0,0006</td>
</tr>
<tr>
<td>Alüminyum (Al)</td>
<td>mg/L</td>
<td>0,2</td>
<td>0,0813</td>
<td>0,0745</td>
<td>0,0452</td>
<td>0,0312</td>
<td>0,0185</td>
<td>0,009</td>
</tr>
<tr>
<td>Arsenik (As)</td>
<td>mg/L</td>
<td>0,0057</td>
<td>0,0023</td>
<td>0,0012</td>
<td>0,0008</td>
<td>0,0006</td>
<td>0,0003</td>
<td>0,0001</td>
</tr>
<tr>
<td>Baryum (Ba)</td>
<td>mg/L</td>
<td>0,13</td>
<td>0,0901</td>
<td>0,0889</td>
<td>0,0652</td>
<td>0,0502</td>
<td>0,0412</td>
<td>0,0236</td>
</tr>
<tr>
<td>Krom (Cr)</td>
<td>mg/L</td>
<td>0,0389</td>
<td>0,0291</td>
<td>0,0212</td>
<td>0,0192</td>
<td>0,0123</td>
<td>0,0079</td>
<td>0,0013</td>
</tr>
<tr>
<td>Bakır (Cu)</td>
<td>mg/L</td>
<td>0,0187</td>
<td>0,0125</td>
<td>0,0105</td>
<td>0,0085</td>
<td>0,0053</td>
<td>0,0028</td>
<td>0,0016</td>
</tr>
<tr>
<td>Demir (Fe)</td>
<td>mg/L</td>
<td>2,71</td>
<td>0,36</td>
<td>0,31</td>
<td>0,25</td>
<td>0,16</td>
<td>0,12</td>
<td>0,09</td>
</tr>
<tr>
<td>Potasyum (K)</td>
<td>mg/L</td>
<td>40,28</td>
<td>34,36</td>
<td>27,63</td>
<td>24,32</td>
<td>19,16</td>
<td>17,25</td>
<td>1,68</td>
</tr>
<tr>
<td>Lityum (Li)</td>
<td>mg/L</td>
<td>0,6165</td>
<td>0,1134</td>
<td>0,096</td>
<td>0,0943</td>
<td>0,0485</td>
<td>0,0301</td>
<td>0,0102</td>
</tr>
<tr>
<td>Magnезyum(Mg)</td>
<td>mg/L</td>
<td>278,45</td>
<td>68,54</td>
<td>55,42</td>
<td>37,23</td>
<td>27,31</td>
<td>16,41</td>
<td>6,28</td>
</tr>
<tr>
<td>Mangân (Mn)</td>
<td>mg/L</td>
<td>0,5029</td>
<td>0,0856</td>
<td>0,0589</td>
<td>0,0423</td>
<td>0,0347</td>
<td>0,0291</td>
<td>0,0147</td>
</tr>
<tr>
<td>Sodyum (Na)</td>
<td>mg/L</td>
<td>1,530</td>
<td>702,3</td>
<td>486,9</td>
<td>300,2</td>
<td>202,3</td>
<td>145,6</td>
<td>112,3</td>
</tr>
<tr>
<td>Nikel (Ni)</td>
<td>mg/L</td>
<td>0,472</td>
<td>0,416</td>
<td>0,363</td>
<td>0,209</td>
<td>0,06549</td>
<td>0,0496</td>
<td>0,0443</td>
</tr>
<tr>
<td>Kursun (Ph)</td>
<td>mg/L</td>
<td>0,0038</td>
<td>0,0019</td>
<td>0,0013</td>
<td>0,00102</td>
<td>0,0005</td>
<td>0,0001</td>
<td>0,0000</td>
</tr>
<tr>
<td>Selênyum (Se)</td>
<td>mg/L</td>
<td>0,0014</td>
<td>0,0009</td>
<td>0,0007</td>
<td>0,0005</td>
<td>0,00043</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Kalsiya (Ca)</td>
<td>mg/L</td>
<td>0,0015</td>
<td>0,0008</td>
<td>0,0005</td>
<td>0,00031</td>
<td>0,00014</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>Çinko (Zn)</td>
<td>mg/L</td>
<td>0,083</td>
<td>0,0758</td>
<td>0,0719</td>
<td>0,0523</td>
<td>0,0286</td>
<td>0,032</td>
<td>0,0083</td>
</tr>
<tr>
<td>Bor (B)</td>
<td>mg/L</td>
<td>0,813</td>
<td>0,22</td>
<td>0,184</td>
<td>0,095</td>
<td>0,082</td>
<td>0,071</td>
<td>0,036</td>
</tr>
<tr>
<td>Çiva (Hg)</td>
<td>mg/L</td>
<td>0,475</td>
<td>0,0736</td>
<td>0,0673</td>
<td>0,0459</td>
<td>0,03</td>
<td>0,01</td>
<td>0,008</td>
</tr>
<tr>
<td>Fosfor (P)</td>
<td>mg/L</td>
<td>22,85</td>
<td>7,01</td>
<td>5,63</td>
<td>3,19</td>
<td>1,87</td>
<td>1,77</td>
<td>1,51</td>
</tr>
</tbody>
</table>

