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a b s t r a c t 

In this paper, tumor-immune system interaction has been considered by two fractional order models. The 

first and the second model consist of system of fractional order differential equations with Caputo and 

conformable fractional derivative respectively. First of all, the stability of the equilibrium points of the 

first model is studied. Then, a discretization process is applied to obtain a discrete version of the second 

model where conformable fractional derivative is taken into account. In discrete model, we analyze the 

stability of the equilibrium points and prove the existence of Neimark-Sacker bifurcation depending on 

the parameter σ . Moreover, the dynamical behaviours of the models are compared with each other and 

we observe that the discrete version of conformable fractional order model exhibits chaotic behavior. 

Finally, numerical simulations are also presented to illustrate the analytical results. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Research on fractional calculus has gained much interest over

he past decades and furthermore, fractional order differential

quations has been well applied to many research field such as

hysics [1,2] , chemistry [3] , medicine [5] , finance [4] and engineer-

ng [6] . These equations are also widely used to model biological

henomenon and there are successful applications in this field. It is

lso demonstrated that biological models constructed by fractional

rder differential equations exhibit more realistic results compar-

ng with integer order counterpart [7–9] . This is for the reason that

ractional order derivatives involve memory and which is quite fa-

orable to work on biological processes. 

Trying to generalize notion of differentiation to arbitrary or-

er brings out several approaches. The most knowns are Riemann-

iouville, Caputo and Grünwald-Letnikov definitions [10] . In ad-

ition to these definitions, a new definition called “conformable

ractional derivative” has been introduced by Khalil et al. in 2014

13] . According to this definition, the left fractional derivative start-

ng from a of the function f : [ a , ∞ ) → ∞ of order 0 < α ≤ 1 has its
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wn limit-based definition as follows: 

(T a α f )(t) = lim 

ε→ 0 

f (t + ε(t − a ) 1 −α) − f (t) 

ε

rovided the limit exist. The right fractional derivative of order

 < α ≤ 1 terminating at b of f is defined by 

( b αT f )(t) = − lim 

ε→ 0 

f (t + ε(b − t) 1 −α) − f (t) 

ε
. 

ote also that if f is differentiable in usual sense, we have the fol-

owing equalities: 

(T a α f )(t) = (t − a ) 1 −α f ′ (t) , ( b αT f )(t) = (t − b) 1 −α f ′ (t) . (1)

Unlike classical fractional derivative definitions, conformable

ractional derivative share some basic properties with integer order

erivative. In [14] , Abdeljawad introduced conformable versions of

xponential functions, Gronwall’s inequality, integration by parts,

aylor series expansion and Laplace transforms. Moreover, biolog-

cal and physical applications of conformable fractional derivative

an be found in [15–19] . 

Together with these definitions, there are numerous approaches

eing studied by applied mathematicians. Researchers trying to

nd the most efficient approach while constructing or adjusting

heir models. Meanwhile, some numerical methods such as Ado-

ian decomposition [20] , Adams-type predictor-corrector [21] and

omotopy perturbation method [22] are also developed to solve

ractional differential equations [23] . In addition to the these nu-

erical methods, several papers have used piecewise constant ap-

roximations to discretize fractional order differential equations

https://doi.org/10.1016/j.chaos.2019.03.032
http://www.ScienceDirect.com
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[27–29] . In [17] , Kartal and Gurcan considered the conformable

fractional logistic equation with piecewise constant arguments

with adopting the method presented by Gopalsamy in [30] . 

The tumor-immune interaction model studied in this paper

originated from the following model presented by Kuznetsov et al.

[24] : {
dE 
dt 

= s + F (E, T ) − mET − dE, 

dT 
dt 

= aT (1 − bT ) − nET , 
(2)

where F (E , T ) = 

pE T 

g + T 
. In study [25] , Galach suppose that

F (E, T ) = θET and thus model (2) takes the form {
dE 
dt 

= s + α1 ET − dE, 

dT 
dt 

= aT (1 − bT ) − nET , 
(3)

where α1 = θ − m. Then, the dimensionless form of the model

(3) can be obtained as {
dx 
dt 

= σ + wxy − δx, 

dy 
dt 

= γ y (1 − βy ) − xy, 
(4)

where x and y denote the dimensionless density of ECs and TCs re-

spectively, x = E/E 0 , y = T /T 0 , , γ = 

a 
nT 0 

β = bT 0 , δ = 

d 
nT 0 

, σ = 

s 
nE 0 T 0 

,

ω = α1 /n, E 0 and T 0 are the initial conditions. 

In the study [26] , the fractional order form of the model (4) is

considered with the Caputo sense as follows: {
D 

αx ( t ) = σ + ω xy − δx, 

D 

αy ( t ) = γ y ( 1 − βy ) − xy , 
(5)

with initial conditions x (0) = x 0 ≥ 0 and y (0) = y 0 ≥ 0 . Thus, con-

formable fractional order version of the model (4) is given as fol-

lows: {
T αE(t) = σ + ωET − δE, 

T αT (t) = γ T (1 − βT ) − ET 
(6)

where we take α ∈ (0, 1) as conformable fractional order. 

