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Abstract: Many problems in daily life exhibit nonlinear behavior. Therefore, it is important to solve
nonlinear problems. These problems are complex and difficult due to their nonlinear nature. It is seen
in the literature that different artificial intelligence techniques are used to solve these problems. One
of the most important of these techniques is artificial neural networks. Obtaining successful results
with an artificial neural network depends on its training process. In other words, it should be trained
with a good training algorithm. Especially, metaheuristic algorithms are frequently used in artificial
neural network training due to their advantages. In this study, for the first time, the performance
of sixteen metaheuristic algorithms in artificial neural network training for the identification of
nonlinear systems is analyzed. It is aimed to determine the most effective metaheuristic neural
network training algorithms. The metaheuristic algorithms are examined in terms of solution quality
and convergence speed. In the applications, six nonlinear systems are used. The mean-squared
error (MSE) is utilized as the error metric. The best mean training error values obtained for six
nonlinear systems were 3.5× 10−4, 4.7× 10−4, 5.6× 10−5, 4.8× 10−4, 5.2× 10−4, and 2.4× 10−3,
respectively. In addition, the best mean test error values found for all systems were successful. When
the results were examined, it was observed that biogeography-based optimization, moth–flame
optimization, the artificial bee colony algorithm, teaching–learning-based optimization, and the
multi-verse optimizer were generally more effective than other metaheuristic algorithms in the
identification of nonlinear systems.

Keywords: artificial neural network; global optimization; metaheuristic algorithm; nonlinear system
identification

MSC: 68T07

1. Introduction

In a fundamental sense, artificial intelligence can be expressed as the modeling of
intelligent behavior in nature. Artificial intelligence techniques have emerged as a result of
different artificial intelligence approaches. Due to the problem-solving ability of artificial
intelligence techniques, artificial intelligence is used extensively in many areas [1–4].

ANNs, fuzzy logic, neuro-fuzzy, metaheuristic optimization algorithms, and deep
learning are some of the artificial intelligence techniques. The fact that metaheuristic al-
gorithms can be used together with other artificial intelligence techniques makes them
powerful. ANN training, neuro-fuzzy training, or optimization of problems are exam-
ples of this situation. The computer science, bioinformatics, operation research, imaging
science, food industry, meteorology, medicine, energy, education, engineering, economy,
and automotive fields are some where metaheuristic algorithms are used [5,6]. When the
literature is examined, it is seen that more than 200 metaheuristic algorithms have been
proposed. ABC [7], BAT [8], CS [9], FPA [10], PSO [11], TLBO [12], JAYA [13], SCA [14],
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BBO [15], WOA [16], BSA [17], HS [18], and SSA [19] are some of the popular metaheuristic
algorithms.

Many problems that we encounter in daily life exhibit nonlinear behavior. Therefore,
it is important to identify these problems. When the literature is examined, it is seen that
identification approaches based on network and neuro-fuzzy methods have been used.
Nonlinear systems are grouped into stationary and non-stationary dynamics. Stationary
stands for fixed (not depending on time) transfer functions. Non-stationary stands for the
case when the transfer functions change with time [20]. Intensive studies have been carried
out on nonlinear system identification. Cherkassky et al. [21] compared the performance
of different methods such as ANN, KNN, GMBL, MARS, PP, and CTM on nonlinear
system identification. Du ve Zhang [22] proposed an approach based on the Takagi–
Sugeno (T–S) fuzzy model for the Box–Jenkins nonlinear system and nonlinear plant
modeling problem. Tavoosi et al. [23] proposed a new neuro-fuzzy model called ANFIS2
for nonlinear dynamic system identification. Shoorehdeli et al. [24] introduced a hybrid
neuro-fuzzy training algorithm based on PSO for the identification of nonlinear systems.
Karaboga and Kaya conducted ANFIS training using the ABC algorithm for nonlinear
system identification [25–27]. Kaya and Baştemur Kaya [28] developed a metaheuristic
neural network training algorithm based on the ABC algorithm for the identification of
nonlinear static systems. Subudhi and Jena [29] used an approach consisting of DE and
the ANN for nonlinear system identification. Apart from these studies, there are many
neuro-fuzzy- and ANN-based studies [30–35].

As seen in some of the studies above, nonlinear test functions are used to analyze the
performance of many training algorithms. Nonlinear systems are inherently difficult and
complex problems. Being effective in identifying nonlinear systems is one of the important
indicators that training algorithms are successful. Therefore, the main subject of this study
is the identification of nonlinear systems.

One of the most important techniques used in areas such as modeling, prediction,
and identification is ANNs. Time series analysis, energy, air pollution prediction, the
solution of engineering problems, and cancer diagnosis are some of the fields where it
is utilized [36–41]. A successful training process is required to achieve effective results
with the ANN. Especially, metaheuristic algorithms are used intensively in ANN training
because of the good convergence speed and the absence of the local minima problem.
Detailed information on the use of metaheuristic algorithms in ANN training is presented in
Section 2. Different metaheuristic algorithms are preferred in solving real-world problems
by utilizing the ANN. When metaheuristic algorithms are considered as neural network
training algorithms, it is a fact that performance can vary depending on the type of problem.
In order to determine the best training algorithm for solving the related problem, it is
necessary to compare the performance of different metaheuristic algorithms. The plurality
of the metaheuristic algorithm used in the comparison makes the analyzes meaningful.
However, when the literature is examined, it is seen that there is a deficiency in this regard.
In order to give an idea to the researchers, for the first time, ANN training is carried out with
16 metaheuristic algorithms within the scope of this study. In particular, many real-world
problems exhibit nonlinear behavior. Every nonlinear system has a characteristic and may
correspond to a problem in the real world. Nonlinear dynamical system identification has
a long history starting from Fréchet’s theorem, where it was demonstrated that a sum of a
finite number of terms of Volterra series can approximate continuous real-valued mappings.
Studies on nonlinear systems have been going on for a long time [42]. Especially, nonlinear
systems are inherently difficult problems. Therefore, the modeling and identification of
these systems is important. The successful identification of these systems shows the success
of the training algorithm. Nonlinear test systems have been used especially for the analysis
of the performance of neuro-fuzzy and neural network training algorithms. In this context,
the identification of nonlinear systems is chosen for the analysis of the performance of
the related metaheuristic algorithms. The contributions and innovations of this study are
as follows:
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• In this study, the success cases of metaheuristic algorithms are revealed. As it is
known, the identification of nonlinear systems is one of the difficult problems. Which
metaheuristic algorithm is more effective in solving this problem? There is no clear
answer to this in the literature. Therefore, the performances of sixteen metaheuristic
algorithms are compared in this study. Although this comparison is valid only for
nonlinear systems, it will be a reference for different types of problems. It is thought
that this study will guide the future studies of many researchers in different fields. It is
an important innovation that it is one of the first studies to compare the aforementioned
sixteen metaheuristic algorithms. At the same time, the results make a significant
contribution to the literature.

• The success of ANNs is directly related to the training process. In particular, meta-
heuristic algorithms have been used in ANN training. Some metaheuristic algorithms
are heavily used, while others are more limited. However, there is no clear information
about what the most effective metaheuristic-based ANN training algorithms are. This
study is one of the first studies to identify the most effective metaheuristic-based
ANN training algorithms. Therefore, it is innovative. The use of a training algorithm
without relying on any analysis in solving a problem may be insufficient for success.
This study gives an idea to the literature about which metaheuristic algorithms can be
used in ANN training.

• The importance of nonlinear systems has been emphasized above. This study is one of
the most comprehensive studies in terms of the identification of nonlinear systems. It
is innovative in terms of the technique used. This study was carried out on nonlinear
test systems. Many systems in the real world exhibit nonlinear behavior. Therefore,
this study will be a guide for the solution of many problems and will make important
contributions to the literature.

This study continues as follows: Related works are presented in Section 2. Section 3
introduces the general structure of the ANN. The simulation results are presented in
Section 4. The discussion is given in Section 5. The last section belongs to the conclusions.

2. Related Works

Metaheuristic algorithms are used successfully in solving difficult problems. The
training of ANNs is also one of their usage areas. Recently, the increase in the number of
metaheuristic algorithms has allowed the use of different metaheuristic algorithms in ANN
training. Some of these algorithms are reviewed in this section:

