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The present study deals with the analysis of a predator–prey like model consisting of system of differential
equations with piecewise constant arguments. A solution of the system with piecewise constant arguments
leads to a system of difference equations which is examined to study boundedness, local and global
asymptotic behaviour of the positive solutions. Using Schur–Cohn criterion and a Lyapunov function, we
derive sufficient conditions under which the positive equilibrium point is local and global asymptotically
stable. Moreover, we show numerically that periodic solutions arise as a consequence of Neimark-Sacker
bifurcation of a limit cycle.
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AMS Subject Classification: 39A10; 39A28; 39A30

1. Introduction

Recently, there has been great interest in studying differential equations with piecewise constant
arguments because of the wide application of these equations in biology, engineering and other
fields. Many authors have analysed various types of population models based on logistic equa-
tions with piecewise constant arguments and have obtained theoretical results on oscillations or
chaotic behaviour [2,4–6,8–14,15,16]. The simplest model was proposed by May [9] and May
and Oster [10] who obtained that the model have chaotic behaviour for certain parameters. On
the other hand, several authors [8,11,12,15,16] have investigated a more general logistic equation
with piecewise constant arguments

dx(t)

dt
= rx(t)(1 − ax(t) − b

m∑
j=0

cjx([t − j])), t ≥ 0. (1)
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160 S. Kartal and F. Gurcan

Liu and Gopalsamy [8] have showed that for certain special cases, solutions of equation (1)
can have chaotic behaviour through period doubling bifurcations. Muroya [12] has improved
contractivity conditions for the positive equilibrium point of this equation.

Following these works, Gurcan and Bozkurt [5] have studied global stability and boundedness
character of the positive solutions of the differential equation

dx(t)

dt
= rx(t)(1 − αx(t) − β0x([t]) − β1x([t − 1])). (2)

By using this equation, Ozturk et al. [14] have modelled a population density of a bacteria species
in a microcosm. A more general case of equation (2) has been considered by Ozturk and Bozkurt
[13] as the following;

dx(t)

dt
= x(t)(r(1 − αx(t) − β0x([t]) − β1x([t − 1])) + γ1x([t]) + γ2x([t − 1])). (3)

They have investigated stability and oscillatory characteristics of difference solutions of the
equation. Equation (3) has also been used for modelling an early brain tumour growth in [2].
The stability analysis of the model shows that increase in the tumour growth rate decreases the
local stability of the positive equilibrium point. Another mathematical model for tumour growth
under the immune activity has been constructed Banerjee and Sarkar [1] such as

dM

dt
= r1M

(
1 − M

k1

)
− α1MN ,

dN

dt
= βNZ(t − τ) − d1N − α2MN ,

dZ

dt
= r2Z

(
1 − Z

k2

)
− βNZ(t − τ),

(4)

where M (t), N(t), Z(t) represent the number of tumour, hunting and resting cells, respectively.
The model consists of delay differential equations which often arise in biological systems. Since
analysis of these equations is more complicated than ordinary differential equations, numeri-
cal approach may be needed for delay differential equations. In study [3], Cooke and Györi
have showed that differential equations with piecewise constant arguments can be used to obtain
approximate solution to delay differential equations that contain discrete delays.

In the present paper, we have modified model (4) by adding piecewise constant arguments
such as

dM

dt
= r1M (t)

(
1 − M (t)

k1

)
− α1M (t)N([t]),

dN

dt
= βN(t)Z([t]) − d1N(t) − α2M ([t])N(t),

dZ

dt
= r2Z(t)

(
1 − Z(t)

k2

)
− βN([t])Z(t),

(5)

where [t] denotes the integer part of t ∈ [0, ∞) and all these parameters are positive. The model
includes both discrete and continuous time for tumour, hunting and resting cells because tumour
cells have different dynamics which can be described by using both differential and difference
equations. Here, M (t), N(t) and Z(t) represent population density of tumour, hunting and resting
cells, respectively. The parameters r1 and k1 represent the growth rate and the maximum carrying
capacity of tumour cells, respectively. r2 is the growth rate, k2 is the maximum carrying capacity
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Journal of Biological Dynamics 161

of resting cells and d1 is the natural death of hunting cell. The parameter α1 denotes decay rate
of tumour cells by hunting cells, α2 is decay rate of hunting cells by tumour cells and β is
conversion rate from resting to hunting cells. Most of the parameter values are taken from the [1]
in terms of consistency with the biological facts. In Section 2, we investigate boundedness, local
and global behaviour of the positive solutions of the system by using the method of reduction
to discrete equations. In Section 3, we study periodic solution of the system through Neimark-
Sacker bifurcation.