The aim of this study is to investigate the dynamical behaviour

of model (5) and model (6) and to compare the obtained results. 

2. Dynamical behaviour of fractional order tumor model 

Here, we adopt fractional order model (5) with Caputo frac-

tional derivative which is defined by 

D 

α
a f (t) = 

∫ t 

a 

f n (x ) 

(t − x ) α−n +1 
dx. 

2.1. Stability analysis 

Theorem 1 [11 , 12] . Consider the system 

D 

α
a f (t) = f (t, X (t)) , X (t 0 ) = X 0 . (7)

Let J ( X 

∗) denote the Jacobian matrix of the system (7) evaluated at the

equilibrium point X 

∗. 

(1) The equilibrium point X 

∗ is locally asymptotically stable if and

only if all the eigenvalues λi , i = 1 , 2 , . . . , n of J ( X 

∗) satisfy

| arg(λi ) | > 

απ
2 , 

(2) The equilibrium point X 

∗ is stable if all the eigenvalues λi ,

i = 1 , 2 , . . . , n of J ( X 

∗) satisfy | arg(λi ) | ≥ απ
2 and eigenvalues

with | arg(λi ) | = 

απ
2 have the same geometric and algebraic

multiplicity, and 

(3) The equilibrium point X 

∗ is unstable if and only if there

exist eigenvalues λi for some i = 1 , 2 , . . . , n of J ( X 

∗) satisfy
απ
| arg(λi ) | < 2 . l
An equilibrium point of model (5) is obtained by solving the

ollowing system: 

D 

αx (t) = 0 , 

D 

αy (t) = 0 . 

hat is 

σ + ωxy − δx = 0 , 

γ y (1 − βy ) − xy = 0 . 

ence, we have two equilibrium points: 

i. The tumor-free equilibrium point E 0 = ( σ
δ
, 0) , 

ii. The coexistence equilibrium point 

E 1 = ( E , T ) = ( γ (−βδ+ ω)+ 
√ 

�
2 ω , 

γ (βδ+ ω) −
√ 

�
2 γβω 

) 

here � = 4 γβσω + γ 2 (βδ − ω) 2 . Under the condition σ < γ δ,

he coexistence equilibrium point is always positive. 

heorem 2. For the equilibrium point E 0 = ( σ
δ
, 0) of model (5) , the

ollowing results holds true; 

i. If σ > γ δ, then E 0 is locally asymptotically stable, 

ii. If σ < γ δ, then E 0 is unstable and is a saddle point. 

roof. The Jacobian matrix of the model (5) evaluated at equilib-

ium point E 0 is given by 

(E 0 ) = 

(
−δ σω 

δ
0 γ − σ

δ

)
. 

ence the eigenvalues of J ( E 0 ) are λ1 = −δ and λ2 = γ − σ
δ
. Since

1 < 0, we have arg(λ1 ) = π which satisfies | arg(λ1 ) | > 

απ
2 . If

> γ δ, then λ2 < 0 and arg(λ2 ) = π which results in | arg(λ2 ) | >
απ
2 . According to Theorem 1 , equilibrium point E 0 is locally asymp-

otically stable if σ > γ δ. If σ < γ δ, then λ2 > 0. Hence arg(λ2 ) = 0 ,

hich always satisfies | arg(λ2 ) | < 

απ
2 . By Theorem 1 , the equilib-

ium point E 0 is a saddle point so unstable. �

heorem 3. Consider the coexistence equilibrium point E 1 of the

odel (5) . Under the positivity condition σ < γ δ, E 1 is locally asymp-

otically stable. Moreover, if σ= βγ 2 δ(β(γ + δ) −ω) 

(−βγ + ω) 2 
, E 1 is asymptotically sta-

le under the condition γ < ω 2 

β2 δ+ δω . 

roof. The Jacobian matrix of the model (5) evaluated at equilib-

ium point E 1 is given by 

(E 1 ) = 

( 

−βγ δ+ 
√ 

�−γω 
2 βγ

1 
2 
(−βγ δ + 

√ 

� + γω) 
√ 

�−γ (βδ+ ω) 
2 βγω 

√ 

�−γ (βδ+ ω) 
2 ω 

) 

. 

hen, under the positivity condition σ < γ δ of the coexistence

quilibrium point, the determinant and the trace of J ( E 1 ) are 

et(J(E 1 )) = 

√ 

δ(βγ δ −
√ 

� + γω) 

2 βγω 

> 0 

tr(J(E 1 )) = 

1 
2 

(
−βγ δ+ 

√ 

�−γω 
βγ

+ 

√ 

�−γ (βδ+ ω) 
ω 

)
≤ 0 . 

hus, the eigenvalues of J ( E 2 ) are written as 

1 = 

1 
2 

(
tr(J(E 1 )) + 

√ 

tr 2 (J(E 1 )) − 4 det(J(E 1 )) 
)

2 = 

1 
2 

(
tr(J(E 1 )) −

√ 

tr 2 (J(E 1 )) − 4 det(J(E 1 )) 
)

If tr 2 (J(E 1 )) − 4 det(J(E 1 )) > 0 , then the eigenvalues becomes

egative real numbers; if tr 2 (J(E 1 )) − 4 det(J(E 1 )) < 0 , then we ob-

ain a pair of complex conjugate eigenvalues λ1 and λ2 = λ1 . Since

r ( J ( E 1 )) < 0, we have Re (λ1 ) = Re (λ2 ) < 0 and consequently we

ave | arg(λ1 , 2 ) | > 

απ
2 . 