Ozturk and Karaboga [43] proposed a hybrid approach based on the ABC algorithm
and the Levenberg–Marquardt (LM) algorithm for training an ANN. Abusnaina et al. [44]
proposed an approach based on the ANN and SSA to perform pattern classification.
Ghanem and Jantan [45] presented a new approach based on the enhanced bat algo-
rithm (EBat) and ANN for intrusion detection. Jaddi et al. [46] introduced a modified bat
algorithm to determine the weights and structure of ANNs. The proposed algorithm was
performed on classification and prediction problems. Valian et al. [47] used an improved
CS to train an FFNN. Kueh and Kuok [48] trained an FFNN and recurrent neural network
(RNN) by using CS to forecast long-term precipitation. Baştemur Kaya and Kaya [49] pro-
posed an approach based on an ANN and FPA to predict the number of Turkey’s COVID-19
cases. Gupta et al. [50] suggested the usage of FPA and the generalized regression neural
network (GRNN) for the prediction of COVID-19 trends. Das et al. [51] realized the training
of the ANN by using PSO for nonlinear channel equalization. Ghashami et al. [52] used
a hybrid approach based on an ANN and PSO for the prediction of a stock market index.
Kankal and Uzlu [53] studied an ANN based on TLBO for modeling electric energy de-
mand in Turkey. Chen et al. [54] proposed a variant of TLBO for optimizing the parameters
of ANN. Wang et al. [55] trained the FFNN by using JAYA. The performance of JAYA
was compared with BP, MBP, GA, SA, and PSO. Uzlu [56] suggested a hybrid algorithm
based on an ANN and JAYA to estimate Turkey’s future energy usage. Hamdan et al. [57]
presented an application of SCA belonging to the training of an ANN for solving a load
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forecasting problem. Pashiri et al. [58] used the ANN and SCA approaches for spam
detection through feature selection. Pham et al. [59] utilized a new artificial intelligence
technique based on a multi-layer perceptron ANN and BBO for predicting the coefficient of
the consolidation of soil. Mousavirad et al. [60] proposed a hybrid neural network training
algorithm based on PSO, BBO, and a global search strategy. Aljarah et al. [61] evaluated the
performance of WOA in terms of solution quality and convergence speed in training the
FFNN. Alameer et al. [62] used the multi-layer perceptron ANN and WOA techniques for
forecasting gold price fluctuations. Aljarah et al. [63] presented an approach based on BSA
and an ANN for data classification and regression applications. Xiang et al. [64] optimized
a model based on an improved empirical wavelet transform (IEWT) and least-squares
support vector machine (LSSVM) by using BSA for forecasting short-term wind speed.
Kulluk et al. [65] implemented HS for supervised training of an ANN and used FFNNs for
classification problems. In a different study, a neural network training approach based on
the self-adaptive global best HS was presented [66]. Muthukumar and Balamurugan [67]
proposed a hybrid renewable energy system based on an ANN and BA. Bairathi and
Gopalani [68] realized the training of an ANN by using SSA. Apart from these, there are
ANN studies based on metaheuristic algorithms [69–71].

3. Artificial Neural Networks

The cornerstone of an ANN is artificial neurons. ANNs are formed by the combination
of many artificial neurons. An FFNN basically consists of three layers: input, hidden,
and output. There is a process in the neurons in the hidden and output layers. A neuron
generates an output using the input data, as shown in Figure 1. The output of one neuron
can be the input for other neurons. A neuron consists of inputs, weights, a threshold,
and an output. It uses the activation and transfer functions to obtain the output value.
(1) is utilized to calculate the output of the artificial neuron given in Figure 1. w is the
weight value corresponding to the input. b is the bias value. f is the activation function. y
corresponds to the output of the artificial neuron. Here, the summing function is used as
the transfer function. In addition, there are different activation functions. One of the most
popular is the sigmoid function given in (2). In this study, the sigmoid function is utilized.

y = f

(
m

∑
i=1

wixi + b

)
(1)

σ(x) =
1

1 + e−x (2)

The weight and bias values in the ANN structure are important arguments of the
training process. The total number of parameters to be optimized during training is directly
related to these. In addition, the number of parameters to be optimized also depends on
the number of inputs and the total number of neurons.

It is possible to evaluate the stage of creating the appropriate ANN structure for the
solution of a problem in two steps. These are the training process and the test process. The
existing sample dataset is divided into two parts. A certain part is used for the training
process. The remaining part is utilized for the testing process. For a successful training
process, a successful training algorithm is required. The ANN is trained using the training
dataset. The maximum number of generations or an error value can be used as the stopping
criterion. In simple terms, the difference between the real output and the predicted output
gives the error. A low error value indicates that the training process is successful. It also
means that a suitable ANN structure is obtained for solving the related problem. At the
end of the training process, the ANN recognizes the training dataset. In the test process,
the test is realized on the dataset that the ANN has not seen before. Therefore, the test error
value is also important as the training error value.
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Figure 1. General structure of an artificial neuron.

4. Simulation Results

In this section, the results of neural network training based on metaheuristic algorithms
are presented for the identification of nonlinear systems. As given in Table 1, six nonlinear
systems were used. The nonlinear systems include two groups. These are stationary
dynamic systems and non-stationary dynamic systems. The first four systems (S1, S2, S3,
and S4) are stationary dynamic systems. The last two systems are non-stationary dynamic
systems (D1 and D2). S1 has one input. S2 and S3 have two inputs. Other systems have
three inputs. All systems consist of one output. In applications, an FFNN is used. Three
different FFNN models were created for each systems. There were 5, 10 and 15 neurons
utilized in the hidden layer of the FFNN. Sigmoid was used as the activation function for all
neurons. The summing function was chosen as the transfer function. In addition, the bias
value was utilized for each neuron. The number of data used in the training and testing
process is given in Table 1. In general, 80% of the data were reserved for training. The
remaining were for the testing process. Before starting the network training, the dataset
was scaled in the range of [0, 1]. The colony size and maximum number of generations
for all metaheuristic algorithms were 20 and 2500, respectively. Each application was run
30 times, and the mean error value was calculated. The mean-squared error (MSE) was
used as the error type.

When the literature is examined, it is possible to see many nonlinear test functions. It
is seen that nonlinear systems between four and ten are generally used in studies in the
literature. It is not enough to describe the performance of the proposed approaches using
only one system. In this context, this study included six nonlinear systems. The selected
systems were taken from the literature. The input and output relationship of the system
is also one of the important factors. The difference in the number of inputs also affects
the network structures to be used. In fact, this completely changes the problem structure.
Analyzing the proposed approaches on different systems is also a factor that increases
reliability. For this reason, the analyzes were carried out on stationary dynamic systems
consisting of one, two, and three inputs. The different behaviors of the stationary dynamic
systems are an important reason for the preference. In fact, the equations of stationary
dynamic systems give an idea about their characteristic structures. Non-stationary dynamic
systems are characteristically different from stationary dynamic systems. They use past
outputs/information. D1 and D2 are two non-stationary dynamic test functions accepted
in the literature. It is possible to encounter these systems in many studies. Although both
systems consist of three inputs, their characteristics are different from each other. The
equation structures of systems significantly affect their characteristics. Considering this
point, the systems were determined. Therefore, stationary dynamic systems based on
exponential, trigonometric, and polynomial were included. On the other hand, the inputs
and equation structure change the characteristic of the problem in non-stationary dynamic
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systems. Although both non-stationary dynamic systems consist of three inputs, their
characteristics are different. This is also one of the aims of this study, namely whether the
proposed approaches can produce successful solutions for different systems. Nonlinear
systems are classified according to the number of inputs and outputs. All nonlinear systems
used in this study contain an output. The S1 system consists of one input. Therefore, S1
is a SISO system. Other nonlinear systems have more than one input. Therefore, they are
MISO systems. In light of this information, the identification of SISO and MISO systems
was carried out within the scope of this study.

Table 1. Nonlinear systems used.

System Equation Inputs Output Number of
Training/Test Data

S1 y = 2 sin(πx1) x1 y 80\20
S2 y = 10.391{(x1 − 0.4)(x2 − 0.6) + 0.36} x1, x2 y 80\20
S3 y = tanh(x1 + x2 − 11) x1, x2 y 80\20

S4 y = 1 + x0.5
1 + x−1

2 + x−1.5
3 x1, x2, x3 y 173\43

D1 y(k + 1) = y(k)y(k−1)[y(k)+2.5]
1+[y(k)]2+[y(k−1)]2

+ u(k) y(k), y(k− 1), u(k) y(k + 1) 200\50

D2 y(k + 1) = y(k)
1+y(k−1) + u(k)3 y(k), y(k− 1), u(k) y(k + 1) 200\50

Modeling based on ANNs of nonlinear systems includes training and testing processes.
In order to evaluate the performance of the obtained model, training and test results should
be considered together. In the training phase, the training of the ANN is carried out on
known data. In other words, the values of the weights and some parameters are determined
by the training algorithm. The training process continues until the stopping criterion is
met. In each generation, it is aimed to reach more optimum parameter values. As the
parameter values approach the optimum, the error value will decrease. In Figure 2, a block
diagram showing the modeling of a stationary dynamic system with an approach based
on the ANN and metaheuristic algorithms is given. Here, s input sets are given to the
system and a real output is obtained by the nonlinear system. In parallel, an estimated
output value was found as a result of ANN training with metaheuristic algorithms. Until
the stopping criterion, we aimed to minimize the difference between the real output and
the estimated output. The same is true for non-stationary dynamic systems. Similar to
stationary dynamic systems, the block diagram of modeling for non-stationary dynamic
systems is given in Figure 3. In the training process, the error value or the maximum
number of generations can be used as the stopping criterion. In this study, the maximum
number of generations was utilized as the stopping criterion. The training process takes
place on the known data set. In the testing process, data sets that are not utilized in the
training of the network are used. If a successful training process has been realized, the error
values belonging to the testing process should also be low.

FFNN training was performed by using sixteen metaheuristic algorithms: ABC, BAT,
CS, FPA, PSO, JAYA, TLBO, SCA, BBO, WOA, BSA, HS, BA, MVO, MFO, and SSA. The
results obtained for S1 are presented in Table 2. When ABC, FPA, BBO, MVO, MFO, and
SSA were used, increasing the number of neurons mostly improved the solution quality
of the training and testing process. In these algorithms, the best error value was found
with the 1-15-1 network structure. The training error values of CS and BA improved as
the number of neurons increased. The same effect was not observed in the test error value.
In these algorithms, the best result was obtained with the 1-15-1 network structure for
training, while the 1-10-1 network structure was more effective for testing. As seen in the
training and test results of BAT, TLBO, and BSA, the 1-10-1 network structure was more
effective than other network structures. Increasing the number of neurons in PSO, SCA,
and HS mostly reduced the quality of the solution. When the training and test error values
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were examined, the most effective results were obtained using 1-5-1 in these algorithms.
The best training and test error values in JAYA and WOA were found with 1-10-1.

