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Dynamics of a plant–herbivore model with 
differential–difference equations
S. Kartal1*

Abstract: This paper studies the behavior of a plant–herbivore model including both 
differential and difference equations. To analyze global behavior of the model, we 
consider the solution of the system in a certain subinterval which gives to system of 
difference equations. The boundedness characters, the periodic nature, both  
local and global stability conditions of the plant–herbivore system are investigated. 
Numerical studies indicate that the system exhibits Neimark–Sacker bifurcation for 
different parameter values in certain regions.
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1. Introduction
Classical approaches to modeling plant–herbivore interactions are based on predator–prey system 
(Caughley & Lawton, 1981; May, 2001). This interaction has been described in much research using 
discrete and continuous model (Agiza, ELabbasy, EL-Metwally, & Elsadany, 2009; Chattopadhayay, 
Sarkar, Frıtzsche-Hoballah, Turlıngs, & Bersıer, 2001; Danca, Codreanu, & Bakó, 1997; Das & Sarkar, 
2001; Edelstein-Keshet, 1986; Feng, Qiu, Liu, & DeAngelis, 2011; Lebon, Mailleret, Dumont, & 
Grognard, 2014; Li, 2011; Liu, Feng, Zhu, & DeAngelis, 2008; Mukherjee, Das, & Kesh, 2011; Ortega-
Cejas, Fort, & Méndez, 2004; Owen-Smith, 2002; Saha & Bandyopadhyay, 2005; Sui, Fan, Loladze, & 
Kuang, 2007; Sun, Chakraborty, Liu, Jin, & Anderson, 2014; Zhao, Feng, Zheng, & Cen, 2015). The 
model of Li (2011) is a system of differential equations with Holling type II functional response 
where the plant toxin’s influence in herbivores is considered. In study, Mukherjee et al. (2011) have 
used discrete time model with Holling type II functional response for describing the plant–herbivore 
interaction.
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It is well known that discrete time models governed by difference equations are more appropriate 
than the continuous time models when the populations have non-overlapping generations. So, a signifi-
cant number of the study on the mathematical models of plant–herbivore interactions are described by 
the system of difference equations (Agiza et al., 2009; Danca et al., 1997; Mukherjee et al., 2011; Sui  
et al., 2007). In addition, working with difference equations instead of differential equations allows us to 
some advantages. Discrete dynamical models can bring about easier computational methods for the 
persistence, periodic solutions, boundedness, local and global properties of the dynamical system.

In plant–herbivore interactions, delay differential equations may widely occur due to herbivore dam-
age and deployment of inducible defenses (Das & Sarkar, 2001; Ortega-Cejas et al., 2004; Sun et al., 
2014). From this point of view, Sun et al. (2014) and et all have constructed a reaction-diffusion model 
with delay governed by system of partial differential equations where the effect of time delay on the 
herbivore cycles is investigated. In addition, the properties of delay differential equations are very 
close to differential equation with piecewise constant arguments. In Cooke and Györi study (1994), it 
was pointed out that these equations can be used to get approximate solutions to delay differential 
equations that include discrete delays. In such biological situations, dynamics of growth and death of 
populations can be described by differential equations otherwise, difference equations may reflect the 
interaction of two populations such as competition or predation phenomena (Gurcan, Kartal, Ozturk, & 
Bozkurt, 2014; Kartal & Gurcan, 2015). In the literature, various types of biological model consisting of 
differential equations with piecewise constant arguments have been analyzed using the method of 
reduction to discrete equations (Busenberg & Cooke, 1982; Gopalsamy & Liu, 1998; Gurcan et al., 2014; 
Kartal & Gurcan, 2015; Liu & Gopalsamy, 1999; Öztürk, Bozkurt, & Gurcan, 2012).

In the present paper, our aim is to build a better understanding of how both discrete and continu-
ous times affect the dynamic behavior of plant–herbivore interactions. So we will reconsider the 
model (see Chattopadhayay et al., 2001)

 

as a system of differential equations with piecewise constant arguments such as

 

which include both differential and difference equations. In this model, x(t) and y(t) represent the 
density of plant and herbivore population, respectively, [[t]] denotes the integer part of t ∈ [0,∞) 
and all these parameters are positive. The parameter r, K, and � is the intrinsic growth rate, environ-
mental carrying capacity, and specific predation rate of plant species, respectively. s represents the 
death rate of herbivores and � is the conversion factor of herbivores (Chattopadhayay et al., 2001). 