If σ= βγ 2 δ(β(γ + δ) −ω) 

(−βγ + ω) 2 
, then tr(J(E 1 )) = 0 . So, we obtain a pair of

omplex conjugate eigenvalues λ1 and λ2 = λ1 . Since Re (λ1 ) =
e (λ2 ) = tr(J(E 1 )) = 0 , we have arg(λ1 ) = 

π
2 and arg(λ2 ) = −π

2 
απ
eading to | arg(λ1 , 2 ) | > 2 . �
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Fig. 1. Stable dynamical behaviour of the model (5) for the parameter values given in Table 1 with σ = 0 . 1181 in (a) and σ = 0 . 5 in (b) with initial condition (E, T ) = (3 , 10) 

where blue and red curves represent population density of ECs and TCs respectively. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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.2. Numerical simulations 

In this section, the predictor-corrector method is used for nu-

erical simulations of the model (5) . This method introduced in

36,37] which is a combination of some product integration rules,

nown as fractional Adams-Bashforthm-Moulton methods [38] . 

To analyze the effects of the model parameters on its dynamics,

t is easier to make qualitative analysis on the dimensionless form

f the model (3) . That is why we obtained non-dimensionalized

odel on which qualitative analysis is performed. 

In Fig. 1 , we get asymptotically stable coexistence equilibrium

oints for different values of σ . In Fig. 1 a for smaller values of σ ,

e observed an oscillatory behaviour for both ECs and TCs. Ac-

ording to Theorem 1 , fractional derivatives enlarges the regions

f stability. Here, we also observed that smaller fractional order

erivatives damps the oscillation behavior and for smaller frac-

ional derivatives, both ECs and TCs approaches quicker to the

quilibrium point. In Fig. 1 b for σ = 0 . 5 , ECs are more success-

ul but insufficient in eradicating the TCs and oscillatory behaviour

isappears comparing with Fig. 1 a. Both situations corresponds to

he dormant tumor state [24,25] . 

. Dynamical behavior of conformable fractional order tumor 

odel 

.1. Discretizations process 

In this section, we will discretize the model (6) by using piece-

ise constant approximation [17] . Consider the conformable frac-

ional order model (6) as 

T αE(t) = σ + ωE(t) T ([ t 
h 

] h ) − δE(t) , 
T αT (t) = γ T (t)(1 − βT (t)) − E([ t 

h 
] h ) T (t) , 

(8) 

ith E(0) = E 0 and T (0) = T 0 , where [ t ] denotes the integer part

f t ∈ [0, ∞ ) and h > 0 is discretization parameter. 

Appliying the property (1) of conformable fractional derivative

o the first equation of the system (8) for t ∈ [ nh, (n + 1) h ) gives 

(t − nh ) 1 −α dE(t) 

dt 
= σ + ωE(t) T (nh ) − δE(t) . 
y simplifying this equation, we get 

 

′ (t) + E(t) 
[ 
δ − ωT (nh ) 

(t − nh ) 1 −α

] 
= 

σ

(t − nh ) 1 −α
. 

Clearly, this is a first-order linear ordinary differential equation.

olving this equation with respect to t ∈ [ nh, t ), we obtain 

(t) = 

(δ − ωT (nh )) E(nh ) + σ
(
e (δ−ωT (nh )) (t−nh ) α

α − 1 

)
e (δ−ωT (nh )) (t−nh ) α

α (δ − ωT (nh )) 

nd by taking t → (n + 1) h, we get the following difference equa-

ion 

((n + 1) h ) = 

σ + [(δ − ωT (nh )) E(nh ) − σ ] e (ωT (nh ) −δ) h 
α

α

δ − ωT (nh ) 
. 

inally, adjusting difference equation notation and replacing E ( nh )

nd T ( nh ) by E ( n ) and T ( n ) yields 

(n + 1) = 

σ + [(δ − ωT (n )) E(n ) − σ ] e (ωT (n ) −δ) h 
α

α

δ − ωT (n ) 
. 