The results obtained for S2 are presented in Table 3. In only five algorithms, BAT, BBO,
MVO, MFO, and SSA, increasing the number of neurons positively affected the training
and test results mostly. The best errors were found with the 2-15-1 network structure in
these algorithms. In S2, CS exhibited similar behavior to S1. FPA was like CS. In PSO, JAYA,
SCA, and HS, the training and test errors were also negatively affected by an increase in
the number of neurons. The best errors for ABC, TLBO, and BSA were achieved using the
2-10-1 network structure. In WOA and BA, the change in network structure affected the
training and test results differently.

Figure 2. A block diagram of the identification of stationary dynamic systems with the proposed
approaches.

Figure 3. A block diagram of the identification of non-stationary dynamic systems with the proposed
approaches.

The results obtained for S3 are presented in Table 4. In BAT, BSA, and SSA, the best
errors were found with 2-15-1. The increase in the number of neurons mostly improved the
solution quality in these algorithms. The increase in the number of neurons for CS, FPA,
PSO, SCA, WOA, HS, JAYA, and BA generally decreased the solution quality. The 2-10-1
network structure was more effective for MFO and BBO. In other algorithms, variable
behavior was exhibited for the training and test processes.
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Table 2. The results obtained by using the metaheuristic algorithms for S1.

Algorithm Network Structure Train Test
Mean SD. Mean SD.

ABC
1-5-1 1.6× 10−3 4.2× 10−4 2.4× 10−3 6.2× 10−4

1-10-1 8.2× 10−4 3.4× 10−4 1.6× 10−3 6.8× 10−4

1-15-1 7.1× 10−4 2.4× 10−4 1.5× 10−3 5.3× 10−4

BAT
1-5-1 2.6× 10−2 3.6× 10−2 3.0× 10−2 3.8× 10−2

1-10-1 2.2× 10−2 3.9× 10−2 2.3× 10−2 4.0× 10−2

1-15-1 2.5× 10−2 4.6× 10−2 2.7× 10−2 5.0× 10−2

CS
1-5-1 1.3× 10−3 2.2× 10−4 2.2× 10−3 5.1× 10−4

1-10-1 8.0× 10−4 2.4× 10−4 1.6× 10−3 5.5× 10−4

1-15-1 7.3× 10−4 1.7× 10−4 1.8× 10−3 5.8× 10−4

FPA
1-5-1 1.4× 10−3 2.6× 10−4 2.3× 10−3 5.6× 10−4

1-10-1 9.2× 10−4 2.9× 10−4 1.7× 10−3 5.3× 10−4

1-15-1 8.0× 10−4 2.7× 10−4 1.7× 10−3 7.1× 10−4

PSO
1-5-1 1.7× 10−3 4.6× 10−4 1.7× 10−3 4.6× 10−4

1-10-1 2.1× 10−3 6.2× 10−4 2.1× 10−3 6.2× 10−4

1-15-1 2.1× 10−3 6.0× 10−4 2.1× 10−3 6.0× 10−4

JAYA
1-5-1 1.5× 10−2 8.3× 10−3 1.6× 10−2 9.0× 10−3

1-10-1 1.3× 10−2 6.5× 10−3 1.4× 10−2 7.4× 10−3

1-15-1 1.4× 10−2 8.3× 10−3 1.4× 10−2 9.3× 10−3

TLBO
1-5-1 1.1× 10−3 6.7× 10−4 2.0× 10−3 1.1× 10−3

1-10-1 9.7× 10−4 6.5× 10−4 1.6× 10−3 7.7× 10−4

1-15-1 9.9× 10−4 5.1× 10−4 1.6× 10−3 6.5× 10−4

SCA
1-5-1 4.5× 10−3 8.2× 10−4 5.6× 10−3 1.5× 10−3

1-10-1 5.0× 10−3 1.6× 10−3 5.9× 10−3 2.0× 10−3

1-15-1 4.9× 10−3 1.5× 10−3 5.9× 10−3 2.8× 10−3

BBO
1-5-1 9.2× 10−4 3.9× 10−4 1.9× 10−3 6.5× 10−4

1-10-1 6.9× 10−4 2.5× 10−4 1.6× 10−3 4.9× 10−4

1-15-1 5.3× 10−4 2.3× 10−4 1.5× 10−3 5.2× 10−4

WOA
1-5-1 7.8× 10−3 9.4× 10−3 8.3× 10−3 6.9× 10−3

1-10-1 3.8× 10−3 2.1× 10−3 5.4× 10−3 3.2× 10−3

1-15-1 7.4× 10−3 9.7× 10−3 8.4× 10−3 8.6× 10−3

BSA
1-5-1 3.0× 10−2 2.6× 10−2 3.3× 10−2 2.9× 10−2

1-10-1 9.2× 10−3 1.8× 10−2 1.0× 10−2 1.7× 10−2

1-15-1 2.7× 10−2 3.5× 10−2 2.8× 10−2 3.5× 10−2

HS
1-5-1 1.1× 10−2 1.2× 10−2 1.2× 10−2 1.2× 10−2

1-10-1 2.4× 10−2 1.6× 10−2 2.7× 10−2 2.0× 10−2

1-15-1 2.7× 10−2 1.2× 10−2 3.0× 10−2 1.3× 10−2

BA
1-5-1 9.0× 10−3 3.5× 10−3 1.1× 10−2 4.8× 10−3

1-10-1 6.4× 10−3 2.3× 10−3 7.2× 10−3 2.8× 10−3

1-15-1 6.2× 10−3 2.3× 10−3 7.8× 10−3 3.6× 10−3

MVO
1-5-1 1.2× 10−3 5.6× 10−4 2.4× 10−3 9.7× 10−4

1-10-1 9.0× 10−4 5.9× 10−4 2.0× 10−3 8.7× 10−4

1-15-1 4.9× 10−4 2.6× 10−4 1.5× 10−3 5.5× 10−4

MFO
1-5-1 1.8× 10−3 1.4× 10−3 2.6× 10−3 1.5× 10−3

1-10-1 8.2× 10−4 8.4× 10−4 1.7× 10−3 1.1× 10−3

1-15-1 3.5× 10−4 2.7× 10−4 1.4× 10−3 6.9× 10−4

SSA
1-5-1 1.4× 10−3 5.8× 10−4 2.7× 10−3 9.0× 10−4

1-10-1 9.7× 10−4 6.1× 10−4 2.0× 10−3 8.3× 10−4

1-15-1 7.9× 10−4 5.4× 10−4 1.8× 10−3 6.7× 10−4
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Table 3. The results obtained by using the metaheuristic algorithms for S2.

Algorithm Network Structure Train Test
Mean SD. Mean SD.

