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Abstract: The investigation of natural bioactive injectable composites to induce angiogenesis during
bone regeneration has been a part of recent minimally invasive regenerative medicine strategies.
Our previous study involved the development of in situ-forming injectable composite hydrogels
(Chitosan/Hydroxyapatite/Heparin) for bone regeneration. These hydrogels offered facile rheology,
injectability, and gelation at 37 ◦C, as well as promising pro-angiogenic abilities. In the current study,
these hydrogels were modified using glycerol as an additive and a pre-sterile production strategy
to enhance their mechanical strength. These modifications allowed a further pH increment during
neutralisation with maintained solution homogeneity. The synergetic effect of the pH increment
and further hydrogen bonding due to the added glycerol improved the strength of the hydrogels
substantially. SEM analyses showed highly cross-linked hydrogels (from high-pH solutions) with a
hierarchical interlocking pore morphology. Hydrogel solutions showed more elastic flow properties
and incipient gelation times decreased to just 2 to 3 min at 37 ◦C. Toluidine blue assay and SEM
analyses showed that heparin formed a coating at the top layer of the hydrogels which contributed
anionic bioactive surface features. The chick chorioallantoic membrane (CAM) assay confirmed sig-
nificant enhancement of angiogenesis with chitosan-matrixed hydrogels comprising hydroxyapatite
and small quantities of heparin (33 µg/mL) compared to basic chitosan hydrogels.

Keywords: angiogenesis; bone tissue regeneration; glycerol; injectable hydrogels; minimal invasive
surgery; pH sensitive; pro-angiogenic; thermosensitive; vascularisation

1. Introduction

Composite biomaterials based on natural biodegradable polymers enriched with
inorganic minerals and other bioactive agents have recently attracted the attention of those
working on guided tissue regeneration and drug delivery applications. Physically cross-
linked hydrogels are biomimetic and biocompatible regenerative material candidates that
prevent toxicity which may arise due to chemical crosslinking processes. Hydrogels can
facilitate an extracellular matrix mimetic environment in relation to living cells for their
migration and proliferation via their porous and water-abundant structures [1]. Chitosan-
based in situ-forming pH- and thermosensitive injectable hydrogels are great candidates
for minimally invasive tissue replacement and regeneration.

Successful tissue regeneration after injury, especially in highly vascularised tissues,
such as bone, strongly depends on angiogenesis. Therefore, there is a tremendous need to
develop novel pro-angiogenic strategies. One common technique to induce angiogenesis is
the implantation of vein grafts in the arteries. However, this method requires a complex sur-
gical method referred to as the arteriovenous loop technique. Other regenerative techniques
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are needed to combat the issue of ischemia and stimulate healing [2]. Another strategy in
angiogenesis induction involves the use of pre-vascularised scaffolds produced by in vitro
co-culturing of endothelial cells and mesenchymal stem cells. The major problems with
the pre-vascularisation method may arise due to cell sources and the difficulties associated
with the surgical binding of preformed vessels with native capillaries in the body [3,4]. The
potential pro-angiogenic effects of different materials—bioceramics [4,5]; metal particles,
including K-doped ZnO nanoparticles integrated into chitosan membranes [6]; sulphur-
doped TiO nanoparticles integrated in chitosan/collagen membranes for use in ulcer- and
burn-dressing materials [7]; and boric acid-loaded chitosan–collagen hydrogels [8]—have
been investigated. In addition, growth factors (GFs), e.g., vascular endothelial growth
factor, basic fibroblast growth factor, and transforming growth factor beta, have been
widely reported and are among the strategies developed to stimulate angiogenesis since
they can be used to monitor cell activities and the regeneration of tissues [9,10]. Despite
their benefits, there are some obstacles to the delivery of growth factors, such as their short
half-lives and instabilities which cause inefficient performances. It was reported that, as
well as their high costs, using high concentrations of GFs may lead to serious adverse
effects, e.g., inflammation and malformation or tumour-development in tissues [11,12].