In a similar fashion, discretizing the second equation of the system 

8) 

 αT (t) = γ T (t)(1 − βT (t)) − E 

([ 
t 

h 

] 
h 

)
T (t) 

eads to the following difference equation 

 (n + 1) = 

T (n )(γ − E(n )) 

(γ − E(n ) − γ βT (n )) e (E(n ) −γ ) h 
α

α + γ βT (n ) 
. 

herefore, we get the two-dimensional discrete system 

 

 

 

E(n + 1) = 

σ+[(δ−ωT (n )) E(n ) −σ ] e (ωT (n ) −δ) h 
α
α

δ−ωT (n ) 

T (n + 1) = 

T (n )(γ −E(n )) 

(γ −E(n ) −γβT (n )) e (E(n ) −γ ) h 
α
α + γβT (n ) 

. (9) 

.2. Stability analysis 

Now, we analyze local asymptotic stability of the system (9) .

e note that system (9) and system (5) have the same equilibrium

oints that is E 0 , E 1 . 

We linearize the system (9) about the equilibrium point E 0 .

he associated Jacobian matrix has eigenvalues λ = e −
h αδ
α and
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Fig. 2. Stable dynamical behaviours of the model (9) for the parameter values given in Table 1 with σ = 0 . 1181 in (a), σ = 0 . 5 in (b) and initial condition (E, T ) = (3 , 10) 

where blue and red curves represents population density of ECs and TCs respectively. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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A

λ2 = e −
h α (σ−γ δ) 

αδ . It is easy to prove that E 0 is locally asymptotically

stable if γ δ < σ , and unstable if γ δ > σ . 

The equilibrium point E 1 has nonnegative coordinates if the

condition σ < δγ is satisfied. Now, the Jacobian matrix obtained by

linearizing the system (9) about the equilibrium point E 1 = ( E , T )

is given by 

A ( E , T ) = 

(
a 11 a 12 

a 21 a 22 

)
= 

⎛ 

⎝ 

e 
− h α c 

2 αβγ 4 β2 γ 2 σω(1 −e 
− h α c 

2 αβγ ) 
c 2 

−1+ e − h α d 
2 αω 

βγ
e −

h α d 
2 αω 

⎞ 

⎠ 

where 

c = βγ δ + 

√ 

� − γω and d = βγ δ −
√ 

� + γω. 

The corresponding characteristic polynomial is 

λ2 + p 1 λ + p 0 

where 

p 0 = e 
− h α c 

2 αβγ e −
h α d 
2 αω + 

4 

(
1 −e 

− h α c 
2 αβγ

)(
1 −e 

− h α d 
2 αω 

)
βγσω 

c 2 
, 

p 1 = −
(
e 

− h α c 
2 αβγ + e −

h α d 
2 αω 

)
. 

Theorem 4. Assume that σ < δγ . The coexistence equilibrium point

( E , T ) is locally asymptotically stable if and only if 

σ > σ = 

(
e 

h α (−
√ 

�−γ (βδ−ω)) 
2 αβγ −e 

h α (βγ δ−
√ 

�+ γω) 
2 αω 

)
c 2 

4 

(
−1+ e 

h α (−
√ 

�−γ (βδ−ω)) 
2 αβγ

)(
−1+ e 

h α (βγ δ−
√ 

�+ γω) 
2 αω 

)
βγω 

. (10)

Proof. To check asymptotically stability of E 1 , we use the following

Jury conditions [31] : 

i ) 1 + p 1 + p 0 > 0 , ii ) 1 − p 1 + p 0 > 0 , iii ) 1 − p 0 > 0 . 

Under assumption σ < δγ , we always have c, d > 0. These two in-

equality assures that 

0 < e 
− h α c 

2 αβγ , e −
h α d 
2 αω < 1 (11)

and consequently we have 
 + p 1 + p 0 = 

(
1 − e 

− h α c 
2 αβγ

)(
1 − e −

h α d 
2 αω 

)
+ 

4 

(
1 − e −

h α c 
2 αβω 

)(
1 − e −

h α d 
2 αω 

)
βγσω 

c 2 
> 0 , 

 − p 1 + p 0 = 

(
1 + e 

− h α c 
2 αβγ

)(
1 + e −

h α d 
2 αω 

)
+ 

4 

(
1 − e −

h α c 
2 αβω 

)(
1 − e −

h α d 
2 αω 

)
βγσω 

c 2 
> 0 . 

n addition, under the condition (10) , we have 

p 0 = e 
− h α c 

2 αβγ e −
h α d 
2 αω + 

4 

(
1 −e 

− h α c 
2 αβγ

)(
1 −e 

− h α d 
2 αω 

)
βγσω 

c 2 
< 1 , 

(12)

ssentially 1 − p 0 > 0 and the proof is completed. 

Fig. 2 shows asymptotically stable coexistence equilibrium

oints for different values of σ similarly to Fig. 1 . In Fig. 2 a for

maller values of σ , we observed more oscillatory behaviour for

oth ECs and TCs comparing with Fig. 1 a. This is for the reason

hat, σ = 0 . 1181 is very close to the critical value σ = 0 . 075445

n Theorem 4 which will be the critical threshold for Neimark-

acker bifurcation as we will see in next section. In Fig. 1 b for

= 0 . 5 , the system loses its oscillatory behavior and the tumor

ells extinct for a while, then approaches to the coexistence equi-

ibrium point. This situation corresponds to the state of a “return-

ng tumor”[35] . Moreover, in Fig. 1 b we observe that for a smaller

ractional derivatives, both ECs and TCs approaches quicker to the

quilibrium point. 