ABC
2-5-1 9.1× 10−4 2.9× 10−4 5.1× 10−3 2.3× 10−3

2-10-1 5.4× 10−4 1.7× 10−4 4.1× 10−3 2.5× 10−3

2-15-1 7.1× 10−4 3.9× 10−4 5.7× 10−3 4.1× 10−3

BAT
2-5-1 9.9× 10−3 1.3× 10−2 2.2× 10−2 1.9× 10−2

2-10-1 1.2× 10−2 3.2× 10−2 2.1× 10−2 3.4× 10−2

2-15-1 8.9× 10−3 2.8× 10−2 1.7× 10−2 3.3× 10−2

CS
2-5-1 1.3× 10−3 3.8× 10−4 6.0× 10−3 3.3× 10−3

2-10-1 1.0× 10−3 2.6× 10−4 4.4× 10−3 2.1× 10−3

2-15-1 9.8× 10−4 2.5× 10−4 5.1× 10−3 2.8× 10−3

FPA
2-5-1 1.6× 10−3 5.7× 10−4 6.4× 10−3 3.1× 10−3

2-10-1 1.2× 10−3 3.2× 10−4 5.8× 10−3 2.9× 10−3

2-15-1 1.1× 10−3 2.8× 10−4 6.0× 10−3 3.1× 10−3

PSO
2-5-1 1.8× 10−3 1.3× 10−3 1.8× 10−3 1.3× 10−3

2-10-1 2.6× 10−3 1.2× 10−3 2.6× 10−3 1.2× 10−3

2-15-1 3.5× 10−3 1.4× 10−3 3.5× 10−3 1.4× 10−3

JAYA
2-5-1 1.6× 10−2 5.8× 10−3 2.8× 10−2 1.0× 10−2

2-10-1 2.3× 10−2 8.9× 10−3 4.4× 10−2 2.3× 10−2

2-15-1 3.2× 10−2 1.3× 10−2 5.6× 10−2 2.8× 10−2

TLBO
2-5-1 1.2× 10−3 9.7× 10−4 5.8× 10−3 3.8× 10−3

2-10-1 6.2× 10−4 5.6× 10−4 4.0× 10−3 2.2× 10−3

2-15-1 8.0× 10−4 5.8× 10−4 4.5× 10−3 2.8× 10−3

SCA
2-5-1 7.5× 10−3 1.3× 10−3 1.7× 10−2 6.7× 10−3

2-10-1 9.2× 10−3 2.4× 10−3 2.2× 10−2 6.2× 10−3

2-15-1 1.1× 10−2 3.3× 10−3 2.2× 10−2 7.3× 10−3

BBO
2-5-1 1.0× 10−3 1.2× 10−3 6.6× 10−3 4.5× 10−3

2-10-1 5.7× 10−4 4.9× 10−4 4.3× 10−3 2.4× 10−3

2-15-1 4.7× 10−4 2.8× 10−4 4.3× 10−3 2.1× 10−3

WOA
2-5-1 9.1× 10−3 5.3× 10−3 2.4× 10−2 7.6× 10−3

2-10-1 9.9× 10−3 5.5× 10−3 2.2× 10−2 7.7× 10−3

2-15-1 9.7× 10−3 5.9× 10−3 2.1× 10−2 6.4× 10−3

BSA
2-5-1 1.3× 10−2 6.9× 10−3 2.6× 10−2 8.6× 10−3

2-10-1 8.6× 10−3 6.0× 10−3 1.8× 10−2 9.2× 10−3

2-15-1 1.4× 10−2 8.1× 10−3 2.6× 10−2 9.5× 10−3

HS
2-5-1 4.9× 10−3 3.7× 10−3 1.2× 10−2 5.6× 10−3

2-10-1 2.9× 10−2 1.5× 10−2 4.8× 10−2 2.9× 10−2

2-15-1 5.1× 10−2 1.6× 10−2 6.7× 10−2 3.1× 10−2

BA
2-5-1 1.0× 10−2 2.4× 10−3 2.5× 10−2 9.8× 10−3

2-10-1 1.2× 10−2 3.7× 10−3 2.3× 10−2 1.1× 10−2

2-15-1 1.7× 10−2 7.0× 10−3 3.0× 10−2 1.5× 10−2

MVO
2-5-1 2.5× 10−3 2.1× 10−3 1.0× 10−2 6.9× 10−3

2-10-1 9.2× 10−4 6.7× 10−4 5.5× 10−3 4.5× 10−3

2-15-1 5.5× 10−4 4.0× 10−4 3.8× 10−3 2.6× 10−3

MFO
2-5-1 2.8× 10−3 2.4× 10−3 8.9× 10−3 7.5× 10−3

2-10-1 8.8× 10−4 8.4× 10−4 5.9× 10−3 5.4× 10−3

2-15-1 5.2× 10−4 5.5× 10−4 3.7× 10−3 2.2× 10−3

SSA
2-5-1 4.0× 10−3 2.0× 10−3 1.2× 10−2 7.3× 10−3

2-10-1 1.9× 10−3 1.5× 10−3 7.9× 10−3 5.5× 10−3

2-15-1 1.2× 10−3 1.0× 10−3 6.7× 10−3 3.9× 10−3
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Table 4. The results obtained by using the metaheuristic algorithms for S3.

Algorithm Network Structure Train Test
Mean SD. Mean SD.

ABC
2-5-1 2.7× 10−4 1.4× 10−4 3.4× 10−3 2.6× 10−3

2-10-1 2.3× 10−4 1.2× 10−4 3.8× 10−3 2.8× 10−3

2-15-1 2.9× 10−4 1.5× 10−4 4.1× 10−3 2.7× 10−3

BAT
2-5-1 1.6× 10−3 2.1× 10−3 9.5× 10−3 6.8× 10−3

2-10-1 3.2× 10−3 8.4× 10−3 1.5× 10−2 2.4× 10−2

2-15-1 1.6× 10−3 4.7× 10−3 9.2× 10−3 7.5× 10−3

CS
2-5-1 1.4× 10−4 4.2× 10−5 3.5× 10−3 1.3× 10−3

2-10-1 2.1× 10−4 7.9× 10−5 4.0× 10−3 1.3× 10−3

2-15-1 3.0× 10−4 9.0× 10−5 5.0× 10−3 2.0× 10−3

FPA
2-5-1 2.0× 10−4 8.5× 10−5 4.0× 10−3 2.0× 10−3

2-10-1 2.4× 10−4 8.4× 10−5 4.2× 10−3 1.9× 10−3

2-15-1 3.2× 10−4 1.2× 10−4 5.0× 10−3 2.2× 10−3

PSO
2-5-1 2.1× 10−4 1.6× 10−4 2.1× 10−4 1.6× 10−4

2-10-1 4.1× 10−4 2.8× 10−4 4.1× 10−4 2.8× 10−4

2-15-1 7.1× 10−4 3.1× 10−4 7.1× 10−4 3.1× 10−4

JAYA
2-5-1 6.2× 10−3 3.1× 10−3 2.4× 10−2 1.6× 10−2

2-10-1 8.2× 10−3 3.1× 10−3 2.8× 10−2 1.8× 10−2

2-15-1 1.1× 10−2 3.6× 10−3 2.9× 10−2 1.9× 10−2

TLBO
2-5-1 5.6× 10−5 4.1× 10−5 2.9× 10−3 9.2× 10−4

2-10-1 7.1× 10−5 7.9× 10−5 2.8× 10−3 1.1× 10−3

2-15-1 1.3× 10−4 1.0× 10−4 4.1× 10−3 1.5× 10−3

SCA
2-5-1 1.2× 10−3 4.8× 10−4 7.6× 10−3 4.8× 10−3

2-10-1 1.7× 10−3 7.1× 10−4 1.0× 10−2 5.4× 10−3

2-15-1 2.1× 10−3 9.3× 10−4 9.7× 10−3 4.2× 10−3

BBO
2-5-1 1.1× 10−4 8.9× 10−5 4.0× 10−3 1.6× 10−3

2-10-1 1.0× 10−4 7.5× 10−5 3.5× 10−3 1.7× 10−3

2-15-1 2.0× 10−4 2.1× 10−4 4.7× 10−3 1.8× 10−3

WOA
2-5-1 1.6× 10−3 1.5× 10−3 9.8× 10−3 4.2× 10−3

2-10-1 1.6× 10−3 2.1× 10−3 1.0× 10−2 7.5× 10−3

2-15-1 1.9× 10−3 2.4× 10−3 1.2× 10−2 1.1× 10−2

BSA
2-5-1 4.2× 10−3 6.8× 10−3 1.9× 10−2 1.8× 10−2

2-10-1 2.3× 10−3 2.0× 10−3 1.4× 10−2 8.5× 10−3

2-15-1 2.2× 10−3 1.9× 10−3 1.4× 10−2 8.4× 10−3

HS
2-5-1 2.2× 10−3 1.7× 10−3 1.0× 10−2 7.5× 10−3

2-10-1 9.5× 10−3 2.9× 10−3 2.6× 10−2 1.3× 10−2

2-15-1 1.4× 10−2 4.0× 10−3 3.0× 10−2 1.6× 10−2

BA
2-5-1 2.7× 10−3 1.1× 10−3 9.8× 10−3 5.4× 10−3

2-10-1 3.5× 10−3 1.3× 10−3 1.3× 10−2 5.3× 10−3

2-15-1 4.6× 10−3 1.5× 10−3 1.4× 10−2 9.8× 10−3

MVO
2-5-1 1.6× 10−4 1.2× 10−4 3.8× 10−3 1.4× 10−3

2-10-1 1.2× 10−4 8.6× 10−5 3.7× 10−3 1.6× 10−3

2-15-1 1.3× 10−4 7.8× 10−5 3.6× 10−3 1.5× 10−3

MFO
2-5-1 5.1× 10−4 9.8× 10−4 4.5× 10−3 4.7× 10−3

2-10-1 2.0× 10−4 2.7× 10−4 4.5× 10−3 4.2× 10−3

2-15-1 3.2× 10−4 4.0× 10−4 6.3× 10−3 6.7× 10−3

SSA
2-5-1 1.6× 10−4 1.2× 10−4 3.8× 10−3 1.3× 10−3

2-10-1 1.6× 10−4 1.3× 10−4 3.8× 10−3 1.6× 10−3

2-15-1 1.1× 10−4 8.0× 10−5 3.6× 10−3 1.3× 10−3
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The results obtained for S4 are presented in Table 5. Reducing the number of neurons
in BAT, PSO, JAYA, SCA, WOA, HS, and BA mostly improved the quality of the solution in
both training and testing. The best error values were obtained by using the 3-15-1 network
structure in BSA, MVO, MFO, and SSA. In these algorithms, the increase in the number of
neurons positively affected the quality of the solution generally. In ABC, the best training
and testing results were found with 3-10-1. In other algorithms, the change in the network
structure affected the training and test results differently.

Table 5. The results obtained by using the metaheuristic algorithms for S4.

Algorithm Network Structure Train Test
Mean SD. Mean SD.