To combat the instabilities of GFs, some researchers have reported the use of hep-
arin or heparin-mimicking structures to bind GFs. Heparin is a natural proteoglycan
composed of glycosaminoglycan chains bound to a protein; it is produced by mast cells
in the body and is broken down into discrete molecules by endoglycosidases. Due to
their anionic nature, heparins provide anchors for most GFs and protect them from fast
degradation [13,14]. Heparin containing Konjac glucomannan hydrogels was reported
to promote angiogenesis by macrophage activation [15]. Chitosan/deproteinated bone
scaffolds coated with heparin were reported to have showed increased blood perfusion and
angiogenesis [16]. In our group, heparin-loaded pro-angiogenic materials, including TEOF
cross-linked poly(vinyl alcohol) (PVA)–chitosan hydrogels [17], PVA–polycaprolactone
hydrogels for wound healing [18], and chitosan-derivative–PVA porous hydrogel mem-
branes [19] have also been reported.

We earlier reported the development of heparin-conjugated chitosan-based composite
pH- and thermosensitive injectable hydrogels neutralised by sodium bicarbonate (NaHCO3)
which induced angiogenesis for bone regeneration [20]. Chitosan (CS)-matrixed biodegrad-
able hydrogels were incorporated with bioactive substances—hydroxyapatite (HA) and
heparin (Hep)—to achieve ionic and biomolecular anchorage between hydrogels and tis-
sues. This was ensured by using the functionality of the carbonated hydroxyl groups
in hydroxyapatite and anionic sulphate and the carboxyl groups in heparin to effect the
binding of physiological angiogenic GFs to induce angiogenesis for eventual bone tis-
sue regeneration. These hydrogels were obtained with unique injectability, gelation, and
rheological features, and their pro-angiogenic potential was investigated by ex ovo chick
chorioallantoic membrane (CAM) assays [20].

Despite very promising properties, hydrogels have limited mechanical durability be-
cause of their hydrophilic nature and high swelling potential. Therefore, various strategies
are applied to enhance the mechanical strength of hydrogel matrixes. Chemical crosslinking
methods by polymerisation are utilised to improve the mechanical properties of hydro-
gels. Thermosensitive and self-healing conductive hydrogels were reported based on the
polymerisation of poly(N-isopropylacrylamide) (PNIPAAm) and PVA using borax as a
crosslinker [21]. For the chemical crosslinking of chitosan-based hydrogels, the use of
formaldehyde, epoxy, dialdehyde, glutaraldehyde [22], and genipin has been reported [23].
Although the chemical crosslinking methods can improve mechanical properties, they
are associated with cytotoxicity due to crosslinker residues which require strict removal
processes. Although less toxic crosslinkers, such as genipin, can be used, their usage in drug
delivery applications is limited—in the case of genipin, due to unfavourable interactions
with drugs [24]. Another approach to ensure crosslinking without crosslinkers is to increase
the reactivity of polymers by modifying them by various chemical means, such as Schiff
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base and Michael addition reactions. However, these methods also create problems in terms
of the purity and safety of the final products [24]. Therefore, the utilisation of chemical
crosslinking processes might be quite detrimental.

Other strategies to enhance mechanical properties involve the manufacture of com-
posites via the addition of inorganic particles or secondary polymeric phases. For instance,
it has been reported that carboxymethyl cellulose matrix hydrogels strengthened by clay
(laponite) nanoparticles which form semi-interpenetrated (IPN) elastomeric hydrogels [25].
Another study involved the use of carbon dots in alginate-based hydrogels to enhance their
mechanical properties and simultaneously enable the binding of drugs for drug delivery
applications for soft tissue engineering [26]. In addition, bioglass-reinforced injectable
hydrogels produced by combination with natural polymers, such as gellan gum, alginate,
chitosan, gelatin, and pectin, as well as synthetic polymers, e.g., PVA, polyethylene glycol
(PEG), pluronic, and peptides, have been reported [27]. The integration of small amounts
of eggshell-originated hydroxyapatite in alginate–silk fibroin to generate injectable com-
posite hydrogels was also investigated for bone regeneration applications. Despite its high
strength, the brittle structure of HA has been balanced by alginate—a gel that forms a
biocompatible polymer which is mostly used as a thickening and stabilising agent—and
fibroin, due to its intermolecular bindings [28].