2. Boundedness, local and global stability analysis

In this section, by integrating of system (5) we first obtain a solution and later discuss the
boundedness and the local asymptotic stability of system (7).

We can rewrite system (5) on an interval of the form t ∈ [n, n + 1) as follows:

dM

dt
= r1M (t)

(
1 − M (t)

k1

)
− α1M (t)N(n),

dN

dt
= βN(t)Z(n) − d1N(t) − α2M (n)N(t),

dZ

dt
= r2Z(t)

(
1 − Z(t)

k2

)
− βN(n)Z(t).

(6)

By solving each equations in the system (6) with respect to t on [n, t) and letting t → n + 1, we
obtain a system of difference equations

M (n + 1) = M (n)(r1 − α1N(n))

r1K1M (n) + (r1 − α1N(n) − r1K1M (n)) exp(−(r1 − α1N(n)))
,

N(n + 1) = N(n) exp(βZ(n) − d1 − α2M (n)),

Z(n + 1) = Z(n)(r2 − βN(n))

r2K2Z(n) + (r2 − βN(n) − r2K2Z(n)) exp(−(r2 − βN(n)))
,

(7)

where 1/k1 = K1, 1/k2 = K2. Thus, we obtain discrete analogue of system (5) as a system of dif-
ference equation which reveals the rich dynamical characteristics and the asymptotic behaviour
of the dynamical system (5). Now, we can discuss the boundedness of solutions of the system in
the following theorem.

Theorem 2.1 Let {M (n), N(n), Z(n)}∞n=−1 be a positive solution of system (7); then

0 ≤ M (n) ≤ exp(r1)

K1(exp(r1) − 1)
and 0 ≤ Z(n) ≤ exp(r2)

K2(exp(r2) − 1)
.

In addition, if βZ(n) − d1 − α2M (n) < 0, then 0 ≤ N(n) ≤ N(0).
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162 S. Kartal and F. Gurcan

Proof It is easy to see that system (5) can be written on an interval of the form t ∈ [n, n + 1) as
follows:

M (t) = M (n) exp

(∫ t

n
(r1(1 − M (s)K1) − α1N(n)) ds

)
,

N(t) = N(n) exp((βZ(n) − d1 − α2M (n))(t − n)),

Z(t) = Z(n) exp

(∫ t

n
(r2(1 − Z(s)K2) − βN(n)) ds

)
.

It is clear that if M (0) > 0, N(0) > 0 and Z(0) > 0, then M (t) > 0, N(t) > 0 and Z(t) > 0 for
t > 0. This implies that we have positive solutions of Equation (5) for positive initial conditions.

From the first equation in system (7), we have

M (n + 1) = M (n)(r1 − α1N(n)) exp(r1 − α1N(n))

r1 − α1N(n) + r1K1M (n)(exp(r1 − α1N(n)) − 1)

≤ M (n)(r1 − α1N(n)) exp(r1 − α1N(n))

r1K1M (n)(exp(r1 − α1N(n)) − 1)

= (r1 − α1N(n)) exp(r1 − α1N(n))

r1K1(exp(r1 − α1N(n)) − 1)

≤ r1 exp(r1)

r1K1(exp(r1) − 1)

= exp(r1)

K1(exp(r1) − 1)
.

Additionally, It can be easily shown that Z(n) ≤ exp(r2)/K2(exp(r2) − 1). Now, we consider the
second equation in system (7). Under the condition βZ(n) − d1 − α2M (n) < 0, we get

N(n + 1) = N(n) exp(βZ(n) − d1 − α2M (n)) ≤ N(n).

This completes the proof. �

To analyse global behaviour of the difference system, we need to determine the positive
equilibrium point. Let

f1(M (n), N(n), Z(n)) = M (n)(r1 − α1N(n))

r1K1M (n) + (r1 − α1N(n) − r1K1M (n)) exp(−(r1 − α1N(n)))
,

f2(M (n), N(n), Z(n)) = N(n) exp(βZ(n) − d1 − α2M (n)),

f3(M (n), N(n), Z(n)) = Z(n)(r2 − βN(n))

r2K2Z(n) + (r2 − βN(n) − r2K2Z(n)) exp(−(r2 − βN(n)))
.