ABC
3-5-1 1.9× 10−3 6.0× 10−4 2.3× 10−3 8.1× 10−4

3-10-1 1.5× 10−3 4.6× 10−4 2.1× 10−3 7.3× 10−4

3-15-1 2.0× 10−3 1.0× 10−3 3.1× 10−3 1.4× 10−3

BAT
3-5-1 1.5× 10−2 1.1× 10−2 1.5× 10−2 1.1× 10−2

3-10-1 1.6× 10−2 2.3× 10−2 1.7× 10−2 2.5× 10−2

3-15-1 1.8× 10−2 3.1× 10−2 1.8× 10−2 3.3× 10−2

CS
3-5-1 2.6× 10−3 5.7× 10−4 2.9× 10−3 7.9× 10−4

3-10-1 2.5× 10−3 4.5× 10−4 3.0× 10−3 7.6× 10−4

3-15-1 3.0× 10−3 5.0× 10−4 3.3× 10−3 7.4× 10−4

FPA
3-5-1 3.1× 10−3 9.1× 10−4 3.5× 10−3 1.1× 10−3

3-10-1 3.2× 10−3 6.7× 10−4 3.5× 10−3 1.0× 10−3

3-15-1 3.3× 10−3 1.0× 10−3 3.4× 10−3 1.2× 10−3

PSO
3-5-1 2.1× 10−3 8.7× 10−4 2.1× 10−3 8.7× 10−4

3-10-1 3.6× 10−3 1.6× 10−3 3.6× 10−3 1.6× 10−3

3-15-1 5.2× 10−3 2.2× 10−3 5.2× 10−3 2.2× 10−3

JAYA
3-5-1 3.0× 10−2 1.0× 10−2 2.9× 10−2 1.2× 10−2

3-10-1 4.8× 10−2 1.8× 10−2 4.9× 10−2 1.9× 10−2

3-15-1 5.5× 10−2 1.6× 10−2 5.4× 10−2 1.9× 10−2

TLBO
3-5-1 1.5× 10−3 1.2× 10−3 1.9× 10−3 1.1× 10−3

3-10-1 4.8× 10−4 2.3× 10−4 9.7× 10−4 3.9× 10−4

3-15-1 6.9× 10−4 6.4× 10−4 1.2× 10−3 5.6× 10−4

SCA
3-5-1 7.5× 10−3 2.4× 10−3 7.6× 10−3 2.5× 10−3

3-10-1 9.2× 10−3 2.7× 10−3 9.1× 10−3 3.0× 10−3

3-15-1 9.6× 10−3 3.9× 10−3 9.4× 10−3 3.6× 10−3

BBO
3-5-1 8.8× 10−4 5.5× 10−4 1.4× 10−3 7.6× 10−4

3-10-1 8.1× 10−4 6.3× 10−4 1.5× 10−3 8.7× 10−4

3-15-1 1.2× 10−3 5.8× 10−4 1.8× 10−3 9.0× 10−4

WOA
3-5-1 8.2× 10−3 4.8× 10−3 8.2× 10−3 5.1× 10−3

3-10-1 9.4× 10−3 7.0× 10−3 9.4× 10−3 7.1× 10−3

3-15-1 9.5× 10−3 6.5× 10−3 9.3× 10−3 7.4× 10−3

BSA
3-5-1 1.5× 10−2 6.5× 10−3 1.4× 10−2 6.8× 10−3

3-10-1 1.5× 10−2 8.0× 10−3 1.5× 10−2 8.8× 10−3

3-15-1 1.4× 10−2 7.0× 10−3 1.4× 10−2 7.8× 10−3

HS
3-5-1 8.2× 10−3 4.2× 10−3 7.9× 10−3 4.5× 10−3

3-10-1 3.2× 10−2 1.5× 10−2 2.7× 10−1 1.0× 10−1

3-15-1 6.2× 10−2 1.4× 10−2 6.0× 10−2 1.5× 10−2

BA
3-5-1 1.7× 10−2 2.9× 10−3 1.7× 10−2 3.5× 10−3

3-10-1 2.4× 10−2 5.5× 10−3 2.3× 10−2 5.1× 10−3

3-15-1 3.7× 10−2 9.0× 10−3 3.6× 10−2 9.3× 10−3
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Table 5. Cont.

Algorithm Network Structure Train Test
Mean SD. Mean SD.

MVO
3-5-1 2.5× 10−3 1.3× 10−3 3.2× 10−3 1.4× 10−3

3-10-1 2.1× 10−3 1.3× 10−3 2.7× 10−3 1.4× 10−3

3-15-1 2.0× 10−3 1.2× 10−3 2.5× 10−3 1.4× 10−3

MFO
3-5-1 4.3× 10−3 2.9× 10−3 5.1× 10−3 3.4× 10−3

3-10-1 3.8× 10−3 2.8× 10−3 3.2× 10−1 1.0× 10−1

3-15-1 2.2× 10−3 1.2× 10−3 3.4× 10−3 1.6× 10−3

SSA
3-5-1 3.6× 10−3 1.9× 10−3 3.8× 10−3 1.7× 10−3

3-10-1 2.4× 10−3 1.5× 10−3 2.8× 10−1 9.8× 10−2

3-15-1 1.7× 10−3 6.4× 10−4 2.2× 10−3 7.3× 10−4

The results obtained for D1 are presented in Table 6. The 3-15-1 network structure for
ABC, BAT, BSA, MVO, MFO, and SSA was effective in both the training and test results. The
3-15-1 structure was very successful compared to 3-5-1 in these algorithms. The opposite
was true for PSO, JAYA, SCA, BBO, WOA, and HS. In these algorithms, the 3-5-1 network
structure was mostly more successful than the others. In TLBO, BA, and FPA, the best
solutions were found in the hidden layer with ten neurons. The 3-5-1 and 3-10-1 networks
were effective in CS.

Table 6. The results obtained by using the metaheuristic algorithms for D1.

Algorithm Network Structure Train Test
Mean SD. Mean SD.

ABC
3-5-1 8.7× 10−4 2.1× 10−4 9.9× 10−4 3.8× 10−4

3-10-1 6.1× 10−4 1.8× 10−4 7.5× 10−4 2.8× 10−4

3-15-1 5.3× 10−4 1.7× 10−4 6.6× 10−4 3.7× 10−4

BAT
3-5-1 7.0× 10−3 1.4× 10−2 7.3× 10−3 1.4× 10−3

3-10-1 5.9× 10−3 1.5× 10−2 6.1× 10−3 1.5× 10−2

3-15-1 5.2× 10−3 1.7× 10−2 5.3× 10−3 1.6× 10−2

CS
3-5-1 8.7× 10−4 1.5× 10−4 9.3× 10−4 2.4× 10−4

3-10-1 8.6× 10−4 1.6× 10−4 9.4× 10−4 2.1× 10−4

3-15-1 9.3× 10−4 1.4× 10−4 1.0× 10−3 2.2× 10−4

FPA
3-5-1 1.0× 10−3 3.0× 10−4 1.2× 10−3 3.6× 10−4

3-10-1 9.9× 10−4 1.9× 10−4 1.1× 10−3 3.3× 10−4

3-15-1 1.0× 10−3 2.5× 10−4 1.1× 10−3 3.6× 10−4

PSO
3-5-1 1.3× 10−3 3.9× 10−4 1.3× 10−3 3.9× 10−4

3-10-1 1.7× 10−3 5.6× 10−4 1.7× 10−3 5.6× 10−4

3-15-1 2.3× 10−3 6.6× 10−4 2.3× 10−3 6.6× 10−4

JAYA
3-5-1 1.3× 10−2 4.9× 10−3 1.3× 10−2 4.8× 10−3

3-10-1 1.3× 10−2 4.3× 10−3 1.3× 10−2 4.4× 10−3

3-15-1 1.7× 10−2 7.4× 10−3 1.7× 10−2 7.4× 10−3

TLBO
3-5-1 6.2× 10−4 2.8× 10−4 7.4× 10−4 3.8× 10−4

3-10-1 6.2× 10−4 2.4× 10−4 6.7× 10−4 2.8× 10−4

3-15-1 9.3× 10−4 4.0× 10−4 9.9× 10−4 4.5× 10−4

SCA
3-5-1 3.5× 10−3 1.2× 10−3 3.9× 10−3 1.3× 10−3

3-10-1 4.2× 10−3 1.7× 10−3 4.5× 10−3 1.7× 10−3

3-15-1 5.0× 10−3 1.6× 10−3 5.5× 10−3 1.8× 10−3

BBO
3-5-1 5.2× 10−4 2.1× 10−4 6.1× 10−4 3.2× 10−4

3-10-1 5.3× 10−4 1.8× 10−4 6.8× 10−4 4.1× 10−4

3-15-1 5.5× 10−4 2.0× 10−4 6.2× 10−4 3.1× 10−4



Mathematics 2022, 10, 1611 13 of 25

Table 6. Cont.

Algorithm Network Structure Train Test
Mean SD. Mean SD.

WOA
3-5-1 5.3× 10−3 4.3× 10−3 5.7× 10−3 4.2× 10−3

3-10-1 6.2× 10−3 3.8× 10−3 6.4× 10−3 3.7× 10−3

3-15-1 5.9× 10−3 4.1× 10−3 6.3× 10−3 3.9× 10−3

BSA
3-5-1 1.1× 10−2 1.2× 10−2 1.1× 10−2 1.2× 10−2

3-10-1 7.2× 10−3 6.8× 10−3 7.4× 10−3 7.0× 10−3

3-15-1 6.5× 10−3 3.6× 10−3 6.8× 10−3 3.7× 10−3

HS
3-5-1 5.7× 10−3 3.3× 10−3 5.8× 10−3 3.3× 10−3

3-10-1 1.7× 10−2 5.7× 10−3 1.7× 10−2 5.7× 10−3

3-15-1 2.2× 10−2 5.8× 10−3 2.2× 10−2 5.8× 10−3

BA
3-5-1 6.9× 10−3 1.8× 10−3 7.3× 10−3 1.8× 10−3

3-10-1 6.7× 10−3 2.1× 10−3 7.0× 10−3 2.2× 10−3

3-15-1 8.8× 10−3 2.3× 10−3 9.1× 10−3 2.4× 10−3

MVO
3-5-1 1.1× 10−3 5.1× 10−4 1.3× 10−3 6.7× 10−4

3-10-1 7.0× 10−4 1.9× 10−4 8.2× 10−4 3.0× 10−4

3-15-1 6.7× 10−4 3.2× 10−4 7.6× 10−4 4.2× 10−4

MFO
3-5-1 1.4× 10−3 1.3× 10−3 1.5× 10−3 1.3× 10−3

3-10-1 5.8× 10−4 3.7× 10−4 6.9× 10−4 5.5× 10−4

3-15-1 5.4× 10−4 5.8× 10−4 6.3× 10−4 6.4× 10−4

SSA
3-5-1 1.3× 10−3 5.1× 10−4 1.8× 10−3 9.3× 10−4

3-10-1 9.3× 10−4 3.3× 10−4 1.2× 10−3 5.7× 10−4

3-15-1 6.9× 10−4 2.4× 10−4 8.1× 10−4 3.0× 10−4

The results obtained for D2 are presented in Table 7. ABC, BAT, CS, FPA, MVO, MFO,
and SSA responded positively to an increase in the number of neurons. This increased the
quality of the solution for both training and testing. The best errors in PSO, SCA, WOA,
and HS were obtained with the 3-5-1 network structure. The 3-10-1 network structure was
effective for JAYA, TLBO, BBO, BSA, and BA.