CS-based injectable hydrogels can form physical hydrogels triggered by the dual effect
of pH and temperature. The pH of CS solutions can be adjusted by different neutralising
agents, such as β-glycerophosphate (β-GP) [29], Na2CO3 [30], and NaHCO3 [31]. Among
these, β-GP has been studied most intensely. However, the high amount required for
a neutral pH compromises cytocompatibility and cost-effectiveness, and mechanically
weak hydrogels were obtained with its use. Therefore, utilisation of a weak base, such
as NaHCO3 with β-GP, has been reported to improve biocompatibility and mechanical
properties simultaneously [32].

In our initial CS-based hydrogels (CS/HA/Hep), in which NaHCO3 was used as a
neutralising pH, homogeneous injectable solutions were obtained by the gradual addition
of NaHCO3. However, low-pH solutions (6.2–6.3 at 4 ◦C) were obtained and the hydrogels
had limited mechanical stabilities [20]. Therefore, in this current study, we investigated the
use of glycerol in CS solution media as a stabilising agent to maintain solution homogeneity
at higher pH levels adjusted by NaHCO3. Glycerol is a transparent, viscous, and sweet
polyol which has a density of 1.261 g/mL and melting and boiling points of 18.2 ◦C
and 290 ◦C, respectively. Glycerol can be used as a stabilising and moisturising additive.
Being non-toxic and low-cost, glycerol is used in a wide range of industrial applications,
including food, cosmetics, pharmaceuticals, biofuels, biosensors, and biodiagnostics [33].
In this study, by means of the multifunctionality of glycerol, pH increments towards
physiological levels with preserved solution homogeneity, and further pH-induced gelation,
stronger, interpenetrating hydrogels were produced. Furthermore, for pre-sterile hydrogel
preparation, glycerol has served as a protective agent for CS dispersions sterilised by
heat. To the best of our knowledge, the use of readily available glycerol in a pH- and
temperature-sensitive CS-based injectable hydrogel system neutralised by NaHCO3 has
not been investigated before. The synergetic effects of glycerol addition and pH factors on
the gelation, microstructural, and mechanical properties of CS/HA/Hep hydrogels were
thoroughly examined.

As reported, hydroxyl moieties in glycerol cover CS chains and protect the polymers
from degradation, which can be caused by heat sterilisation [34,35]. Sorlier et al. (2001) [36]
reported that the pKa of polymers can change due to electrostatic interactions in CS
solutions. Adding glycerol to CS solutions leads to hydrophobic interactions due to CS’s
hydroxyl groups. This results in less interaction of the functional groups in CS. Thus,
glycerol allowed further pH increments during neutralisation with NaHCO3 which could
have been be due to an increase in the pKa points of the solutions. However, this did not
impair solution homogeneity, and injectable solutions without precipitation were acquired
with high pH values. Following the evaporation of liquid media during gelation, glycerol
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led to inter- and intra-hydrogen bonding with chitosan, and increased salt concentration
resulted in further pH- and temperature-induced crosslinking in hydrogels at average body
temperature (37 ◦C). Delmar and Bianco-Peled, (2015) [37] also reported the significant
impact of small pH changes on the gelation of CS hydrogels when CS was cross-linked with
genipin. Gelation time was decreased by increasing pH, and swelling and other physical
properties were also affected by pH.

This is an elaborated study which examines the synergetic effect of glycerol and pH
factors on diverse properties of CS-based, dual pH- and temperature-sensitive injectable
hydrogels (CS/HA/Hep). Gelation properties and microstructural and mechanical changes
were analysed in detail. Since pH is the main driving force in gelation, incipient gelation
time was decreased upon increasing pH with additional NaHCO3 salt, and further crosslink-
ing in hydrogel networks occurred upon heating at 37 ◦C. The glycerol-modified hydrogels
produced in high-pH solutions (6.4–6.5 at 4 ◦C and 7.0–7.2 at 20 ◦C) started gelation in only
2–3 min at 37 ◦C. Hydrogels obtained in high-pH solutions showed hierarchical porosity
and stronger interlocking cross-linked structures. Anionic Hep molecules positioned at
the top of the hydrogels formed a bioactive surface. In angiogenesis tests using the CAM
assay, hydrogel solution drops had a proper density to remain at the implantation site
without any leakage on chick embryo membranes. CS/HA/Hep hydrogels with a Hep
concentration of 33 µg/mL showed significantly higher pro-angiogenic responses than
simple CS hydrogels.