Şekil 4.84. Kış Mevsmi (Aralık Ayı) Analiz Sonuçları (Numune Alma Tarihi: 12/12/2014)
İlkbahar, yaz, sonbahar, kış mevsimlerine ait ağır metal konsantrasyonları yapılan analizler sonucunda Tablo 4.1, Tablo 4.2, Tablo 4.3, Tablo 4.4’deki gibi ortaya çıkmıştır. Çıkan sonuçlar Tablo 2.6’da öngörülen atıksu kriterleri ile karşılaştırıldığında bu değerlerin çok altında olduğu görülmektedir. TSE, WHO, ABD Çevre Koruma Ajansı tarafından Tablo 2.4.’de öngörülen değerler ile karşılaştırıldığında sonuçların bu değerlerin altında olduğu görülmektedir.
5. BÖLÜM
TARTIŞMA, SONUÇ VE ÖNERİLER

Yapılan analiz çalışmalarının grafiksel dağılımlarını incelediğimiz zaman; özellikle arsenik, baryum, krom, bakır, nikel, kurşun, kalay ve bor parametrelerinin; sonbahar döneminde, diğer mevsimlerden farklı olarak daha yüksek olduğu tespit edilmiştir.

İlk bahar, yaz ve kış dönemlerindeki ağır metal konsantrasyonlarının genel olarak birbirine yakın olduğu da yapılan tespitler arasındadır. Ancak, analiz sonuçlarının genel değerlendirilmesini yapacak olursak, tüm ağır metal konsantrasyonlarının ‘Su Kirliliği Kontrol Yönetmeliği’nde belirtilen sınır değerlerin oldukça altında kıldığı tespit edilmiştir.

Yapılan çalışma esnasında alınan su numuneleri ve analiz sonuçlarının genel olarak değerlendirilmesi yapılacak olursa;

Konya kenti atık suyu ile ilgili olarak arıtıma tesiisinin insası ve işletilmesi işi Konya Büyükşehir Belediyesi KOSKİ Genel Müdürlüğü tarafından yürütülmüştür. Tesis 2010 yılında tam kapasite işletmeye alınmıştır. Şehrimiz atıksuları bu tarihe kadar Aslım Bataklığına dökülmekle birlikte kanalın açılması ile Konya’nın kapalı bir havza olmasından ve başka bir deşarj noktasının olmamasından dolayı Ana tahliye Kanalına bağlanılmıştır.

KOSKİ Genel Müdürlüğü tarafından yapılmı tamamlanan ve işletmeye alınan Konya Atıksu Arıtma Tesisi’nin işletmeye alınmasından sonra, D.S.I. Kanalına verilen atıksularda ciddi bir kalite artışı olduğu yapılan bu çalışma ile tespit edilmiştir.