.3. Neimark-Sacker bifurcation analysis 

In this section, we analyze the Neimark-Sacker bifurcation of

he system (9) at the equilibrium point E 1 . 

First of all, we convert the equilibrium point E 1 = ( E , T ) of the

ystem (9) into the origin by change of variables x 1 = E − E and

 2 = N − N . Thus, the system (9) turns into 

x 1 
x 2 

)
→ A (σ ) 

(
x 1 
x 2 

)
+ 

(
F 1 (x 1 , x 2 , σ ) 
F 2 ( x 1 , x 2 , σ ) 

)
(13)

here 

 ( σ ) = A ( E , T ) 
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 1 (x 1 , x 2 , σ ) = 

h 

αa 11 ω 

α
x 1 x 2 + 

h 

2 αa 11 ω 

2 

2 α2 
x 1 x 

2 
2 

−8 a 11 β
2 γ 2 σω 

2 ((2 − 2 /a 11 ) αβγ + h 

αc 

2 αc 3 
x 2 2 −

12 a 11 β
2 γ 2 σω 

3 

6 α2 c 4 

×((8 − 8 /a 11 ) α
2 β2 γ 2 + 4 h 

ααβγ c + h 

2 αc 2 ) x 3 2 + O (| X | 4 ) , 

 2 (x 1 , x 2 , σ ) = 

2 a 22 ((−2 + 2 a 22 ) αω + h 

αd) 

2 αβγ d 
x 2 1 + 

4(−a 22 + a 2 22 ) βγω 

2 d 
x 2 2 

+ 

a 22 ((−4 + 4 a 22 ) αω + h 

αd) 

αd 
x 1 x 2 

+ 

3 a 22 

6 α2 βγ d 2 
(−8 a 2 22 (−1 + 1 /a 22 ) α

2 ω 

2 

+ 4(−1 + 2 a 22 ) h 

ααωd + h 

2 αd 2 ) x 3 1 + 

a 22 

2 α2 d 2 
(8 α2 ω 

2

+ 24 a 2 22 α
2 ω 

2 − 8 h 

ααωd + h 

2 αd 2 

− 16 a 22 αω(2 αω − h 

αd)) x 2 1 x 2 + 

4 a 3 22 βγω 

2 αd 2 
(6 αω 

+ 1 /a 2 22 (4 αω − h 

αd) − (2 /a 22 )(5 αω − h 

αd)) x 1 x 
2 
2 

+ 

24 a 3 22 (−1 + 1 /a 22 ) 
2 β2 γ 2 ω 

2 

6 d 2 
x 3 2 + O (| X | 4 ) . 

or σ = σ , the eigenvalues of A ( σ ) are 

1 , 2 ( σ ) = 

−p 1 ( σ ) ± i 
√ 

p 1 ( σ ) 2 − 4 p 0 ( σ ) 

2 

here 

p 1 ( σ ) = −e 
− h α (βγ δ+ 

√ 

4 γ βσω+ γ 2 (βδ−ω) 2 −γω) 
2 αβγ − e 

h α ( 
√ 

4 γβσω+ γ 2 (βδ−ω) 2 −γ (βδ+ ω)) 
2 αω 

nd 

p 0 ( σ ) = 1 . 

oreover, we obtain | λ1 , 2 ( σ ) | = 1 . So, the eigenvalues of A ( σ )

re complex conjugates with modulus 1 as required. In addi-

ion, p 1 ( σ ) 
 = 0 , 1 and we can conclude that λk 
1 , 2 

( σ ) 
 = 1 for k =
 , 2 , 3 , 4 . Hence, non-strong resonance condition is also satisfied. 

The transversality condition yields to the inequality 

d | λ1 , 2 (σ ) | 
dσ

∣∣∣
σ= σ

= 

2 βγω 
(

e 
h α (βγ δ+ 

√ 
�) 

2 αβγ −e 
h αω 
2 αβ

)(
e 

h α
√ 

�
2 αω −e 

h αγ (βδ+ ω) 
2 αω 

)
e 

h α (β2 γ 2 δ+ γω(γ + δ)+ 
√ 

�ω) 
2 αβγω (βγ δ+ 

√ 

�−γω) 2 


 = 0 

hich is satisfied for positive parameters and σ < βγ . 