Thus, the positive equilibrium point of system (7) or fixed point of the vector map F = (f1, f2, f3)
can be obtained from the solution of the system

M̄ = f1(M̄ , N̄ , Z̄),

N̄ = f2(M̄ , N̄ , Z̄),

Z̄ = f3(M̄ , N̄ , Z̄),
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Journal of Biological Dynamics 163

as Ē = (M̄ , N̄ , Z̄) where

M̄ = β2r1 − βr2α1 + d1K2r2α1

β2K1r1 − K2r2α1α2
, N̄ = r1r2(βK1 − d1K1K2 − K2α2)

β2K1r1 − K2r2α1α2
,

and

Z̄ = βd1K1r1 + βr1α2 − r2α1α2

β2K1r1 − K2r2α1α2
.

For M̄ > 0, N̄ > 0 and Z̄ > 0, we must hold conditions

β2r1 − βr2α1 + d1K2r2α1 > 0, (8)

β2K1r1 − K2r2α1α2 > 0, (9)

βK1 − d1K1K2 − K2α2 > 0, (10)

βd1K1r1 + βr1α2 − r2α1α2 > 0. (11)

By analysing conditions (8)–(11) with respect to α1 and β, we can obtain the inequalities

α1 <
β2r1

βr2 − d1K2r2
and β >

d1K1K2 + K2α2

K1
. (12)

The Jacobian matrix of map F = (f1, f2, f3) at positive equilibrium point Ē is the matrix

JF(Ē) =

⎛
⎜⎜⎜⎜⎝

exp(−K1r1M̄ ) − (1 − exp(−K1r1M̄ ))α1

K1r1
0

−α2N̄ 1 βN̄

0 − (1 − exp(−K2r2Z̄))β

K2r2
exp(−K2r2Z̄)

⎞
⎟⎟⎟⎟⎠ .

Under the assumption

exp(−K1r1M̄ ) = exp(−K2r2Z̄), (13)

the characteristic polynomial of the matrix JF(Ē) at the positive equilibrium point is

p1(λ) = (exp(−K1r1M̄ ) − λ)
(
(1 − λ)(exp(−K1r1M̄ ) − λ)

+ N̄(1 − exp(−K1r1M̄ ))(β2K1r1 − K2r2α1α2)

K1r1K2r2

)
.

From the first factor in this equation, an eigenvalue is computed as λ1 = exp(−K1r1M̄ ) < 1.
Solving Equation (13), we have

d1 = (βr1 − r2α1)(βK1r1 − K2r2α2)

K1r1K2r2(β − α1)
. (14)

Thus, the characteristic polynomial is reduced to a second-order equation

p2(λ) = λ2 + λ(−1 − exp(−K1r1M̄ )) + exp(−K1r1M̄ )

+ N̄(1 − exp(−K1r1M̄ ))(β2K1r1 − K2r2α1α2)

K1r1K2r2
.

To determine stability conditions of discrete system (7) through the characteristic equation
p2(λ), we can use Schur–Chon criterion.
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164 S. Kartal and F. Gurcan

Theorem 2.2 Let Ē = (M̄ , N̄ , Z̄) be the positive equilibrium point of system (7) and

d1 = (βr1 − r2α1)(βK1r1 − K2r2α2)

K1r1K2r2(β − α1)
.

If

α1 <
β2r1

βr2 − d1K2r2
and

d1K1K2 + K2α2

K1
< β <

K1K2 + d1K1K2 + K2α2

K1
,

then Ē is local asymptotically stable.

Proof By the Schur–Cohn criterion, we get that Ē is local asymptotically stable if and only if

| −1 − exp(−K1r1M̄ ) |< 1 + exp(−K1r1M̄ ) + N̄(1 − exp(−K1r1M̄ ))(β2K1r1 − K2r2α1α2)

K1r1K2r2
(15)

and

1 + exp(−K1r1M̄ ) + N̄(1 − exp(−K1r1M̄ ))(β2K1r1 − K2r2α1α2)

K1r1K2r2
< 2. (16)

It is easy to see that Equation (15) always exists. From Equation (16), we have

N̄(1 − exp(−K1r1M̄ ))(β2K1r1 − K2r2α1α2) + K1r1K2r2 exp(−K1r1M̄ )

K1r1K2r2
< 1

which reveal that

β <
K1K2 + d1K1K2 + K2α2

K1
.