2. Results
2.1. Injectability and Gelation Properties

The pre-sterile preparation of hydrogel solutions with glycerol added to the mixtures
led to an increase in the final pH value above 6.3 by maintaining solution homogeneity.
Further neutralisation with NaHCO3 at 4 ◦C up to a pH range of 6.7–6.8 did not cause
precipitation initially; however, phase separation occurred after the synthesis. Therefore,
the final pH of solutions was kept at a maximum of approximately 6.55 at 4 ◦C. These
solutions were stable for 4 days in a refrigerator (at 4 ◦C) without phase separation. At
20 ◦C, composite hydrogel solutions had a pH between 7 and 7.2 (Table 1).

Table 1. The pH measurements at homogeneous solutions after synthesis, at 4 ◦C and at 20 ◦C, and
the incipient gelation time (ti.g.) in a test tube (at 37 ◦C), with sample codes given for different
compositions of hydrogels. CI (C) and CII (CH) are sole CS hydrogels and CS/HA composite
hydrogels, respectively. CS-, HA-, and Hep-containing hydrogels are coded as S0 (CHH33) and SI
(CHH120); these contained 33 µg/mL and 120 µg/mL of Hep, respectively.

Samples Solution pH * (ti.g., min)
4 ◦C 20 ◦C

CI 6.43 6.78 5
CII 6.42 7.00 4
S0 6.54 7.16 3
SI 6.46 7.00 3

* ti.g.: Incipient gelation time (minutes).

After the synthesis, the injection of hydrogel solutions against air through 21-gauge
and thicker-sized needles was very convenient. Solutions showed a constant flow through
an 18-gauge needle and fast dropwise flow through a 19-gauge needle attached to a 5 mL
syringe (Figure 1a). However, upon storage for 24 h at 4 ◦C, due to increased solution
viscosities, the injectability capacity decreased. Following 10 days of storage, injection
through 18-gauge needle was possible with a moderate pressure.
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Figure 1. Diagram demonstrating the different properties of composite hydrogels, S0: (a) injectability
of a solution (pH: 6.4–6.5, at 4 ◦C) upon synthesis through 18-gauge and 19-gauge needle-coupled
syringes (5 mL); (b) incipient gelation time (ti.g.) of a solution (pH 6.4–6.5) in a test tube at 37 ◦C
determined as 3 min; and (c) pH effect on gelation: weaker, non-stable hydrogels were obtained with
a final solution pH of 6.2–6.3, whereas higher pH solutions (6.4–6.5) resulted in properly formed
hydrogels after 24 h of incubation at 37 ◦C; (d) strong hydrogels: the appearance of hydrogels after
48 h of incubation at 37 ◦C obtained from high-pH solutions (pH: 6.5, at 4 ◦C; and 7.2, at 20 ◦C).

Gelation started at 5 min in the sole CS composition (CI), whereas the gelation of
the composite hydrogel solutions (S0 and SI) initiated in just 3 min (Figure 1b). Further
incubation (at 37 ◦C) of hydrogel solutions with a pH below 6.4 for 24 h resulted in weak and
not-properly-formed hydrogels. However, in solutions with a higher pH range (above 6.4),
properly formed, stable, strong hydrogels were acquired after 24 h (at 37 ◦C) (Figure 1c).
Before the analyses were performed, the hydrogels were incubated for 48 h at 37 ◦C. The
images of much stronger hydrogels obtained with higher pHs (6.5 at 4 ◦C and 7.2 at 20 ◦C)
are shown in Figure 1d.

2.2. Morphology by SEM

The microstructural properties of freeze-dried hydrogels were examined by SEM. The
results showed that all hydrogels presented a morphology with a smooth, flat bottom
surface and a rougher top surface with a small number of pores, most of which were
at cross-section regions. The small increments in pH from 6.20–6.35 to 6.40–6.55 had
significant impacts on the final structural morphologies of the hydrogels. The lower pH
group had a more homogeneous pore structure. However, the very small pore sizes
might have been due to excess drying of the analysed hydrogels, which became thin film
specimens (Figure 2d–f).
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Figure 2. The comparative microstructure SEM images of half cross-sectioned hydrogels (CI) ob-
tained from solutions with two different pH ranges: (a–c) 6.4–6.5; and (d–f) 6.2–6.3. (Scale bars:
(a,b,d): 100 µm; (e): 10 µm; (c) and (f): 1 µm.).