Now, we calculate multilinear functions: 

B 1 (x, y ) = 

2 ∑ 

j,k =1 

∂ 2 F 1 (ψ, σ ) 

∂ ψ j ∂ ψ k 

∣∣∣
ψ=0 

x j y k 

= 

h 

αa 11 ω 

α
(x 1 y 2 + x 2 y 1 ) 

− (8 a 11 β
2 γ 2 σω 

2 (2 − 2 /a 11 ) αβγ + h 

αc) 

αc 3 
x 2 y 2 , 

B 2 (x, y ) = 

2 ∑ 

j,k =1 

∂ 2 F 2 (ψ, σ ) 

∂ ψ j ∂ ψ k 

∣∣∣
ψ=0 

x j y k 

= 

2 a 22 ((−2 + 2 a 22 ) αω + h 

αd) 

αβγ d 
x 1 y 1 

+ 

4(−a 22 + a 2 22 ) βγω 

d 
x 2 y 2 

+ 

a 22 ((−4 + 4 a 22 ) αω + h 

αd) 

αd 
(x 1 y 2 + x 2 y 1 ) , 

 1 (x, y, u ) = 

2 ∑ 

j,k,l=1 

∂ 3 F 1 (ψ, σ ) 

∂ ψ j ∂ ψ k ∂ ψ l 

∣∣∣
ψ=0 

x j y k u l 
= 

h 

2 αa 11 ω 

2 

α2 
(x 2 y 2 u 1 + x 2 y 1 u 2 + x 1 y 2 u 2 ) 

−12 a 11 β2 γ 2 σω 

3 

α2 c 4 
x 2 y 2 u 2 ((8 − 8 a 22 ) α

2 β2 γ 2 

+4 h 

ααβγ c + h 

2 αc 2 ) , 

 2 (x, y, u ) = 

2 ∑ 

j,k,l=1 

∂ 3 F 2 (ψ, σ ) 

∂ ψ j ∂ ψ k ∂ ψ l 

∣∣∣
ψ=0 

x j y k u l 

= 

3 a 22 

α2 βγ d 2 
(8 a 22 (−1 + a 22 ) α

2 ω 

2 

+ 4(−1 + 2 a 22 ) h 

ααωd + h 

2 αd 2 ) x 1 y 1 u 1 

+ 

a 22 

α2 d 2 
(8 α2 ω 

2 + 24 a 2 22 α
2 ω 

2 − 8 h 

ααωd + h 

2 αd 2 

− 16 a 22 αω(2 αω − h 

αd))(x 2 y 1 u 1 + x 1 y 2 u 1 + x 1 y 1 u 2 ) 

+ 

4 a 22 βγω 

αd 2 
(2(2 − 5 a 22 + 3 a 2 22 ) αω 

+ (−1 + 2 a 22 ) h 

αd)(x 2 y 2 u 1 + x 2 y 1 u 2 + x 1 y 2 u 2 ) 

+ 

24 a 22 (−1 + a 22 ) 
2 β2 γ 2 ω 

2 

d 2 
x 2 y 2 u 2 . 

Now, let q ∼ (ζ1 + iζ2 , 1) ∈ C 

2 be an eigenvector of A ( σ ) corre-

ponding to λ1 ( σ ) and let p̄ ∼ (ξ1 + iξ2 , 1) ∈ C 

2 be an eigenvector

f A 

T ( σ ) corresponding to λ2 ( σ ) . Afterwards, we normalize p̄ with

espect to q . Hence, q and the normalized vector p are computed: 

p = 

(
ξ1 + iξ2 

1+(ξ1 + iξ2 )(ζ1 −iζ2 ) 
, 1 

1+(ξ1 + iξ2 )(ζ1 −iζ2 ) 

)
, 

 = (ζ1 + iζ2 , 1) 

here 

1 = 

(
−1+ e h 

α d 
2 αω 

)(
−1+ e 

h α (βγ (βγ δ−
√ 

�)+(βγ (γ −δ) −
√ 

�) ω+ γω 2 

2 αβγω 

)
2 βγ

(
e 

h α d 
αω −e 

h α(βγ (βγ δ−
√ 

�)+(βγ (γ −δ) −
√ 

�) ω+ γω 2 

2 αβγω 

)

2 = 

(
−1+ e h 

α d 
2 αω 

)
e 

h α d 
2 αω 

2 βγ
(

e 
h α d 
αω −e 

h α (βγ (βγ δ−
√ 

�)+(βγ (γ −δ) −
√ 

�) ω+ γω 2 

2 αβγω 

)
×
√ 

4 − (e 
− h α c 

2 αβγ ) 2 − 2 e 
− h α c 

2 αβγ e −
h α d 
2 αω − (e −

h α d 
2 αω ) 2 , 

1 = 

βγ e 
− h α c 

2 αβγ

(
e 

h α c 
2 αβγ −e 

h α d 
2 αω 

)
2 

(
−1+ e h 

α d 
2 αω 

) , 

2 = 

βγ

√ 

4 −(e 
− h α c 

2 αβγ ) 2 −2 e 
− h α c 

2 αβγ e 
− h α d 

2 αω −(e 
− h α d 

2 αω ) 2 

2 −2 e 
− h α d 

2 αω 

. 