This completes the proof. �

Example 2.3 In this example, all parameter values are taken in [1] as r1 = 0.18 day−1,
r2 = 0.0245 day−1, k1 = 5 × 106 cells, k2 = 1 × 107 cells, β = 6.2 × 10−9 cells−1 day−1, α2 =
3.422 × 10−10 cells−1 day−1, d1 = 0.0412 day−1, except α1. It can be seen that under the con-
ditions given in Theorem 2.2 and using initial conditions M (0) = 4.53941 × 105, N(0) =
1.3158 × 106 and Z(0) = 6.67022 × 106, the equilibrium point Ē = (M̄ , N̄ , Z̄) = (4.53941 ×
105, 1.3158 × 106, 6.67022 × 106) is local asymptotically stable where blue, red and black
graphs represent M (n), N(n) and Z(n) population densities, respectively (see Figure 1).

Using the parameter values given in Example 2.3, positive equilibrium point Ē = (4.53941 ×
105, 1.3158 × 106, 6.67022 × 106) is obtained under the conditions β > 4.2911 × 10−9 and
α1 < 1.35777 × 10−7 which are exactly the same as in those of Banerjee and Sarkar [1].
In addition, our stability results can be compared numerically with that of work [1]. Although
in their delayed system local stability condition on parameter β is β > 4.2911 × 10−9, we have
4.2911 × 10−9 < β < 1.0429 × 10−7 which is obtained from Theorem 2.2. In addition at the
present study, the condition on α1 is α1 < 1.35777 × 10−7, but this condition is determined as
α1 < 1.26004 × 10−7 in study [1] under the set of our parameter values. These results indicate
that there is a little differences between their and our stability conditions.
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Figure 1. Graph of the iteration solution of M (n), N(n) and Z(n),where α = 1.24379 × 10−7.

Theorem 2.4 Let A1 = r1 − α1N(n), A2 = r2 − βN(n) and A3 = βZ(n) − d1 − α2M (n). Sup-
pose that the conditions of Theorem 2.2 hold and

(a1) N(n) <
r1

α1
and M̄ <

A1(1 + exp(−A1))

2r1K1 exp(−A1)
for M (n) ∈

(
0,

2M̄ exp(−A1)

1 + exp(−A1)

)
,

(a2) N(n) >
r1

α1
and M̄ >

−A1(1 + exp(−A1))

2r1K1(exp(−A1) − 1)
for M (n) ∈

(
2M̄ exp(−A1)

1 + exp(−A1)
, 2M̄

)
,

(a3) N(n) >
r1

α1
for M (n) ∈ (2M̄ , ∞),

(b1) A3 > 0 for N(n) ∈
(

0,
2N̄

1 + exp(A3)

)
,

(b2) A3 < 0 for N(n) ∈
(

2N̄

1 + exp(A3)
, ∞

)
,

(c1) N(n) <
r2

β
and Z̄ <

A2(1 + exp(−A2))

2r2K2 exp(−A2)
for Z(n) ∈

(
0,

2Z̄ exp(−A2)

1 + exp(−A2)

)
,

(c2) N(n) >
r2

β
and Z̄ >

−A2(1 + exp(−A2))

2r2K2(exp(−A2) − 1)
for Z(n) ∈

(
2Z̄ exp(−A2)

1 + exp(−A2)
, 2Z̄

)
,

(c3) N(n) >
r2

β
for Z(n) ∈ (2Z̄, ∞).

Then the positive equilibrium point of system (7) is global asymptotically stable.

Proof Let Ē = (M̄ , N̄ , Z̄) is positive equilibrium point system (7) and we consider a Lyapunov
function V (n) defined by

V (n) = (E(n) − Ē)2, n = 0, 1, 2, . . .
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Figure 2. Graph of the iteration solution of M (n), N(n) and Z(n), where α = 1.24379 × 10−7. Parameter values are
taken Example 2.3.