Konya’da faaliyet göstermekte olan ve atıksu miktarı yüksek olan; Çumra Şeker Fabrikası, Konya Şeker Fabrikası, Konya Organize Sanayi vb. tesislerden kaynaklanan atıksular, kendi Atıksu Arıtma tesislerinde işlem görüp artırdıktan sonra deşarj edildiği için D.S.I. kanalı ile Tuz Gölü’ne ulaşan atıksuların kalitesinde ciddi artışların olduğu yapılan bu çalışma ile tespit edilmiştir. Bunun dışında Konya organize sanayi bölgesinin de kendine
ait bir arıma ünitesinin olması, fabrikalarda bireysel olarak sıkı kontrollerden geçirilmeleri ve bireysel arıma yapmaları atık suyun kalitesini artırmıştır.
Konya kanalizasyonuna atık veren sanayi tesisleri, kamu ve özel sektör kuruluşları, askeri hava alanı ile askeri araçların tamir ve bakımını yaptığı tesisler dışında atıkların önemli bir kısmını evsel atıkların oluşturması Konya atık su kanalının önemini ve faydasını artırmıştır. Yapılan analiz ve incelemler sonucunda; Konya ilinden kaynaklanan atıksuların Tuz Gölü’ne ağır metal kirliliği oluşturmasının mümkün olduğunu görmememektedir. Kanal suyunun tarımsal amaçlı kullanılmadası da bir sorun görülmemektedir keza Konya Büyükşehir Belediyesi artık kanal suyunu yeşil alanların sulamasında kullanmayı amaçlamaktadır.
Bugüne kadar Tuz Gölü kirliliğinde yegâne unsur Konya atıksuları olarak görülmekle birlikte Tuz Gölü Entegre Çevre Projesi Fizibilite çalışmasında da ortaya konduğu üzere aşağıda belirtilen diğer unsurların da Tuz Gölü’ne önemli etkilerinin olduğu tespit edilmiştir.
Tuz Gölü’nün etkileyen diğer faktörleri inceleyecek olursak bundan sonraki çalışmalar bu sorunların giderilmesi ve iyileştirilmesi yönünde olmalıdır.
Türkiye’nin ikinci büyük gölü olan Tuz gölü giderek kirilenmekte, kurumakta ve tarımsal üretim açısından olumsuz koşulları barındırır hale gelmektedir. Tuz Gölü’nde meydana gelen değişimler öncelikle göl yakından, kenarındaki yerleşimleri hem çevresel hem de ekonomik boyutlarıyla etkilemektedir. Tuz Gölü’nde son yıllarda meydana gelen değişimler aşağıda belirtilmiştir.
Tuz Gölü giderek elden çıkmaktadır. Plansız, katılımcı olmayan yanlış kullanımlar, çevresel etkiler, climatolojik olaylar giderek Tuz Gölü’nün niteliklerini yitirmesine neden olmaktadır. Yapılan çalışma sonucunda alınabilecek önlemler aşağıda belirtilmiştir;
Öncelike, “gerçekten Tuz Gölü’nü korumak ve yaşatmak istiyor muyuz?”, sorusuna bireysel, kurumsal, toplumsal temelde yanıt aramak ve bundaki kararlılığı ortaya koymak gerekmektedir.

Tuz Gölü Özel Çevre Koruma Alani (ÖÇKA) olarak kabul edilmesine rağmen, bu olgu Tuz Gölü’nün yaşadığı olumsuzlukları gidermede yetersiz kalmaktadır. Bu ise, ilde konuşlanması gerekken ÖÇKA biriminin Ankara’dan işleri idare etmeye çalışması, kurumsal ve personel açısından kapasite eksikliği ile mali sorunlar Tuz Gölü’nü sahipsizleşmiştir.

Tuz Gölü açısından sorun analizlerinin yapılarak, sorun önlemlerinin belirlenmesi ve bunandan hareketle çözüm stratejileri geliştirilmesi ve kamusal/kurumsal görev alanlarının belirlenerek hemen uygulamaya aktarılması önem taşımaktadır. Süçte “ulusal politikaların” belirlenerek “kararlılık gösterilmesi” konuya verilen önem açısından önemli bir görüşme olacaktır.

Tuz Gölü için önemli çözüm yaklaşımlarından birisi, özellikle sulu tarında bulunan ve Tuz Gölü’nden yararlanan çiftçilere özgü olarak “yöresel destek” mekanizmalarının geliştirilmesi, ekonomik uygunluğu olan ve az su isteyen koşullarda yetiştirilebilen bitkisel ürünlerin araştırılarak teşvık edilmesi önem taşımaktadır. Diğer yandan Havza genelinde örnek olabilecek yeraltı su kullanımı, damlama sulama, alternatif ürün deseni ve örgütlenmiş pazar yapısına ilişkin araştırmalar, bölgede su kaynaklarının sürdürülebilir kullanım açısından gerek duyulan konu alanları olarak belirlemektedir.

Su kullanımına yönelik tasarruf kampanyalarında bulunmak ve kamuoyu tabanını genişleterek duyarlılık yaratmak, gelecek açısından önemli birer çözüm girişimi olabilir.

Çevre kirleticici bireylere, kurumlara, işletmelere yönelik yasal yaptırımların düzenlenmesi ve bunun ayrırlıklı olarak uygulanması önem taşımaktadır. Bu, aynı zamanda “kirleten öder” yaklaşımı olarak kabul edilmelidir.