At higher pHs, however, hierarchical, interpenetrated pore morphologies were pre-
sented (Figure 2a,b); large macropores had mean pore sizes of 200 ± 10 µm and minimum
and maximum pore diameters of 30 µm and 500 µm, respectively. The separating pore
walls with small, dense microporosities were measured separately. In this region, the mean,
minimum, and maximum pore diameters were 3 ± 1.5 µm, 0.5 µm, and 6.5 µm, respectively
(Figure 2c). SEM microstructural images were taken of the composite hydrogels, CII and SI,
produced at high pH solutions (6.4–6.55), and are shown in Figure 3. These also possessed
a range of pore sizes, as well as thick pore walls with dense micropores. Hydroxyapatite
crystals were dispersed on the surfaces of pores at cross-sectional regions.
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Figure 3. The SEM images of half cross-sectioned composite hydrogels obtained from solutions with
pHs of 6.4–6.55: (a–c) CII; and (d–f) SI. (Scale bars: (a,d,e): 100 µm; (b): 10 µm; (c) and (f): 1 µm.).
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The mean pore sizes at the cross-section regions of CII and SI in the sample micro-
graphs were 400 µm and 240 µm, respectively, while maximum pore sizes reached 1.5 mm
in both. At separating micropores, mean pore sizes ranged between 3–3.5 µm and 8.5 µm.

2.3. Chemical Analyses by FT-IR

The chemical structures of hydrogels were determined by FT-IR. The ATR spectra of
hydrogels at different formulations are presented in Figure 4. The spectra of the simple
CS hydrogel (CI) had slightly less intense peaks than the composite hydrogels (CII and SI)
with crystalline HA. The broadest peak in the ATR spectra of all hydrogels at a wavelength
of 3285 cm−1 was referred to an overlap in the stretching frequencies of O–H and N–H
bonding [38]. This broad single peak showed a less crystalline nature of the hydrogels and
the dominance of hydroxyl groups contributed by glycerol positioned in the vicinity of
3280 cm−1 [39].
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C–H stretching vibrations were observed as shoulders of the broadest peak and these
were designated at 2877 cm−1 and 2932 cm−1. The sharp peak located at 1565 cm−1 was
attributed to amide II or N-H bending; specifically, this might be associated with symmetric
deformation of NH3

+ cations in CS. The adjacent sharp peak at 1408 cm−1 corresponded to
the bending mode of C-H vibrations or, particularly, carboxylic acid (HCOO-) bonds [38,40].
A tiny peak seen at 1641 cm−1 was a result of amide I or C=O vibrations. The shoulder
raised at 1151 cm−1 was determined as having been due to C-O bond stretching [19]. The
peak at 926 cm−1 corresponded to symmetrical stretching bonds of COO- due to acetate
molecules [41].

The steep peak with a high intensity at 1032 cm−1 corresponded to C-O cyclical
stretches in CS [42,43] and stretching (asymmetric) of PO4

−3 (ν3) molecules in crystalline
HA particles [44] present in composite hydrogels (CII and SI). Other phosphate bonds in
composite hydrogels with HA led to stronger peaks at 651 cm−1 and 564 cm−1, which
corresponded to ν4 bending vibrations of PO4

−3 ions [45]. O-C-O, ν2 bending moieties of
CO3

−2 molecules were located at 857 cm−1 [46].

2.4. Compression Strength Tests

Mechanical tests on hydrogels were performed via compressive strength measure-
ments. The compression strength of lower-pH solution-hydrogels performed up to 40% of
strain and showed approximately 15 kPa of maximum compression stress for all composi-
tions (data not shown). The compressive stress–strain curves of higher-pH hydrogels with
different compositions up to 75% of strain are shown in Figure 5.
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Figure 5. The curves of mean compressive stress versus strain (maximum 75%) obtained for hydrogels
(solution pH of 6.4–6.5) in diverse formulations: CI, CII, S0, and SI.