The change along the solutions of the system is

�V (n) = V (n + 1) − V (n) = (E(n + 1) − E(n))(E(n + 1) + E(n) − 2Ē).

From the first equation in (7), we get

�V1(n) = (M (n + 1) − M (n))(M (n + 1) + M (n) − 2M̄ )

= M (n)((A1 − r1K1M (n))(1 − exp(−A1)))(A1(M (n) − M̄ exp(−A1)

+ exp(−A1)(M (n) − M̄ )) + r1K1M (n)(M (n) − 2M̄ )(1 − exp(−A1))).

For each assumption (a1), (a2) and (a3), we have �V1(n) < 0 which implies limn→∞ M (n) =
M̄ . Additionally, we hold

�V2(n) = (N(n + 1) − N(n))(N(n + 1) + N(n) − 2N̄)

= N(n)(exp(A3) − 1)(N(n) exp(A3) + N(n) − 2N̄) < 0

for each assumption (b1) and (b2) which follows limn→∞ N(n) = N̄ . Similarly, it can be shown
that �V3(n) = (Z(n + 1) − Z(n))(Z(n + 1) + Z(n) − 2Z̄) < 0 under the assumptions (c1), (c2)

and (c3). As a result, we obtain �V (n) = (�V1(n), �V2(n), �V3(n)) < 0. �

Example 2.5 Considering conditions of Theorem 2.4, we can use the parameter values in
Example 2.3 and initial conditions M (0) = 1.53 × 105, N(0) = 2.31 × 105 and Z(0) = 3.67 ×
106. The graph of the first 3000 iterations of system (7) is given in Figure 2, where blue, red
and black graphs represent M (n), N(n) and Z(n) population densities, respectively. It can be
shown that under the conditions given in Theorem 2.4 the positive equilibrium point is global
asymptotically stable.

3. Neimark-Sacker bifurcation analysis

The Neimark-Sacker bifurcation is extremely important in the context of discrete biological mod-
els, where one observes periodic solutions corresponding to a closed invariant curve (that is a
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Figure 3. Graph of the (β, | λ |). Parameter set is taken from Example 2.3.

limit cycle) in the phase space. For this bifurcation, characteristic equation has a pair of complex
conjugate eigenvalues on the unit circle and all other eigenvalues are inside the circle.

To study Neimark-Sacker bifurcation as in the work of Banerjee and Sarkar [1], we choose
parameter β as a bifurcation parameter. We can plot dominant eigenvalues of the system against
to β to get some information about stability of the system according to changing of this param-
eter. Until β reaches a critical value, the norms are less than 1 and the system is stable. If β is
increased beyond this critical value, the norms will be greater than 1 and stability of the system
switches to unstable situation (see Figure 3). We can also determine this critical value of β by
using the Schur–Cohn criterion that is given as follows.

Theorem 3.1 [7] A pair of complex conjugate roots of equation

p(λ) = λ3 + p2λ
2 + p1λ + p0 (17)

lie on the unit circle and the other roots of equation (17) all lie inside the unit circle if and
only if

(a) p(1) = 1 + p2 + p1 + p0 > 0 and p(−1) = 1 − p2 + p1 − p0 > 0,
(c) D+

2 = 1 + p1 − p2
0 − p0p2 > 0,

(d) D−
2 = 1 − p1 − p2

0 + p0p2 = 0.

Now, we return matrix JF(Ē) to determine bifurcation point of system (7). Computations give
us that the exact characteristic polynomial (there is no assumption on the matrix) of matrix JF(Ē)

is the form Equation (17) where

p2 = −1 − exp(−K1r1M̄ ) − exp(−K2r2Z̄),

p1 = exp(−K1r1M̄ ) + exp(−K2r2Z̄) + exp(−K1r1M̄ − K2r2Z̄)

+ N̄
β2K1r1(1 − exp(−K2r2Z̄)) − K2r2α1α2(1 − exp(−K1r1M̄ ))

K1r1K2r2
,
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Figure 4. Graph of Neimark-Sacker bifurcation of system (7) for β = 7.95907 × 10−8, where M (0) = 1 × 106,
N(0) = 1.5 × 105, Z(0) = 9 × 105. The other parameters are taken Example 2.3.

p0 = − exp(−K1r1M̄ − K2r2Z̄) − β2N̄

K2r2
exp(−K1r1M̄ )(1 − exp(−K2r2Z̄))

+ α1α2

K1r1
N̄ exp(−K2r2Z̄)(1 − exp(−K1r1M̄ )).