Tuz Gölü’ne yönelik ekonomik, çevresel, kültürel ve sosyolojik konuları ve önlemleri içeren proje konularının belirlenerek bunların uygulanmasına ve izlenmesine yönelik kurumsal altyapının oluşturulması gerekliktir. Bunun için de Tabiat Varlıklarımı Koruma Genel Müdürlüğü’ne yerinde, katılım, yerel destekli çalışma planlarını oluşturarak, bunları uygulamaya aktarması önemli bir girişim olacaktır.

Tuz Gölü ile önlemlere doğrudan bağlılanlığı yerleşim yerlerinin ortaya çıkardıkları sorunların ve etkilerinin belirlenerek, yerleşimlere yönelik “yersetim planlamasını”,
“altyapı durumu ve sorunlarını” irdeleyecek “master planlarının” hazırlanması önem taşımaktadır. Bu özellikle büyük kentsel yerleşimler açısından önemlidir.

Yöresel düzeyde yanlış tarım uygulamalarının incelenerek bunun sosyo-ekonomik nedenlerinin ortaya çıkarılması ve buna yönelik çözümlemelerin geliştirilmesi önemlidir. Bunun için alt havzalar düzeyinde çalışmalara başlanmalıdır.

Havza düzeyinde su ve toprak kullanımına yönelik kısa, orta ve uzun vadeli kullanım planları yereldeki tüm paydaşların karar alma ve uygulama süreçlerine aktif katılımlarıyla oluşturulmalıdır.

Yörede kaçak su kullanımına yönelik girişimlerin giderilmesi için, “izleme ve bilgilendirme birimleri” oluşturulmalıdır. Bu konuda çiftçilere yönelik eğitim çalışmalara bulunması ve bilincçendirilmesi, çiftçiler arasında oto kontrolün sağlanması, kaçak su kullanımını azaltmada önemli bir girişim olabilecektir.

Kurumlar arası iletişimin güçlendirilmesi, varsa yetki kargaşasının giderilmesi ve etkin çalışma koşullarının oluşturulmasına yönelik yapılanmalara gidilmesi tamamlanmalıdır. Ayrıca, Tabiat Varlıklarını Koruma Genel Müdürlüğü’nün tarımla ilgili kurum ve kuruluşlarla eşgüdümü olarak çalışmalar yapması önem taşımaktadır. Çevre konusunda eğitim verecek özellikle “gönüllü kuruluşlar” düzeyindeki girişimleri desteklemek önem taşımaktadır. Özellikle, yereldeki Sivil Toplum Kuruluşları (STK) desteklenmelidir.

Tarımsal üretimde girdi kullanımının nitel ve nicel açılardan belirlenerek, mevcut durumu ortaya koymak, yanlışları belirlemek ve bunun çözümüne yönelik öneriler geliştirmek önem taşımaktadır. Özellikle, bu durumun Tuz Gölü’nün nasıl etkiledğini belirlemek önem taşımaktadır.

Tuz Gölü’nü korumaya ve olumsuz etkileri belirlemeye, ortadan kaldırırmaya yönelik çalışmalar konusunda araştırma yapmak ve bunun sonuçlarını tartışmaya açmak, geleceğe ait planlama yapmak açısından önemlidir.

Şekerpançarı ve çok su gerektiren diğer ürünlerle yönelik alternatif ürün çalışmalarına devam edilmelidir. Bundan hareketle, suyu daha da az tüketen ve daha optimal kullanılan tarımsal ürünün ekonomik açıdan eşdeğerini sağlayabilme için “telafi edici fiyat desteği” politikası uygulanabilir.

Yörede bölgenin ekolojik özelliklerine ve yapısına uygun organik tarımsal üretimi ön planda çıkartacak potansiyel çalışmaların yapılması, model geliştirilmesi, çiftçilerin ilgisinin

154
çekilmesi ve bilgilendirilmesi su kaynaklarının optimal kullanımı açısından önemli bir girişim olacaktır.
Yörede hayvansal ürete göre yönelik çalışmalarla mera kaynaklarının sürdürülebilir kullanılmasına ve yönetimine özen gösterilmelidir.
Yörede yürütülen ve yürütülecek olan tüm tarımsal faaliyetlerde, projelerde yaban hayatının korunmasına yönelik bilinçlendirme ve bu konuda kamuoyu yaratma çalışmaları ekolojik sistemin korunması açısından önem taşımaktadır.
Alanda tarımsal faaliyetlerde suyu ekonomik kullanılarak sulama sistemlerinin yaygınlaştırılması gerekmektedir. Bu amaçla, damla sulama sisteminin kullanımı desteklenmelidir. Bununla ilgili olarak, Devlet mevcut destekleme sistemlerine damla sulama sistemlerini yaygınlaştırıcı ve özendirici önlemleri de geliştirebilir.
Yeraltı su kaynaklarının tarımsal amaçlarla kullanıma yönelik sınırlamalar getirilebilir. Örneğin, belli bir derinlikten aşağıdaki yeralı suyun kullanımının kontrol altında alınması ya da bu amaçla caydırıcı yasal önlemlere başvurulabilir.