The logistic term rx(t)
(

1 −
x(t)

K

)

 and the term sy(t) include only a continuous time for the growth of 

plant and for the death of herbivore, respectively. The predational form �x(t)y([[t]]) represent the 
loss of plant population and �x([[t]])y(t) is conversion factor of herbivores which include both dis-
crete and continuous time for a each populations. So the plant–herbivore interaction is considered 
in a certain subinterval and is modeled using a system of differential equations with piecewise con-
stant arguments.

2. Local and global stability analysis
System (1.2) can be written an interval t ∈ [n,n + 1) as follows:
 

(1.1)

{

dx

dt
= rx(t)

(

1 −
x(t)

K

)

− �x(t)y(t),
dy

dt
= −sy(t) + �x(t)y(t),

(1.2)

{

dx

dt
= rx(t)

(

1 −
x(t)

K

)

− �x(t)y([[t]]),
dy

dt
= −sy(t) + �x([[t]])y(t),

(2.1)

{

dx

dt
− x(t)(r − �y(n)) = −rkx2(t),

dy

y(t)
= ((�x(n) − s))dt,
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where 1
K
= k.

By solving each equations of the system (2.1) and letting t → n + 1, we obtain a system of differ-
ence equations

 

System (2.2) reflects the dynamical behavior of the system of differential equations with piecewise 
constant arguments. So we will consider the system of difference equation to analyze the global 
behavior of system (1.2).

The equilibrium points of system (2.2) can be obtained as

We note that the positive equilibrium of the system exists if 𝛽 > ks. Now, we will find Jacobian matrix 
of the system to investigate the dynamic behavior of the model.

Theorem 2.1. The equilibrium points E0 and E1 are saddle point.

Proof At the equilibrium point E0, the Jacobian matrix is the form

The matrix J0 has eigenvalues �1 = e
r , �2 = e

−s. Hence 𝜆1 > 1 and 𝜆2 < 1 and consequently E0 is saddle 
point. On the other hand, the Jacobian matrix J1 at the point E1 is

which gives eigenvalues �1 = e
−r and �2 = e

−s+ �

k. Considering the condition 𝛽 > ks, we can say that E1 
is saddle point.

On the other hand, the Jacobian matrix J
∗
 at the positive equilibrium point E

∗
 is

which yields the following characteristic equation

Now, we can apply Schur–Cohn criterion to determine stability conditions of the system with char-
acteristic equation p(�).

Theorem 2.2 The positive equilibrium point E
∗
 of system (2.2) is local asymptotically stable if and only if

Proof From the Schur–Cohn criterion, E
∗
 is local asymptotically stable if and only if

(a)

(2.2)

{

x(n + 1) =
x(n)(r−�y(n))

(r−�y(n)−rkx(n))e−(r−�y(n))+rkx(n)
,

y(n + 1) = y(n)e�x(n)−s,

E
0
= (0, 0), E

1
=

(

1

k
, 0

)

, E
∗
=

(

s

�
,
r

�

(

1 −
ks

�

))

.

J0 =

(

er 0

0 e−s

)

.

J
1
=

(

e
−r

−
�−e

−r
�

kr

0 e
−s+

�

k

)

J
∗
=

(

e−krx̄ (−1+e−krx̄ )𝛼

kr

𝛽ȳ 1

)

p(𝜆) = 𝜆
2
+ 𝜆

(

−1 − e−krx̄
)

+ e−krx̄ +
(1 − e−krx̄)𝛼𝛽ȳ

kr
= 0.

ks < 𝛽 < k + ks.

p(1) = 1 + e−krx̄ +
(1 − e−krx̄)𝛼𝛽ȳ

kr
− 1 − e−krx̄ < 0,
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     (b)

(c)

(d)

The condition (a), (b), and (c) gives the inequalities

 

 

and

 

which always hold under the condition 𝛽 > ks. From (d), we get

which reveal

This completes the proof.  □

For the parameter values r = 0.2, � = 0.6,K = 5, � = 0.01, s = 0.02 and using initial conditions 
x(1) = 0.2, y(1) = 0.22, it can be seen that the positive equilibrium point (x̄, ȳ) = (2, 0.2) is local 
asymptotically stable, where blue and red graphs represent population density of plant and herbi-
vore population, respectively.