Table 7. The results obtained by using the metaheuristic algorithms for D2.

Algorithm Network Structure Train Test
Mean SD. Mean SD.

ABC
3-5-1 3.8× 10−3 4.4× 10−4 3.9× 10−3 4.9× 10−4

3-10-1 3.1× 10−3 3.0× 10−4 3.2× 10−3 3.5× 10−4

3-15-1 2.9× 10−3 3.0× 10−4 3.0× 10−3 5.1× 10−4

BAT
3-5-1 1.1× 10−2 5.7× 10−3 1.3× 10−2 1.5× 10−2

3-10-1 9.1× 10−3 5.9× 10−3 9.4× 10−3 5.9× 10−3

3-15-1 8.6× 10−3 1.0× 10−2 9.0× 10−3 1.0× 10−2

CS
3-5-1 3.8× 10−3 3.3× 10−4 3.9× 10−3 3.4× 10−4

3-10-1 3.6× 10−3 2.7× 10−4 3.7× 10−3 4.6× 10−4

3-15-1 3.4× 10−3 2.7× 10−4 3.5× 10−3 3.3× 10−4

FPA
3-5-1 4.5× 10−3 4.9× 10−4 4.7× 10−3 6.9× 10−4

3-10-1 3.9× 10−3 3.8× 10−4 4.1× 10−3 4.4× 10−4

3-15-1 3.7× 10−3 3.5× 10−4 3.9× 10−3 5.1× 10−4

PSO
3-5-1 4.1× 10−3 6.0× 10−4 4.1× 10−3 6.0× 10−4

3-10-1 4.7× 10−3 5.7× 10−4 4.7× 10−3 5.7× 10−4

3-15-1 5.1× 10−3 8.0× 10−4 5.1× 10−3 8.0× 10−4
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Table 7. Cont.

Algorithm Network Structure Train Test
Mean SD. Mean SD.

JAYA
3-5-1 1.4× 10−2 6.4× 10−3 1.4× 10−2 6.3× 10−3

3-10-1 1.4× 10−2 4.1× 10−3 1.4× 10−2 4.0× 10−3

3-15-1 1.5× 10−2 5.7× 10−3 1.5× 10−2 5.7× 10−3

TLBO
3-5-1 3.2× 10−3 5.9× 10−4 3.3× 10−3 8.3× 10−4

3-10-1 3.0× 10−3 7.8× 10−4 3.2× 10−3 9.3× 10−4

3-15-1 3.1× 10−3 6.8× 10−4 3.4× 10−3 8.8× 10−4

SCA
3-5-1 6.2× 10−3 1.1× 10−3 6.6× 10−3 1.3× 10−3

3-10-1 7.2× 10−3 1.3× 10−3 7.5× 10−3 1.5× 10−3

3-15-1 7.6× 10−3 1.3× 10−3 8.0× 10−3 1.4× 10−3

BBO
3-5-1 3.1× 10−3 6.0× 10−4 3.2× 10−3 6.2× 10−4

3-10-1 2.4× 10−3 4.1× 10−4 2.5× 10−3 4.3× 10−4

3-15-1 2.5× 10−3 6.4× 10−4 2.6× 10−3 6.6× 10−3

WOA
3-5-1 8.8× 10−3 3.1× 10−3 9.1× 10−3 3.0× 10−3

3-10-1 9.1× 10−3 3.3× 10−3 9.4× 10−3 3.2× 10−3

3-15-1 9.3× 10−3 4.3× 10−3 9.8× 10−3 4.3× 10−3

BSA
3-5-1 1.3× 10−2 4.6× 10−3 1.4× 10−2 4.5× 10−3

3-10-1 1.1× 10−2 4.4× 10−3 1.1× 10−2 4.4× 10−3

3-15-1 1.2× 10−2 4.2× 10−3 1.2× 10−2 4.3× 10−3

HS
3-5-1 9.8× 10−3 3.5× 10−3 9.8× 10−3 3.5× 10−3

3-10-1 1.8× 10−2 3.8× 10−3 1.8× 10−2 3.9× 10−3

3-15-1 2.3× 10−2 4.7× 10−3 2.3× 10−2 4.6× 10−3

BA
3-5-1 1.0× 10−2 1.4× 10−3 1.0× 10−2 1.5× 10−3

3-10-1 9.7× 10−3 1.7× 10−3 1.0× 10−2 1.6× 10−3

3-15-1 1.0× 10−2 1.8× 10−3 1.1× 10−2 2.0× 10−3

MVO
3-5-1 3.9× 10−3 8.4× 10−4 4.1× 10−3 1.0× 10−3

3-10-1 3.3× 10−3 6.1× 10−4 3.5× 10−3 7.9× 10−4

3-15-1 3.1× 10−3 5.7× 10−4 3.2× 10−3 6.1× 10−4

MFO
3-5-1 4.9× 10−3 2.6× 10−3 5.0× 10−3 2.6× 10−3

3-10-1 3.1× 10−3 8.0× 10−4 3.2× 10−3 1.0× 10−3

3-15-1 2.4× 10−3 4.9× 10−4 2.5× 10−3 5.4× 10−4

SSA
3-5-1 4.5× 10−3 9.0× 10−4 4.8× 10−3 1.1× 10−3

3-10-1 4.3× 10−3 1.3× 10−3 4.5× 10−3 1.4× 10−3

3-15-1 3.6× 10−3 5.3× 10−4 3.8× 10−3 6.1× 10−4

For better analysis of the results, the best results obtained with the relevant meta-
heuristic algorithms are presented in Tables 8–11. Tables 8 and 9 refer to the training results.
Tables 10 and 11 show the test results. When the training results were examined, the eight
metaheuristic algorithms for S1 achieved the best results with the 1-15-1 network structure.
The best training error value in S1 was found as 3.5× 10−4 by using MFO. In addition, it
was observed that the 1-10-1 and 1-15-1 network structures were in competition in the test
results of S1. As in the training error value of S1, the best error value in testing belonged
to MFO. The performance of the metaheuristic algorithms in S2 varied according to the
network structure. Successful training error values were found with BBO, MVO, MFO, and
ABC in S2. The best training error of S2 belonged to BBO. In the test results, PSO, MFO,
and MVO stood out. The test error value of PSO was 1.8× 10−3. According to the training
results of S3, the metaheuristic algorithms seemed to be more effective mostly in 2-5-1. The
best training error value was found with TLBO in S3. TLBO had an error value of 10−5

only. As in the training results of S3, 2-5-1 was also more prominent in the test results.
In the test results of S3, PSO was quite successful compared to the other algorithms. The
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test error value of PSO was 2.1× 10−4. As in S3, TLBO was also very successful in the
training process of S4. The training error value of the TLBO was 4.8× 10−4. At the same
time, TLBO showed the same success in testing. ABC, BBO, and MFO were successful in
the training process of D1. The best training error value was found as 5.2× 10−4 by using
BBO in D1. The test error value of BBO was also better than other algorithms in this system.
It was 6.1× 10−4. There were mostly more successful results for 3-15-1 in D2. The effective
training and test error values were obtained with MFO and BBO in D2. The training results
of both were 2.4× 10−3. The test results of both were 2.5× 10−3.

Table 8. The best training results obtained with the relevant metaheuristic algorithms for S1, S2, S3,
and S4 (NS: network structure).

Algorithm S1 S2 S3 S4
NS Mean NS Mean NS Mean NS Mean

ABC 1-15-1 7.1× 10−4 2-10-1 5.4× 10−4 2-10-1 2.3× 10−4 3-10-1 1.5× 10−3

BAT 1-10-1 2.2× 10−2 2-15-1 8.9× 10−3 2-15-1 1.6× 10−3 3-5-1 1.5× 10−2

CS 1-15-1 7.3× 10−4 2-15-1 9.8× 10−4 2-5-1 1.4× 10−4 3-10-1 2.5× 10−3

FPA 1-15-1 8.0× 10−4 2-15-1 1.1× 10−3 2-5-1 2.0× 10−4 3-5-1 3.1× 10−3

PSO 1-5-1 1.7× 10−3 2-5-1 1.8× 10−3 2-5-1 2.1× 10−4 3-5-1 2.1× 10−3

JAYA 1-10-1 1.3× 10−2 2-5-1 1.6× 10−2 2-5-1 6.2× 10−3 3-5-1 3.0× 10−2

TLBO 1-10-1 9.7× 10−4 2-10-1 6.2× 10−4 2-5-1 5.6× 10−5 3-10-1 4.8× 10−4

SCA 1-5-1 4.5× 10−3 2-5-1 7.5× 10−3 2-5-1 1.2× 10−3 3-5-1 7.5× 10−3

BBO 1-15-1 5.3× 10−4 2-15-1 4.7× 10−4 2-10-1 1.0× 10−4 3-10-1 8.1× 10−4

WOA 1-10-1 3.8× 10−3 2-5-1 9.1× 10−3 2-5-1 1.6× 10−3 3-5-1 8.2× 10−3

BSA 1-10-1 9.2× 10−3 2-10-1 8.6× 10−3 2-15-1 2.2× 10−3 3-15-1 1.4× 10−2

HS 1-5-1 1.1× 10−2 2-5-1 4.9× 10−3 2-5-1 2.2× 10−3 3-5-1 8.2× 10−3

BA 1-15-1 6.2× 10−3 2-5-1 1.0× 10−2 2-5-1 2.7× 10−3 3-5-1 1.7× 10−2

MVO 1-15-1 4.9× 10−4 2-15-1 5.5× 10−4 2-10-1 1.2× 10−4 3-15-1 2.0× 10−3

MFO 1-15-1 3.5× 10−4 2-15-1 5.2× 10−4 2-10-1 2.0× 10−4 3-15-1 2.2× 10−3

SSA 1-15-1 7.9× 10−4 2-15-1 1.2× 10−3 2-15-1 1.1× 10−4 3-15-1 1.7× 10−3

Table 9. The best training results obtained with the relevant metaheuristic algorithms for D1 and D2

(NS: network structure).

