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ABSTRACT
In this paper, a conformable fractional-order logistic differential equation
including both discrete and continuous time is taken into account. By using
a piecewise constant approximation, a discretization method which trans-
forms a fractional-order differential equation into a difference equation is
introduced. Necessary and sufficient conditions for both local and global
stability of the discretized system are obtained. The control space dia-
grams (α, r) and (h, r)with the fractional-order parameterα, a discretization
parameter (h) and the growth parameter (r) are obtained and these dia-
grams illustrate the regions where the solutions of the system approach
to the positive equilibrium point with monotonic and damped oscilla-
tions. Finally, the existence of flip bifurcation is proved using the centre
manifold theory and these theoretical results are supported by numerical
calculations.
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1. Introduction

The attractions of the fractional-order differential equations have a long story and attend of
many researchers. One reason of this is that the theory of the fractional-order analysis is not
fully developed. Another reason is that the fields of application of these equations are increas-
ingly widening. Today, the fractional-order differential equations are used in many scientific fields
such as population dynamics, fluid dynamics, mechanics, physics, epidemiology and engineering
[1,5,12,19,20,24,28,29,38,44,45,50]. In population dynamics, researchers have shown that mathe-
matical models that are established with fractional-order differential equations yield more suc-
cessful results than models that are established with classical integer-order differential equations
[7,11,35,39,41]. The main reason for using fractional-order differential equations is that system
memory and hereditary characteristics in biological phenomena can be defined by means of these
equations. Hence the next state of the fractional systems is dependent not only on its current state but
also on its past (evolutionary) state.

Fractional analysis is the generalization of the classical differential and integration to the arbi-
trary order (non-integer state). There are many definitions of the fractional derivative such as
Riemann–Liouville, Caputo and Grü nwald–Letnikov fractional derivatives.
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For α ∈ [n − 1, n), the Riemann–Liouville fractional derivative of f of order α is defined as

Dα
a f (t) = 1

�(n − α)

dn

dtn

∫ t

a

f (x)
(t − x)α−n+1 dx (1)

and Caputo fractional derivative of f of order α is

Dα
a f (t) = 1

�(n − α)

∫ t

a

f n(x)
(t − x)α−n+1 dx. (2)

In 2014, Khalil et al. [25] first introduced a new fractional derivative namely ‘conformable
fractional derivative’. For all t> 0, α ∈ (0, 1], conformable fractional derivative of f : [0,∞) → R
function is defined by

(Taf )(t) = lim
ε→0

f (t + εt1−α) − f (t)
ε

. (3)

Similarly, the left fractional derivative starting from a of the function f : [a,∞) → ∞ of order
0 < α ≤ 1 is

(Ta
αf )(t) = lim

ε→0

f (t + ε(t − a)1−α) − f (t)
ε

(4)

and the right fractional derivative of order 0 < α ≤ 1 terminating at b of f is defined by

(bαTf )(t) = − lim
ε→0

f (t + ε(b − t)1−α) − f (t)
ε

. (5)

Note that if f is differentiable, then (Ta
αf )(t) = (t − a)1−αf ′(t) and (bαTf )(t) = −(b − t)1−αf ′(t) [2].

Many non-linear fractional differential equations do not have analytic solution. For this reason,
approximations and numerical techniques have to be used for these equations. The numerical meth-
ods such as the Adomian decomposition [9,22,23], homotopy perturbation [26,34,36], homotopy
analysis [49], variational iteration [46,48], Adams-type predictor-corrector [4,10,37,51] and differen-
tial transform method [16,17] have been used to solve the fractional differential equations recently.
Grünwald–Letnikov [40,43], nonstandard finite difference scheme [6] and Euler method [8,42] are
also numerical methods that are frequently used to find solution of fractional differential equations.

In recent years, a discretization process has been used to discretize the fractional order differential
equations by using piecewise constant arguments [3,13,14,33]. To obtain the discretization version of
the differential equation of fractional order

Dαx(t) = f (x(t)), t > 0,

x(0) = x0, t ≤ 0.
(6)

Agarwal et al. [3] considered the fractional order differential equations with piecewise constant
arguments

Dαx(t) = f
(
x
([

t
r

]
r
))

, x(t) = x0, t ≤ 0. (7)

From the solutions of Equation (7) on any interval of the form t ∈ [nr, (n + 1)r), one can obtain a
difference equation

xn+1(t) = xn(r) + (t − nr)α

�(1 + α)
f (xn(r)). (8)