A progressive deformation was detected in hydrogels which might have been associ-
ated with their entangled hierarchical and porous microstructures dissipating energy due to
applied force. Base CS (CI) hydrogels had initial deformations at around 56% of elongation,
while this level was raised to a strain of approximately 69% in composite SI (CHH120)
hydrogels. Hydrogel compositions were not exposed to total breakage at 75% of strain
(end of tests). The composite S0 hydrogels (CHH33) were found to sustain the maximum
compressive stress of 310 kPa and had a Young’s modulus of 1.5 MPa at 75% strain.

2.5. Heparin (Drug) Detection and Release

The presence of Hep in cross-linked hydrogels was determined by toluidine blue
(TB) staining assay. In composite hydrogels with Hep, the regions containing Hep were
stained a purple colour while other regions were blue. Figure 6a shows the stains of two
different hydrogel compositions: S0 (CHH33) and SI (CHH120), top and bottom surfaces.
Hydrogels (low-pH group) with low Hep concentrations (S0) were analysed by TB assay
and a cumulative drug release profile is presented in Figure 6b.

As seen in the photographs in Figure 6a, the bottom surfaces of hydrogels are blue,
indicating the absence of Hep, while the top surfaces of these compositions are stained a
purple colour which was more intense in the SI sample with a higher Hep concentration
than S0. These results revealed the formation of a functional Hep located on the surface
which can contribute to the bioactivity. Regarding the drug release profiles of S0 hydrogels
(low-pH specimens) (Figure 6b), after 4 h, approximately 20% of Hep was released and this
reached around 40% in 24 h. After 3 days, 70% of Hep was released and nearly 8% of Hep
remained after the end of the test on the 7th day.

2.6. Angiogenesis Analyses by Ex ovo CAM Assay

The effects of hydrogel samples on angiogenesis were tested by CAM assay performed
using chick embryos. CAM images were taken 6 days after the implantation of hydrogels.
Filter papers (F.p.s) treated with phosphate-buffered saline (PBS) were used as controls
(Figure 7). Although the sizes of F.p.s and hydrogels were equal on the day of implantation
(Ø: 6 mm), hydrogels shrank to almost one-third of their original sizes at day 14. There
were small numbers of blood vessels around F.p.s, but they showed almost no interaction
with F.p.s. However, blood vessel infiltration into hydrogels was detected well. The extent
of neovascularisation was least with the simple CS hydrogels (CI). The addition of hydrox-
yapatite contributed a slight increase in the number of microvessels in the CII specimens.
The greatest microvascularisation effect was observed with hydrogels containing Hep. The
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S0 hydrogel with the smallest concentration of Hep (33 µg/mL) developed the most mature
and the greatest number of blood vessels.
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Figure 6. (a) Local Hep detection by toluidine blue-staining of composite hydrogels (7 mm diameter,
5 mm thickness) obtained from the high pH solutions (6.4–6.55 at 4 ◦C): S0 with a Hep concentration
of 33 µg/mL and SI with a Hep concentration of 120 µg/mL (below) (top and bottom images). (b) The
percentage cumulative drug release profile of Hep eluted from hydrogels obtained from the low-pH
solutions (6.2–6.35 at 4 ◦C) (S0: 33 µg/mL Hep) into de-ionised ultrapure water (D.H2O) incubated at
37 ◦C, at different time periods. Hep amount was counted by the change in the absorbance values of
non-complexed TB extract solutions and correlated with the standard curve. (Three sample replicates
were analysed and the data are shown as standard deviations.).
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Figure 7. The comparative CAM images taken at day 14 of the assay. (All scale bars are 2 mm.) Test
groups: Filter papers treated with PBS (F.p.s) as controls; CI and CII hydrogels without Hep; and S0
(33 µg/mL Hep) and SI (120 µg/mL Hep) with Hep. The images in rows from top to bottom show,
respectively: direct imaging of CAM, imaging after white-cream injection underneath the CAM (as a
contrast for red blood vessels), and the processed (north-east shadow) image versions of the middle
images (in ImageJ Software). (The sizes of the filter papers (Ø: 6 mm) were equal to the sizes of the
hydrogels at implantation day (day 7) but the hydrogels shrank to smaller sizes during incubation
at 37 ◦C.).
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The quantitative results of the angiogenesis analyses are shown as vascular index
in the sample groups in Figure 8. The composite S0 hydrogel (with 33 µg/mL Hep)
had the maximum vascular index count of 45.7 ± 4.7. The vascularity of the CII and SI
samples showed similar behaviour. The comparison values for S0 and SI samples were not
statistically significantly different (p = 0.2902). However, vascular index of S0 hydrogels
showed statistical significance upon CI hydrogels (p = 0.0298) and F.p.s (p = 0.0026).
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Figure 8. CAM image (at day 14) analyses represented as vascular index counts with means ± SDs
(9–11 images from each sample group (n = 1)). Test specimens: filter papers treated with PBS (F.p.s)
as controls; CI and CII hydrogels without Hep; S0 (33 µg/mL Hep) and SI (120 µg/mL Hep) with
Hep. The p-values calculated based on one-way ANOVAs were: CI and S0 (*): 0.0298; F.p.s and
CII (*): 0.0287; F.p.s and S0 (**): 0.0026; S0 and SI (ns): 0.2902.