Algorithm D1 D2
NS Mean NS Mean

ABC 3-15-1 5.3× 10−4 3-15-1 2.9× 10−3

BAT 3-15-1 5.2× 10−3 3-15-1 8.6× 10−3

CS 3-10-1 8.6× 10−4 3-15-1 3.4× 10−3

FPA 3-10-1 9.9× 10−4 3-15-1 3.7× 10−3

PSO 3-5-1 1.3× 10−3 3-5-1 4.1× 10−3

JAYA 3-5-1 1.3× 10−2 3-10-1 1.4× 10−2

TLBO 3-10-1 6.2× 10−4 3-10-1 3.0× 10−3

SCA 3-5-1 3.5× 10−3 3-5-1 6.2× 10−3

BBO 3-5-1 5.2× 10−4 3-10-1 2.4× 10−3

WOA 3-5-1 5.3× 10−3 3-5-1 8.8× 10−3

BSA 3-15-1 6.5× 10−3 3-10-1 1.1× 10−2

HS 3-5-1 5.7× 10−3 3-5-1 9.8× 10−3

BA 3-10-1 6.7× 10−3 3-10-1 9.7× 10−3

MVO 3-15-1 6.7× 10−4 3-15-1 3.1× 10−3

MFO 3-15-1 5.4× 10−4 3-15-1 2.4× 10−3

SSA 3-15-1 6.9× 10−4 3-15-1 3.6× 10−3
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Table 10. The best test results obtained with the relevant metaheuristic algorithms for S1, S2, S3, and
S4 (NS: network structure).

Algorithm S1 S2 S3 S4
NS Mean NS Mean NS Mean NS Mean

ABC 1-15-1 1.5× 10−3 2-10-1 4.1× 10−3 2-5-1 3.4× 10−3 3-10-1 2.1× 10−3

BAT 1-10-1 2.3× 10−2 2-15-1 1.7× 10−2 2-15-1 9.2× 10−3 3-5-1 1.5× 10−2

CS 1-10-1 1.6× 10−3 2-10-1 4.4× 10−3 2-5-1 3.5× 10−3 3-5-1 2.9× 10−3

FPA 1-15-1 1.7× 10−3 2-10-1 5.8× 10−3 2-5-1 4.0× 10−3 3-15-1 3.4× 10−3

PSO 1-5-1 1.7× 10−3 2-5-1 1.8× 10−3 2-5-1 2.1× 10−4 3-5-1 2.1× 10−3

JAYA 1-15-1 1.4× 10−2 2-5-1 2.8× 10−2 2-5-1 2.4× 10−2 3-5-1 2.9× 10−2

TLBO 1-10-1 1.6× 10−3 2-10-1 4.0× 10−3 2-10-1 2.8× 10−3 3-10-1 9.7× 10−4

SCA 1-5-1 5.6× 10−3 2-5-1 1.7× 10−2 2-5-1 7.6× 10−3 3-5-1 7.6× 10−3

BBO 1-15-1 1.5× 10−3 2-15-1 4.3× 10−3 2-10-1 3.5× 10−3 3-5-1 1.4× 10−3

WOA 1-10-1 5.4× 10−3 2-15-1 2.1× 10−2 2-5-1 9.8× 10−3 3-5-1 8.2× 10−3

BSA 1-10-1 1.0× 10−2 2-10-1 1.8× 10−2 2-15-1 1.4× 10−2 3-15-1 1.4× 10−2

HS 1-5-1 1.2× 10−2 2-5-1 1.2× 10−2 2-5-1 1.0× 10−2 3-5-1 7.9× 10−3

BA 1-10-1 7.2× 10−3 2-10-1 2.3× 10−2 2-5-1 9.8× 10−3 3-5-1 1.7× 10−2

MVO 1-15-1 1.5× 10−3 2-15-1 3.8× 10−3 2-15-1 3.6× 10−3 3-15-1 2.5× 10−3

MFO 1-15-1 1.4× 10−3 2-15-1 3.7× 10−3 2-10-1 4.5× 10−3 3-15-1 3.4× 10−3

SSA 1-15-1 1.8× 10−3 2-15-1 6.7× 10−3 2-15-1 3.6× 10−3 3-15-1 2.2× 10−3

Table 11. The best test results obtained with the relevant metaheuristic algorithms for D1 and D2 (NS:
network structure).

Algorithm D1 D2
NS Mean NS Mean

ABC 3-15-1 6.6× 10−4 3-15-1 3.0× 10−3

BAT 3-15-1 5.3× 10−3 3-15-1 9.0× 10−3

CS 3-5-1 9.3× 10−4 3-15-1 3.5× 10−3

FPA 3-10-1 1.1× 10−3 3-15-1 3.9× 10−3

PSO 3-5-1 1.3× 10−3 3-5-1 4.1× 10−3

JAYA 3-5-1 1.3× 10−2 3-10-1 1.4× 10−2

TLBO 3-10-1 6.7× 10−4 3-10-1 3.2× 10−3

SCA 3-5-1 3.9× 10−3 3-5-1 6.6× 10−3

BBO 3-5-1 6.1× 10−4 3-10-1 2.5× 10−3

WOA 3-5-1 5.7× 10−3 3-5-1 9.1× 10−3

BSA 3-15-1 6.8× 10−3 3-10-1 1.1× 10−2

HS 3-5-1 5.8× 10−3 3-5-1 9.8× 10−3

BA 3-10-1 7.0× 10−3 3-10-1 1.0× 10−2

MVO 3-15-1 7.6× 10−4 3-15-1 3.2× 10−3

MFO 3-15-1 6.3× 10−4 3-15-1 2.5× 10−3

SSA 3-15-1 8.1× 10−4 3-15-1 3.8× 10−3

A success ranking was created to evaluate the performance of the metaheuristic algo-
rithms on all systems. The success ranking of the training results is given in Table 12. The
best training score belonged to BBO. It was 10. After BBO, the other successful algorithms
were MFO, TLBO, ABC, and MVO, respectively. The most unsuccessful algorithm in the
training process was JAYA. The success ranking of the test results is given in Table 13. Ac-
cording to the test results, the most successful algorithm was BBO with a 16 ranking score.
ABC, TLBO, MFO, and MVO followed this algorithm. The most unsuccessful algorithm
was JAYA. The general success scores were created by evaluating the training and test
scores together. This is presented in Table 14. The results were evaluated in three groups.
Group 1 contained the most successful algorithms. These algorithms were BBO, MFO, ABC,
TLBO, and MVO. The algorithms that had scores in the range of [0–70] were in this group.
Group 2 was the moderately successful algorithms. The algorithms CS, SSA, PSO, FPA,
and SCA were in this group. They had a score in the range of [70, 140]. Group 3 included
the most unsuccessful algorithms. They were WOA, BAT, HS, BSA, BA, and JAYA.
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Table 12. Success ranking according to the best results of the metaheuristic algorithms for the
training process.

System ABC BAT CS FPA PSO JAYA TLBO SCA BBO WOA BSA HS BA MVO MFO SSA

S1 4 16 5 7 9 15 8 11 3 10 13 14 12 2 1 6
S2 3 13 6 7 9 16 5 11 1 14 12 10 15 4 2 8
S3 9 11 5 6 8 16 1 10 2 11 13 13 15 4 6 3
S4 3 14 8 9 6 16 1 10 2 11 13 11 15 5 7 4
D1 2 11 7 8 9 16 4 10 1 12 14 13 15 5 3 6
D2 3 11 6 8 9 16 4 10 1 12 15 14 13 5 1 7

TOTAL 24 76 37 45 50 95 23 62 10 70 80 75 85 25 20 34

Table 13. Success ranking according to the best results of the metaheuristic algorithms for the test process.

System ABC BAT CS FPA PSO JAYA TLBO SCA BBO WOA BSA HS BA MVO MFO SSA

S1 2 16 5 7 7 15 5 11 2 10 13 14 12 2 1 9
S2 5 11 7 8 1 16 4 11 6 14 13 10 15 3 2 9
S3 3 11 4 8 1 16 2 10 4 12 15 14 12 6 9 6
S4 3 14 7 8 3 16 1 10 2 12 13 11 15 6 8 5
D1 3 11 7 8 9 16 4 10 1 12 14 13 15 5 2 6
D2 3 11 6 8 9 16 4 10 1 12 15 13 14 4 1 7

TOTAL 19 74 36 47 30 95 20 62 16 72 83 75 83 26 23 42

Table 14. General success scores according to the best results of the metaheuristic algorithms.