On the other hand, while adding piecewise constant arguments to the differential equations, it is
important to maintain the structure of continuity in some terms from the biological point of view.
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For example, while growth and death events in a population are continuous, competition of a popu-
lation with another population is discontinuity. Under these biological facts, Gopalsamy and Liu [18]
considered the logistic differential equations with both discrete and continuous time:

dN(t)
dt

= rN(t)(1 − aN(t) − bN([t])). (9)

The purpose of the present paper is to study dynamic behaviour of fractional order version of
Equation (9) such as

Ta
αN(t) = rN(t)

(
1 − aN(t) − bN

([
t
h

]
h
))

. (10)

2. Discretization process

Consider the fractional order logistic equation with piecewise constant argument given by

Ta
αN(t) = rN(t)

(
1 − aN(t) − bN

([
t
h

]
h
))

(11)

with the initial condition N(0) = N0, where [t] denotes the integer part of t ∈ [0,∞) and h> 0
is a discretization parameter. Let t ∈ [nh, (n + 1)h), n = 0, 1, 2, . . .. By using the left conformable
fractional derivative, we have

(t − nh)1−α dN(t)
dt

= rN(t)(1 − aN(t) − bN(nh)), (12)

which leads to

− N′(t)
N2(t)

+ (r − rbN(nh))
(t − nh)1−α

1
N(t)

= ra
(t − nh)1−α

. (13)

If we multiply both sides of Equation (13) by e(r−rbN(nh))((t−nh)α/α), then we have

d
dt

(
1

N(t)
e(r−rbN(nh))((t−nh)α/α)

)
= ra

(t − nh)1−α
e(r−rbN(nh))((t−nh)α/α), t ∈ [nh, (n + 1)h).

(14)
Integrating both sides of (14) with respect to t on [nh, t), one obtains

1
N(t)

e(r−rbN(nh))((t−nh)α/α) − 1
N(nh)

e(r−rbN(nh))((nh−nh)α/α)

= a
1 − bN(nh)

(e(r−rbN(nh))((t−nh)α/α) − e(r−rbN(nh))((nh−nh)α/α)). (15)

We let t → (n + 1)h in (15) and obtain

N((n + 1)h) = N(nh)(1 − bN(nh))
(1 − bN(nh) − aN(nh)) e−r(1−bN(nh))(hα/α) + aN(nh)

. (16)

Adapting the difference equation notation and replacing N(nh) by N(n) gives

N(n + 1) = N(n)(1 − bN(n))
(1 − bN(n) − aN(n)) e−r(1−bN(n))(hα/α) + aN(n)

, n = 0, 1, 2, . . . . (17)
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If we let bN(n) ≡ x(n), then Equation (17) reduces to

x(n + 1) = x(n)(1 − x(n))
(1 − x(n) − cx(n)) e−r(1−x(n))(hα/α) + cx(n)

= f (x, r), n = 0, 1, 2, . . . . (18)

where c = a/b.

3. Local and global stability analysis

In this section, we study the stability of the equilibrium points of Equation (18) which has two
equilibrium points namely, x∗ = 0 and x∗ = 1/(1 + c). The following theorem gives the neces-
sary and sufficient condition for the local asymptotically stable of the positive equilibrium point
x∗ = 1/(1 + c).

Theorem 3.1: Assume that c ∈ [0, 1). The positive equilibrium point of system (18) is local asymptoti-
cally stable if and only if

r <
α

hα

1 + c
c

ln
(
1 + c
1 − c

)
. (19)

Proof: The eigenvalue of the linear equation of (18) at the positive equilibrium point is

λ = ∂f
∂x

∣∣∣∣
x∗=1/(1+c)

= 1
c
(e−(cr/(1+c))(hα/α)(1 + c) − 1). (20)

The asymptotically stable condition |λ| < 1 leads to

1 − c
1 + c

< e−(cr/(1+c))(hα/α) < 1. (21)

It can be easily seen that if c> 1, then the inequality (21) holds for all r ∈ [0,∞). Otherwise, if
c ∈ [0, 1), then we have

r <
α

hα

1 + c
c

ln
(
1 + c
1 − c

)
, (22)

which completes the proof. �

The following theorem gives a region where the solutions of Equation (18) approach to positive
equilibrium point with monotonic and damped oscillations.