Konunun sosyal, ekonomik, tarımsal, ekolojik, kültürel boyutlarını derinlemesine incelemek için gereğinde mevcut durumun zayıf, güçlü, olanaklarını ve tehlike boyutlarını ortaya koyabilecek detaylı GZOT (Güçlü Yöner- Zayıf Yöner, Olanaklar ve Tehditler) analizlerinin yapılması gereklilik göstermektedir.
Harita 1: Tuz Gölü Havzası Genel Durum Planı
KAYNAKÇA

7. İnternet:Endüstriyel Kirilenme Kontrolü, web.deu.edu.tr/atioku/ana58/bolum14pdf

27. İnternet: Maden Tektik ve Arama Genel Müdürlüğü, ‘‘Madenlerin Kullanım Alanları’’ www.mta.gov.tr

158
30. İnternet: "Endüstriyel Kirlenme Kontrolü"
web.deu.edu.tr/atkusu/ana58/bolum14.pdf
31. Aşçı, Y., Kaya, Ş., "Amberlit 200-C iyon deıtırıcı reçineye Co(II) iyonlarının iyon
değişim kinetiği", Eskişehir Osmangazi Üniversitesi, Mühendislik-Mimarlık Fakültesi,
Kimya Mühendisliği Bölümü, Eskişehir, 2008, Proje no: 200815001
32. Rether, A., Entwicklung und Charakterisierung Wasserlöslicher
Benzoylthioharnstofffunktionalisierter Polymere zur Selektiven Abtrennung von
Schwermetallionen aus Abwassern und Prozesslösungen", Münih Teknik Üniversitesi,
Doktora Tezi, Münih, 2002.
33. Hu, H., "Exposure to metals", Occupational and Environmental Medicine, 27:983-996,
2000.
34. Kalay, M., Karataş, S., "Kadınnyum Tilapia nilotica'da kas, beyin ve kemik (omurga
35. Balkış, N., Algan, O., "Marmara Denizine yüzey sedimentlerinde metallerin birikimi ve
36. Yazkan, M., Özdemir, F., Gölökcü, M., "Cu, Zn, Pb and Cd contents in some mollusc
and crustacean in the Gulf of Antalya", Turkish Journal of Veterinary and animal
and MT in Brown Trout Salmo trutta, from two Norwegian rivers differently
contaminated with Cd, Cu and Zn", Comparative Biochemistry and Physiology, 128:
Kayhan, F.E., "Mercury levels of Mediterranean mussels (Mytilus galloprovincialis)
41. Sağlamtimur, B., Cicik, B., Erdem, C., "Effects of different concentrations of Cu alone
and Cu+Cd mixture on the accumulation of Cu in the gill, liver, kidney and muscle
tissues of Oreochromis niloticus", Turkish Journal of Veterinary and Animal Sciences,

53. Varlık, B., Investigation of effects of some heavy metal (Cd-Pb) to the different development stages of Mytilus galloprovincialis, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, İzmir, 1991.

66. İnternet: Prof. Dr. Öztürk, M., ‘İlyon değiştiricilerle ağır metal giderimi’, TBMM Çevre Komisyonu Başkan Vekili, 2010.
İnternet: www.cevremuhendisleri.net
69. İnternet: www.mmo.org.tr/resimler/dosya-ekler7d16d00201083a2-ek.pdf?dergi=142
 “Atksu artıma yöntemleri”
77. İnternet: www.koski.gov.tr
 Konya Su ve Kanalizasyon İdaresi
78. İnternet: www.kos.gov.tr
 Konya Organize Sanayi Bölgesi

84. İnternet: www.kso.org.tr
Konya Sanayi Odası

ÖZGECMİŞ

Adres: KOS Bölgesi Evrenköy Caddesi No:25 42050 Konya
Telefon: 0 332 3422222
e-posta: zehra@ozceylanlar.com.tr