Example 3.2 Solving equation c of Theorem 3.1, we have β̄ = 7.95907 × 10−8. Furthermore,
we have also p(1) = 0.000132031 > 0, p(−1) = 7.46124 > 0 and D+

2 = 0.500887 > 0 for β̄.
Figure 4 shows that β̄ is the Neimark-Sacker bifurcation point of the system with eigenval-
ues λ1 = 0.865769, |λ2,3| = |0.999508 ± 0.0313588i| = 1, where blue, red and black graphs
represent M (n), N(n) and Z(n) population densities, respectively.

4. Result and discussion

In this paper, we have modified the tumour growth model proposed in [1] using system of dif-
ferential equation with piecewise constant arguments that includes both discrete and continuous
time for the populations. Some theoretical results for the boundedness, local and global stability
of the system are obtained. The parameter values are selected from the study [1] which are
obtained results of experiment on the dynamics of growth of highly malignant B Lymphoma
Leukemic cells in the spleen of chimeric mice [1]. We observe that the parameter α1 (decay
rate of tumour cells) and parameter β (conversion rate from resting to hunting cells) play a
key role to control the unlimited growth of tumour cells so as to control the oscillations of the
tumour cells. Local stability analysis shows that if the parameter α1 is less than a threshold
value 1.35777 × 10−7 and parameter β is in interval 4.2911 × 10−9 < β < 1.0429 × 10−7, then
tumour, hunting and resting cell coexist as a stable steady state (Figure 1). In addition, global
stability analysis implies that the stability of the system with local stability conditions does not
depend on initial conditions of the tumour, hunting and resting populations (Figure 2).

The Neimark-Sacker bifurcation is the discrete analogue of the Hopf bifurcation that occurs
in continuous systems such as in [1]. In their study, a stable limit cycle constructed by Hopf
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bifurcation is formed around the equilibrium point which depends on changing the parameter
τ and β. This result is also valid for system (7). As seen in Figure 4, stable periodic solutions
occur at Neimark-Sacker bifurcation point (that is β̄ = 7.95907 × 10−8) as a result of stable limit
cycle. The existence of periodic solutions is relevant in tumour growth models. It means that the
tumour population may oscillate around a equilibrium point even in the absence of any treat-
ment. Such a phenomenon, which is known as Jeff ’s Phenomenon, has been observed clinically
[1]. When the value of parameter β is less than β̄ which falls in stable region (see Figure 3),
the solution of system (7) has damped oscillation and the positive equilibrium point is local
asymptotically stable (see Figure 5 for β = 2 × 10−8). This implies that tumour, hunting and
resting cell coexist as a stable steady state as a result of competition, namely tumour dormancy.
If the value of parameter β is greater than β̄ which falls in unstable region (see Figure 3), the
system has unstable oscillation and the positive equilibrium point is unstable (see Figure 6
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Figure 5. Graph of iteration solution of the system for β = 2 × 10−8. The other parameters and initial conditions are
the same as Figure 4.
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Figure 6. Graph of iteration solution of the system for β = 1.5 × 10−7. The other parameters and initial conditions are
the same as Figure 4.
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Figure 7. Graph of the iteration solution of M (n), N(n) and Z(n), where α = 2.74379 × 10−6. The other parameters
are the same as Figure 6.

for β = 1.5 × 10−7). In this situation, tumour cells have growing oscillation with very high
amplitude. We also investigate the dynamic behaviour of the system in the region (β > β̄) where
the system exhibits unstable oscillation. In this region, decay rate of tumour cells α1 plays an
important role in controlling tumour cells growth. As the parameter α1 is increased in this region,
the population size of tumour cells can be constrained to null values namely tumour-free steady
state where the tumour cells are eliminated by hunting cells. Therefore, it is possible to reach the
tumour-free steady state by increasing the parameter α1 (Figure 7).

When our theoretical and numerical results are compared with that of work [1], we obtain
a good compatibility. Hence, differential equations with piecewise constant arguments may be
used to approximate delay differential equations that contain discrete delays [3].
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