Theorem 3.2:

(a) The eventual convergence of solutions to x∗ is monotonic (nonoscillatory) if

r <
α

hα

1 + c
c

ln(1 + c). (23)

(b) The eventual convergence of solutions to x∗ is damped oscillatory if

α

hα

1 + c
c

ln(1 + c) < r <
α

hα

1 + c
c

ln
(
1 + c
1 − c

)
. (24)
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Proof: (a) We note that the eventual convergence of solutions to x∗ is monotonic if 0 < λ < 1.
Therefore from Equation (20), we have

1
1 + c

< e−(cr/(1+c))(hα/α) < 1, (25)

which gives

r <
α

hα

1 + c
c

ln(1 + c). (26)

(b) If −1 < λ < 0, then the eventual convergence of solutions to x∗ is damped oscillatory. Now, we
have

1 − c
1 + c

< e−(cr/(1+c))(hα/α) <
1

1 + c
, (27)

that is
α

hα

1 + c
c

ln(1 + c) < r <
α

hα

1 + c
c

ln
(
1 + c
1 − c

)
. (28)

�

Example 3.3: Figure 1 shows a control space diagram (α, r) which is divided into three regions. In
the lower and middle regions, the solutions are eventually monotonic and damped oscillatory (sta-
ble) so are convergent to the positive equilibrium point x∗ respectively. In the upper region, the
solutions of Equation (18) do not approach to positive equilibrium point (unstable). This figure
shows that as the parameter α is increasing from 0 to 1 the stability region is linearly increasing.
For example, to determine the value of r, we substitute c= 0.25, h= 1 and α = 1 into the inequali-
ties (19), (23) and (24), thus themonotonic, damped oscillatory and unstable regions can be obtained
as r< 1.11572, 1.11572< r< 2.55413 and r> 2.55413 respectively (see Figure 1). Figure 2 shows also
a control space diagram (h, r) which shows the effect of discretization parameter (h) on the dynamic
behaviour of the equation. Similar type of regions can be observed as in Figure 1 but the shape
of the region is different as the parameters (r and h) are changed. It is found that as the parame-
ter h is increasing from 0 to 1 the stability region is linearly decreasing exponentially. For c= 0.25,
h= 0.4, α = 1, monotonic, damped oscillatory and unstable regions are obtained as r< 2.78929,
2.78929< r< 6.38532 and r> 6.38532, respectively.

Theorem3.4: Suppose that c ∈ [1,∞), r ∈ [0,∞). Then the positive equilibriumpoint x∗ = 1/(1 + c)
of Equation (18) is globally asymptotically stable.

Proof: We consider a Lyapunov function V defined by V(n) = (x(n) − x∗)2, n = 0, 1, 2, . . .. The
change along the solutions of the system is

�V(n) = V(n + 1) − V(n) = (x(n + 1) − x∗)2 − (x(n) − x∗)2

= (x(n + 1) + x(n) − 2x∗)(x(n + 1) − x(n)). (29)

Considering Equation (18), we get

x(n + 1) − x(n) = x(n)
F(1 − x(n))

(
er(1−x(n))(hα/α) − 1

)
(x∗ − x(n))(1 + c) (30)

and

x(n + 1) + x(n) − 2x∗ = x(n)
F

er(1−x(n))(hα/α) + x(n) − 2x∗
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Figure 1. Control space diagram (α, r) shows regions in different types of the stability with c= 0.25, h= 1.

= x(n)
F(1 − x(n))

(er(1−x(n))(hα/α) − 1)(x∗ − x(n))(1 + c)

×
(
1 − c
1 + c

− 2
(1 + c)x(n)

(
1 − x(n)

er(1−x(n))(hα/α) − 1

))
, (31)

where

F = 1 + cx(n)

(
er(1−x(n))(hα/α) − 1

1 − x(n)

)
. (32)
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Figure 2. Control space diagram (h, r) shows regions in different types of the stability with c= 0.25, α = 1.

From the inequalities (30) and (31), we have

�V(n) = (x(n + 1) + x(n) − 2x∗)(x(n + 1) − x(n))

=
(

x(n)
F(1 − x(n))

(er(1−x(n))(hα/α) − 1)(x∗ − x(n))(1 + c)
)2

×
(
1 − c
1 + c

− 2
(1 + c)x(n)

(
1 − x(n)

er(1−x(n))(hα/α) − 1

))
≤ 0, for c ≥ 1, (33)

which completes the proof. �
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4. Bifurcation analysis

In this section, we will study direction and stability of the Flip bifurcation in (18) [27,47]. To study
Flip bifurcation, the parameter r is chosen as a bifurcation parameter. Now, we can investigate the
conditions and direction of Flip bifurcation.

Theorem 4.1: Suppose that x∗ is the positive equilibrium point of Equation (18). If c 
= 1 and c 
=
1
2 ln((1 + c)/(1 − c)) then Equation (18) undergoes a flip bifurcation at the equilibrium point x∗ when
the parameter r varies in a small neighbourhood of r1.