Theorem 2.3 Let {x(n), y(n)}∞n=−1 be a positive solution of system (2.2); then

In addition, if y(n) < x(n), then y(n) ≤ er

k(er−1)
e

𝛽e
r

k(er−1)
−s

.

Proof It can be easily seen that

Also, it can be shown that y(n + 1) ≤ er

k(er−1)
e

�e
r

k(er−1)
−s

 under the condition y(n) < x(n).

p(−1) = 1 + e−krx̄ +
(1 − e−krx̄)𝛼𝛽ȳ

kr
+ 1 + e−krx̄ < 0,

D+

1
= 1 + e−krx̄ +

(

1 − e−krx̄
)

𝛼𝛽ȳ

kr
< 0,

D−

1
= 1 − e−krx̄ −

(

1 − e−krx̄
)

𝛼𝛽ȳ

kr
< 0.

(2.3)p(1) =

(

1 − e−krx̄
)

𝛼𝛽ȳ

kr
< 0,

(2.4)p(−1) = 2 + 2e−krx̄ +

(

1 − e−krx̄
)

𝛼𝛽ȳ

kr
< 0

(2.5)D+

1
= 1 + e−krx̄ +

(

1 − e−krx̄
)

𝛼𝛽ȳ

kr
< 0

e−krx̄ +

(

1 − e−krx̄
)

𝛼𝛽ȳ

kr
< 1

𝛽 < k + ks.

x(n) ≤
er

k
(

er − 1
) .

x(n + 1) =
x(n)[r − �y(n)]er−�y(n)

r − �y(n) + rkx(n)(er−�y(n) − 1)
≤

[r − �y(n)]er−�y(n)

rk(er−�y(n) − 1)
≤

er

k
(

er − 1
) .
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Theorem 2.4 The system has no prime period-two solutions.

Proof On the contrary, suppose that the system (2.2) has a distinctive prime period-two solutions

where w1 ≠ w2, and q1 ≠ q2, and wi, qi are positive real numbers for i ∈ {1, 2}. Then, from system (2.2) 
one has

Since q1 ≠ q2, we have �w2 − s ≠ 0 and �w1 − s ≠ 0. From the second and last equation in the system, 
we have

If q2 is written the above equation, we hold

This equation must satisfy

which is a contradiction �w2 − s ≠ 0 and �w1 − s ≠ 0.

Theorem 2.5 Let A1 = r − �y(n) and A2 = �x(n) − s. Suppose that the conditions of Theorem 2.1 hold 
and

(i)

(ii)

(iii)

(iv)

(v)

Then the positive equilibrium point of system (2.2) is global asymptotically stable.

Proof We define a Lyapunov function as

where q̄ = (x̄, ȳ) is positive equilibrium point of system (2.2).

The change along the solutions of the system is

… ,
(

w1, q1
)

,
(

w2, q2
)

,
(

w1, q1
)

,
(

w2, q2
)

… .

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

w
1
=

w
2
[r−�q

2
]

[r−�q
2
−rkw

2
]e

−[r−�q2]+rkw
2

,

q
1
= q

2
e�w2−s

w
2
=

w
1
[r−�q

1
]

[r−�q
1
−rkw

1
]e

−[r−�q1]+rkw
1

,

q
2
= q

1
e�w1−s,

q21 = q
2
2e

�w2−s−�w1+s.

q21 = q
2
1e

�w1−s+�w2−s.

�w1 − s + �w2 − s = 0

Let y(n) <
r

𝛼
and x̄ <

A1(1 + e
−A1 )

2rke
−A1

for x(n) ∈

(

0,
2x̄e−A1

1 + e−A1

)

,

Let y(n) >
r

𝛼
and x̄ >

−A1(1 + e
−A1 )

2rk
(

e−A1 − 1
)
for x(n) ∈

(

2x̄e−A1

1 + e−A1
, 2x̄

)

,

Let y(n) >
r

𝛼
for x(n) ∈

(

2x̄,∞
)

,

Let A2 > 0 for y(n) ∈

(

0,
2ȳ

1 + eA2

)

,

Let A2 < 0 for y(n) ∈

(

2ȳ

1 + eA2
,∞

)

.