Order Algorithm Train Ranking Test Ranking Total Ranking The Group

1 BBO 10 16 26 Group 1:
The most
successful
algorithms

2
MFO 20 23 43
ABC 24 19 43

TLBO 23 20 43
3 MVO 25 26 51
4 CS 37 36 73 Group 2:

Moderately
successful
algorithms

5 SSA 34 42 76
6 PSO 50 30 80
7 FPA 45 47 92
8 SCA 62 62 124
9 WOA 70 72 142

10 BAT 76 74 150 Group 3:
The most

unsuccessful
algorithms

HS 75 75 150
11 BSA 80 83 163
12 BA 85 83 168
13 JAYA 95 95 190

The convergence speeds of the algorithms in Group 1 were also examined. The
convergence graphs obtained for all systems are given in Figures 4–9. It is clearly seen that
the convergence speed of BBO was better in S1, S2, S4, and D1. The convergence speeds
of BBO and TLBO in S3 were close to each other. In D2, the convergence speeds of BBO
and MFO were close to each other. TLBO had the best convergence in S3 and S4, after
BBO. In other systems, its position changed according to the number of generations. It was
observed that ABC and MFO ranked third or forth in terms of convergence speed usually,
except D2. MVO was in the last place in terms of convergence speed, outside D2.
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Figure 4. Comparison of the convergence of the metaheuristic algorithms in Group 1 for S1.

Figure 5. Comparison of the convergence of the metaheuristic algorithms in Group 1 for S2.

Figure 6. Comparison of the convergence of the metaheuristic algorithms in Group 1 for S3.
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Figure 7. Comparison of the convergence of the metaheuristic algorithms in Group 1 for S4.

Figure 8. Comparison of the convergence of the metaheuristic algorithms in Group 1 for D1.

Figure 9. Comparison of the convergence of the metaheuristic algorithms in Group 1 for D2.
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5. Discussion

Two groups of nonlinear systems were used in the study. These were stationary
dynamic systems and non-stationary dynamic systems. Both types of problems have
different degrees of difficulty due to their structure. According to the best training results
obtained, the error values obtained for stationary dynamic systems were more successful
than non-stationary dynamic systems mostly. The best error values obtained for S1, S2,
S3, and S4 were 3.5× 10−4, 4.7× 10−4, 5.6× 10−5, and 4.8× 10−4, respectively. The error
values of D1 and D2 were 5.2× 10−4 and 2.4× 10−3. These error values belonged to the
best results. When evaluated in terms of all metaheuristic algorithms, the success situations
in nonlinear systems varied. This is a result of the general character of the algorithms. It
also affects the training process. A robust behavior is expected to be exhibited in the face
of all kinds of problems with metaheuristic algorithms. When evaluated in terms of six
nonlinear systems, it was seen that BBO, MFO, ABC, TLBO, and MVO were effective on
all systems. The network structure used was one of the important factors affecting the
performance. In the applications, three different network structures were used for each
system. More effective results were obtained mostly with networks that had many neurons
(10 and 15). This shows that more parameters (weights) are needed for identification due
to the complex structure of the problems.

Derivative-based and metaheuristic algorithms are used in ANN training. Both train-
ing approaches have some advantages and disadvantages. Derivative-based approaches
have the risk of being stuck at a local minimum. This creates a significant disadvantage.
The success of metaheuristic algorithms in solving difficult problems is one of the important
reasons for their use in ANN training. In metaheuristic algorithms, the initial solution
starts randomly. At the same time, each application is run 30 times and the mean error is
found. In this study, a common comparison was not made due to the different structures
of derivative-based and metaheuristic algorithms. For a fair comparison, ANN training
was performed using only metaheuristic algorithms, and the performance analysis was
realized. In fact, this status is one of the limitations of the study.

Besides the solution quality of metaheuristic algorithms, runtime is also an important
metric. However, the time required for each application in ANN training is high. This time
increases even more when each application is run 30 times. In particular, the low perfor-
mance of the computer used can increase this time even more. Especially, different network
structures can be tried for each system, and the effect of different control parameters on
performance can be examined. These make the process even longer. Therefore, in studies
where ANN and neuro-fuzzy algorithms are trained by using metaheuristic algorithms, the
runtime is usually not given. Solution quality and convergence speed are used as success
criteria. We evaluated our study in this direction.

The long runtime of metaheuristic algorithms in ANN training brings up the on-
line/offline running situation. In the case of the constant change of data sets, a new training
process is needed to update the network. In this case, it is more advantageous to use
training algorithms with a short runtime. Every system does not require online running. If
the data sets are within certain ranges, the created model can be used offline. Nonlinear
systems can be evaluated in this way. The output of nonlinear systems used in the study
was within a certain range. The models formed as a result of the training process can be
used in offline applications. The use of metaheuristic approaches can be advantageous for
the identification of nonlinear systems. Nonlinear systems are a difficult problem type by
nature. At the same time, they are also a good problem type for evaluating the performance
of metaheuristic algorithms. They can be used in system identification studies to evaluate
the performance of the new metaheuristic approach. These studies focus on solution quality
and convergence speed rather than online/offline use. In this context, a similar strategy
was followed in this study.

The limitations of the study were the colony size, the maximum number of generations,
the network structures used, the number of nonlinear systems utilized in identification,
and the number of metaheuristic algorithms examined. The colony size was taken as 20.
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This value is one of the colony size values used extensively in the literature. The maximum
number of generations was taken as 2500. The maximum number of generations is also one
of the control parameters that affects the performance. The performances of the algorithms
may vary according to this control parameter. While some metaheuristic algorithms can
be effective at a low number of generations, others can be effective at a higher number
of generations. Testing different maximum numbers of generations allows more precise
analysis. However, this provides disadvantages in terms of time and cost. Therefore, the
maximum number of generations has a limitation. The change of the network structure
also affects the number of parameters to be optimized during training. A low number
of parameters may be sufficient for modeling some systems. In some systems, larger
network structures may be required. The performance of the model may vary depending
on the number of neurons in the hidden layer. It is practically impossible to obtain a result
for each different network structure. Therefore, the number of neurons in the hidden
layer is one of the limitations of the study. The results belonging to one system are not
sufficient to determine whether a training algorithm is successful in system identification.
In system identification studies, it is seen that nonlinear systems between four and ten are
generally used in the literature. In parallel with this information, six nonlinear systems
were utilized in this study, and the limitation was applied. Sixteen metaheuristic algorithms
were used in ANN training. This study aimed to find the most successful ones among
sixteen metaheuristic algorithms. Apart from these algorithms, there may be more effective
training algorithms. In addition to these, the performance of metaheuristic algorithms on
nonlinear system identification was analyzed in this study. It is possible to reach different
results with metaheuristic algorithms for different problems. The performance of the
algorithms should be evaluated specifically for the problem at hand.

In future studies, the study can be expanded by considering these limitations. Different
perspectives can be brought. In this study, only the performance of metaheuristic algorithms
on nonlinear test problems was evaluated. Health, economics, engineering, education,
and social sciences are some of the fields where ANN and metaheuristic algorithms are
used. The approaches can be utilized for solving many problems in these areas. In addition,
sixteen metaheuristic algorithms were used in this study. As is known, there are more than
200 metaheuristic algorithms in the literature. The pool of metaheuristic algorithms that
was analyzed can be expanded.

6. Conclusions

Derivative-based and metaheuristic algorithms are intensely used in ANN training.
Derivative-based algorithms have a risk of local minima. This situation has increased the
interest in metaheuristic algorithms in ANN training. Therefore, this study focused on the
performance of metaheuristic algorithms in ANN training. In this context, ANN training
was carried out by using sixteen metaheuristic algorithms for the identification of nonlinear
systems. The following main conclusions were reached:

• The performances of metaheuristic algorithms were examined in three groups. BBO,
MFO, ABC, TLBO, and MVO were in Group 1. The most effective results were obtained
with these algorithms. The algorithms CS, SSA, PSO, FPA, and SCA were in Group 2.
Compared to Group 3, acceptable results were achieved in Group 2. The algorithms
WOA, BAT, HS, BSA, BA, and JAYA were included in Group 3. It was seen that these
algorithms were ineffective in solving the related problem. All rankings were valid
within the stated limitations of the study.

• The type of nonlinear systems, network structures, and training/testing processes
affected the performance of the algorithms.

• Nonlinear system identification is a difficult problem due to its structure. It was deter-
mined that most algorithms that were successful in solving numerical optimization
problems cannot show the same resistance in system identification.

• The speed of convergence is also an important criterion. The speed of convergence
was very good, as was the solution quality of BBO.
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In this study, ANN training was only carried out by utilizing metaheuristic algorithms
for system identification. The ANN is used to solve many problems. Similarly, it is possible
to carry out different studies in the future. Namely, ANN and related metaheuristic
algorithms can be used for solving different problems also.
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Abbreviations
The following abbreviations are used in this manuscript:

ABC Artificial bee colony
BAT Bat algorithm
CS Cuckoo search
FPA Flower pollination algorithm
PSO Particle swarm optimization
TLBO Teaching–learning-based optimization
JAYA Jaya algorithm
SCA Sine-cosine algorithm
BBO Biogeography-based optimization
WOA Whale optimization algorithm
BSA Bird swarm algorithm
HS Harmony search
SSA Salp swarm algorithm
BA Bee algorithm
MFO Moth-flame optimization
MVO Multi-verse optimizer
ANNs Artificial neural networks
FFNN Feedforward neural network
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