Proof: The eigenvalue of the linear equation of (18) at the positive equilibrium point x∗ = 1/(1 + c)
is

λ(r) = fx(x, r) = 1
c
(e−(cr/(1+c))(hα/α)(1 + c) − 1). (34)

On the other hand, the condition λ = −1 gives the critical flip bifurcation point r1 as

r = r1 = α

hα

1 + c
c

ln
(
1 + c
1 − c

)
. (35)

From the transversality conditions, we get

fxα(x∗, r1) = hα

α

c − 1
1 + c


= 0, for c 
= 1. (36)

In addition, we have

fxx(x∗, r1) = 2(c2 − 1)(2c − ln( 1+c
1−c ))

c2
(37)

and

fxxx(x∗, r1) = 3(c − 1)(1 + c)2(2c − ln( 1+c
1−c ))(−2 + 4c − ln( 1+c

1−c ))

c3
. (38)

Now, the non-degeneracy condition can be calculated as

d(0) = 1
4
(fxx(x∗, r1))2 + 1

6
fxxx(x∗, r1)

= (c − 1)(1 + c)2(2c − ln( 1+c
1−c ))(2c + (−2 + c) ln( 1+c

1−c ))

2c4

= 0. (39)

�

Now, we present the bifurcation diagrams, phase portraits for the system to confirm the above
theoretical analysis and show the complex dynamical behaviours by using numerical simulations.

Example 4.2: For the parameters values c= 0.25, h= 1, α = 0.2, the critical value of Flip bifurca-
tion point is obtained from Equation (35) as r1 = 0.510826 (Figure 3 a). For this value, it is easy to
see that λ(r1) = −1. On the other hand, from Equations (36) and (39), we have fxα(x∗, r1) = −3
and d(0) = 0.639705 which show that a unique and stable period-two cycle bifurcates from x∗ for
r < r1 = 0.510826. For α = 0.8, flip bifurcation point is r1 = 2.0433 (Figure 3 b). For the parameter
values c= 0.25, h= 0.4, α = 1, the critical value of Flip bifurcation point is obtained as r1 = 6.38532
(Figure 4 a). For h= 0.8, that is r1 = 3.19266 (Figure 4 b).
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Figure 3. Bifurcation diagram of the system for the parameters c= 0.25, h= 1.

Figure 4. Bifurcation diagram of the system for the parameters c= 0.25, α = 1.

5. Result and discussion

By using the piecewise constant approximation, a discretization process to discretize conformable
fractional logistic differential equation (10) is given in this study. In the interval t ∈ [nh, (n +
1)h), n = 0, 1, 2, . . ., this process gives difference equation (18). Thus the fractional derivative of order
α is included as a new parameter into the difference equation. The condition that allows the positive
equilibrium point of the equation to be local asymptotically stable is obtained by the inequality (19)
according to the parameter r. In addition, the conditions (23) and (24) show the regions where the



10 S. KARTAL AND F. GURCAN

solutions are eventually monotonic and damped oscillatory and so convergence to the positive equi-
librium point respectively (see Figures 1 and 2). We also obtain that the positive equilibrium point of
the equation is global asymptotically stable under the condition c ≥ 1 by using a Lyapunov function.

The occurrence of flip bifurcation in Equation (18) with the bifurcation parameter r is shown
theoretically by using the center manifold theory. On the other hand, the effect of the change of frac-
tional derivative order α on Equation (18) is illustrated in Figure 1. This figure shows that the stable
behaviour of the equation is destabilizing when decreasing the fractional-order parameter α. For
example, while for α = 0.2, the flip bifurcation point is r1 = 0.510826; when α = 0.8, this value is
r1 = 2.0433 (Figures 1 and 3). The discretization parameter h is the other substantial parameter that
affects the dynamic structure of the equation. The stable behaviour of Equation (18) is destabilizing
when increasing the parameter h (Figure 2). For instance, while for h= 0.4, the flip bifurcation point
is r1 = 6.38532; when h= 0.8, the value of bifurcation point decreases to r1 = 3.192664 (Figure 4).

It is well known that existence or non-existence of chaotic solutions for a dynamical system is
determined by calculating Lyapunov exponent. If the system has a positive largest Lyapunov expo-
nent, then the system exhibits chaotic dynamics. In the literature, there are many fractional order
systems that exhibit chaotic dynamics [15,21,30–32]. For the model (18), the maximum Lyapunov
exponents corresponding to Figures 3 and 4 are calculated and plotted in Figures 5 and 6. These

Figure 5. Maximum Lyapunov exponents corresponding to Figure 3(a,b).

Figure 6. Maximum Lyapunov exponents corresponding to Figure 4(a,b).
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figures demonstrate the existence of the chaotic regions and period orbits in the parametric space
with increasing the parameter r.
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