V(n) = [q(n) − q̄]2, n = 0, 1, 2…
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From the first equation in (2.2), we hold;

By considering (i), (ii), and (iii), we have ΔV1(n) < 0. These imply that lim
n→∞

x(n) = x̄. Additionally, we can 
show that ΔV2(n) < 0 which gives lim

n→∞
y(n) = ȳ.

3. Bifurcation analysis
In this section, we investigate existence of stationary bifurcation (fold, transcritical, and pitchfork bi-
furcation), period doubling bifurcation, and Neimark–Sacker bifurcation for the system (2.2). All of 
these bifurcations can be analyzed under the set of algebraic conditions that is called Schur–Cohn 
criterion. It is well known that the system may undergo stationary bifurcation if and only if p(1) = 0, 
p(−1) > 0, D+

1
> 0 and D−

1
> 0. On the other hand, inequalities p(1) > 0, p(−1) = 0, D+

1
> 0 and 

D−

1
> 0 give the conditions of period doubling bifurcation. But considering (2.3) and (2.4), it is easily 

seen that these conditions do not hold for the system. Therefore, stationary bifurcation and period 
doubling bifurcation do not exist for the system.

Now, we can investigate the existence of Neimark–Sacker bifurcation for the plant–herbivore model 
(Hone, Irle, & Thurura, 2010). The algebraic condition of Neimark–Sacker bifurcation can be obtained 
from the analysis of inequalities p(1) > 0, p(−1) > 0, D+

1
> 0 and D−

1
= 0. In local stability analysis, 

we have already shown that the inequalities p(1) > 0, p(−1) > 0, D+

1
> 0 are always exist. There-

fore, we will only analyse the equation D−

1
= 0 to determine Neimark–Sacker bifurcation condition.

Theorem 3.1 System (2.2) undergoes Neimark–Sacker bifurcation if and only if

Proof This result comes from the analysis of D−

1 = 0.

Using the condition of Theorem 3.1 with the parameters given in Figure 1, we have the Neimark–
Sacker bifurcation point as K̄ = 102 (Figure 2).

ΔV(n) = V(n + 1) − V(n) = {q(n + 1) − q(n)}
{

q(n + 1) + q(n) − 2q̄
}

.

ΔV
1
(n) =

[

x(n + 1) − x(n)
]

[x(n + 1) + x(n) − 2x̄]

= x(n)
[

(A
1
− rkx(n))(1 − e

−A
1

)

][A
1

(

x(n) + x(n)e
−A

1 − 2x̄e
−A

1

)

+ rkx(n)(x(n) − 2x̄)(1 − e
−A

1 )].

k̄ =
𝛽

1 + s
.

Figure 1.  Stable equilibrium 
point of the system for 
 r = 0.2,� = 0.6,K = 5,� = 0.01,

s = 0.02, x(1) = 0.2 and y(1) = 0.22.
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Figure 2.  Stable limit cycle for 
r = 0.2,� = 0.6,� = 0.01, s = 0.02 
and K̄ = 102.
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Figure 3.  Graph of the iteration 
solution of system (2.2) for 
r = 0.2,� = 0.6,� = 0.01, s = 0.02 
and K = 200.
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4. Result and discussion
In this paper, dynamics of a discrete-continuous time plant–herbivore model has been investigated. 
Local and global stability properties of the positive equilibrium point are analyzed. It is interesting to 
note that when conversion factor of herbivores becomes low then the system converges to a stable 
situation. On the other hand, we investigate possible bifurcation types for the system and observe 
that the system exhibits Neimark–Sacker bifurcation. This type of bifurcation has been observed in 
many plant–herbivore models (Liu et al., 2008; Saha & Bandyopadhyay, 2005; Zhao et al., 2015) and 
shows that periodic or quasi-periodic solutions occur as a result of a limit cycle.
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In our manuscript, the parameter K (environmental carrying capacity of plant species) is determined 
as a bifurcation parameter. When the environmental carrying capacity of plant species reaches to 
K̄ = 102, the system enters a Neimark–Sacker bifurcation as a result of stable limit cycle (Figure 2). If K 
exceeds the K̄, the system continues oscillatory behavior with growing amplitude (Figure 3). So we can 
say that the parameter K has a strong effect on the stability of the system so as to control two 
populations.
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