Moreover, for σ sufficently close to σ , we can express any vec-

or V ∈ R 

2 as V = zq + ̄z ̄q , where z is a complex number. Accord-

ngly, for sufficently small | σ | (near σ ), the system (13) can be ex-

ressed in the following form: 

 �→ λ1 z + g(z, z , σ ) , 

here λ1 (σ ) = (1 + ψ(σ )) e iθ (σ ) with ψ( σ ) is a smooth func-

ion satisfying ψ( q ) = 0 , g is a complex-valued smooth function

f z, ̄z , σ, whose Taylor expression with respect to (z, ̄z ) contains

uadratic and higher order terms 

(z, ̄z , σ ) = 

∑ 

k + l≥2 

1 

k ! l! 
g k,l (σ ) z k z̄ l , g kl ∈ C , k, l = 0 , 1 , 2 , . . . 

By using multilinear functions, we can determine the Taylor co-

fficients g kl through the following formulas: 

g 20 ( σ ) = < p, B (q, q ) >, g 11 ( σ ) = < p, B (q, q ) >, 

g 02 ( σ ) = < p, B ( q , q ) >, g 21 ( σ ) = < p, C(q, q, q ) > . 
(14) 
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Fig. 3. Bifurcation diagram for the model (9) according to the parameter σ where α = 0 . 90 . Other parameter values and initial condition are the same as in Fig. 2 . 

Table 1 

Parameter values used for numerical analysis. 

Dimensional Parameters Biological Meanings Dimensional Values Dimensionless Parameters Dimensionless Values 

s Constant source rate of ECs 1.3 × 10 4 cells day −1 σ 0.1181 [24,25] 

α1 Immune response to the TCs 10 −9 , 10 −7 (day cells) −1 ω 0.04 [25] 

d Natural death rate of ECs 0.0412 day −1 δ 0.3743 [24,25] 

a Intrinsic tumor growth rate 0.18 day −1 γ 1.636 [24,25] 

b b −1 Carrying capacity of TCs 2 × 10 −9 cells −1 β−1 0.002 [24,25] 
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Hence, the coefficint k ( σ ) , which determines direction of Neimark-

Sacker bifurcation, can be calculated via the formula 

k ( σ ) = Re 

(
e −iθ ( σ ) g 21 

2 

)
− Re 

(
(1 − 2 e iθ ( σ ) ) e −2 iθ ( σ ) 

2(1 − e iθ ( σ ) ) 
g 20 g 11 

)
−1 

2 

| g 11 | 2 − 1 

4 

| g 02 | 2 , (15)

where e iθ ( σ ) = λ1 ( σ ) . 

Using the above arguments and the theorems in [32–34] , we

achieve the following result. 

Theorem 5. System (9) undergoes a Neimark-Sacker bifurcation at

the coexistence equilibrium point E 1 if σ = σ and k ( σ ) 
 = 0 . More-

over, if k ( σ ) < 0 (respectively k ( σ ) > 0 ), there exists a unique closed

invariant curve bifurcate from E 1 is asymptotically stable (respectively

unstable). 

3.4. Numerical results 

In this section, we present numerical simulations which

verify the theoretical analysis described above. The bifurca-

tion diagram of the system (9) given in Fig. 3 . For the

parameter values given in Table 1 , the system undergoes

a Neimark-Sacker bifurcation about the coexistence equilib-

rium point E 1 = (1 . 60922 , 8 . 18465) for σ = σ = 0 . 0754947 which

shows correctness of Theorem 5 . For σ = σ , we have com-

plex conjugate eigenvalues λ1 , 2 = 0 . 99486 ± 0 . 101259 i with mod-

ulus | λ1 , 2 | = 1 and the transversality condition 

d | λ1 , 2 (σ ) | 
dσ

∣∣∣
σ= σ

=
−0 . 0679214 
 = 0 is satisfied. Afterwards, the Taylor coefficients can

be calculated as g 20 = −0 . 06308 + 0 . 0825956 i, g 02 = −0 . 0833597 +
0 . 0865614 i, g = 0 . 0406717 − 0 . 0 0 0501182 i, g = 0 . 0 0353831 +
11 21 
 . 00571028 i and therefore the critical value (15) for Neimark-

acker bifurcation is k ( σ ) = −0 . 00720469 < 0 . Hence, we con-

lude that the Neimark-Sacker bifurcation is supercritical ( Fig. 4 d,

ig. 5 c). 

. Results and discussion 

In this paper, we have considered two fractional order tu-

or model that is given as system of fractional differential Eqs.

5) and (6) which have Caputo and conformable fractional deriva-

ive respectively. We show that coexistence equilibrium point of

he model (5) is always asymptotically stable and Hopf bifurca-

ion does not occur at the coexitence equilibrium point under the

ondition σ < γ δ. Then, the conformable fractional order form of

he model that is given as (6) is discretized by using piecewise

onstant approximation and we obtain two-dimensional discrete

ynamical system (9) . Thus, the fractional order parameter α is

ncluded as a new parameter into the system of difference equa-

ions. 

Bifurcation analysis show that there is no stationary or flip bi-

urcation for the discrete system (9) because of that the condi-

ions 1 + p 1 + p 0 > 0 and 1 − p 1 + p 0 > 0 are always hold. We also

rove that the discrete system (9) undergoes a Neimark-Sacker bi-

urcation at the equilibrium point E 1 depending on the parame-

er σ which represents the normal rate of the flow of adult ECs

nto the tumor cite. From the biological point of view, the value

f σ can be increased by the therapy of bone marrow transplan-

ation(BMT). Although the therapy of BMT in cancer treatment is

elatively new compared to standard chemotherapeutic and radio-

herapy regimens, it is explored and applied widely in cancer treat-

ent [39,40] . 



E. Balcı, İ. Öztürk and S. Kartal / Chaos, Solitons and Fractals 123 (2019) 43–51 49 

Fig. 4. Dynamical behavior of the system (9) with varying the parameter σ . Initial condition and other parameters are the same as in Fig. 2 where ECs and TCs represented 

by blue and red curves respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Phase diagrams of the system (6) depending on the fractional order parameter α. 
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The importance of Neimark-Sacker bifurcation in this study

s that, at the bifurcation point stable periodic solutions occurs

round the positive equilibrium point. This mathematical result has

een observed clinically and is known as Jeff’s Phenomenon [41] .

t means that tumor cells exhibit oscillatory behavior around the

oexistence equilibrium point without any treatment. 

In order to explore the effects of variation of the constant

ource rate of ECs, we change σ and keep other parameters fixed.

rom Theorem 5 , the critical Neimark-Sacker bifurcation value is

btained as σ = σ ≈ 0 . 0754 for the coexistence equilibrium point

 1 ( Fig. 3, Fig. 4 d). As σ decreases, both equilibrium points remains

nstable and the system exhibits oscillatory behaviour with higher

mplitude of oscillations ( Fig. 4 e and f). For σ = 0 . 3 > σ , both ECs

nd TCs approaches to the coexistence equilibrium point E 1 ≈ (1.62,

.72) in a damped oscillatory mode ( Fig. 4 c) and namely the state

f the dormant tumor is obtained [24,25] . For σ = 0 . 55 , the sys-
em loses its oscillatory behavior and the TCs extinct for a while,

hen ECs and TCs approaches to the coexistence equilibrium point

 1 ≈ (1.63, 0.93) ( Fig. 4 b). This attitude corresponds to the state of

 “returning tumor”[35] . As σ increases and passing the value of

δ ≈ 0.612, the ECs succeeded in eradicating the TCs completely

nd the patient is ultimately cured ( Fig. 4 a). 

In addition, we vary the parameter α and keep other parame-

ers fixed in order to explore the effects of fractional order param-

ter. Using the equality (10) , the critical Neimark-Sacker bifurcation

alue is obtained as α = 0 . 794117 . Fig. 5 shows that the stable be-

aviour of the system is destabilized when fractional order α is

ecreasing. 

Lyapunov exponents is a useful tool which quantify the chaotic

ehaviour of discrete system and the sensitive dependance on

nitial conditions. Finally, we compute maximum Lyapunov expo-

ents of system (9) and explore the dependance of these Lyapunov
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Fig. 6. Maximum Lyapunov exponents of system (9) corresponding to the parameter σ . 

Fig. 7. Chaotic attroctor of the system (9) where parameter taken as in Fig. 4 ,(f). 
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exponents on parameter σ which describes the constant source

rate of immune cells. We vary the parameter σ in interval [0, 0.4]

and keep other parameters fixed as in Table 1 . As we saw in Fig. 6 ,

when σ gets smaller than σ = 0 . 075445 , we obtained positive Lya-

punov exponents and the system (9) tends to exhibit chaotic be-

haviour (See also Fig. 3, Fig. 4 f, Fig. 7 ). 

It is well known that fractional order dynamical systems with

Caputo or Riemann Liouville sense are more suitable to model

tumor-immune system interactions because this derivative involves

memory and which is quite favorable to work on biological pro-

cesses. However, Caputo and Riemann-Liouville also have a big

problem that, their kernel although nonlocal but is singular. This

weakness has effect when modeling real world problems [42] . Con-

formable fractional derivative has been put forward to overcome

difficulties emerging Caputo fractional derivative in applications.

This derivative is not perhaps a fractional derivative but has a frac-

tional order and is a natural extension of classical derivative. 

In this paper, we consider two fractional order models with Ca-

puto and conformable sense for the tumor-immune system inter-
ctions and compare the obtained results. Numerical simulations

how that both of the models exhibit different dynamic behaviors.

iscrete version of the conformable fractional order model (9) de-

cribes a wider class of tumor growth dynamics then of the Caputo

ractional order model (4) such as Neimark-Sacker bifurcation and

haos. Because the tumor growth before therapy is chaotic [43] , it

ay be advantageous to use the model (9) instead of the model

4) for the tumor-immune interaction. 
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