3. Discussion

The modified pre-sterile synthesis significantly altered the microstructural and me-
chanical properties of the CS/HA/Hep hydrogels. The glycerol added in CS–water dis-
persions prior to autoclaving served as a heat-protective agent. Furthermore, due to the
effect of glycerol, the pH of injectable solutions could be increased to a higher range by the
addition of NaHCO3, as solution homogeneity was maintained. The modified injectable
solutions showed thicker, elastic flow properties which may prevent leakages and be advan-
tageous for solutions injected to target tissue defects. During the synthesis, the injectability
of hydrogels was evaluated using 21-gauge needles according to a procedure reported
previously [20]. However, upon storage at 4 ◦C for 24 h, solutions became more viscous,
and 18-gauge needles were more suitable for injection. Interestingly, once solutions were
warmed to room temperature, they became more fluid, but formed strong hydrogels at
37 ◦C. This could be related to the alteration of freezing points of glycerol based on its
concentration at different temperatures [47]. Therefore, the long-term optimal storage
conditions for these solutions is a matter that requires further research. In addition, heat
sterilisation may also have some detrimental effects on CS. The sterilisation of degradable,
injectable polymer solutions remains a challenge. As a result of an extensive literature
search regarding sterilisation techniques [48], we decided to use heat-sterilisation of CS in
aqueous media by adding glycerol for heat protection.

Two different pH ranges of final injectable solutions (at 4 ◦C) were compared in this
study: a low pH range of 6.20–6.35 for initial hydrogel solutions; and a high pH range of
6.40–6.55. The pH values of the high-pH solutions at 20 ◦C were between 7 and 7.2, which
are more compatible with the physiological pH ranges of body fluids [29]. To provide
suitable injectability and physiological pH in the final solutions, following synthesis at 4 ◦C,
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warming solutions to around 20 ◦C might be more suitable for administering them into
targeted tissue defects. This study showed the collaborative effects of glycerol additive and
(leading) small pH increments, which resulted in enormous changes in gelation speed, and
the microstructural and mechanical features of hydrogels. In comparison with low-pH hy-
drogel solutions, their high-pH counterparts apparently triggered gelation, since incipient
gelation time was reduced from 5–10 min to 2–3 min. Hep addition also decreased gelation
time from 5 min to 2–3 min, which could have been due to the effect of affinity bonding
between CS and Hep in a polycomplex system. Chitosan contains a positive charge on its
surface, heparin a negative charge; these charges on the surfaces are potentially respon-
sible for faster gelation. The hydrogels obtained from low-pH solutions showed uniform
porous microstructures (as initial hydrogels). In their high-pH counterparts, however,
hierarchical porosities with macropores 50–500 µm in size separated by dense micropore
walls (1–10 µm) were detected. The effects of pH on gelation time and morphology were
inevitable since the sol–gel transition of CS is mainly driven by pH due to the release of
carbon dioxide during the neutralisation reaction between protonated amino groups of CS
in acidic media and carbonic acid groups from sodium bicarbonate salt [31]. At this point,
glycerol served to increase the pKa of polymers that stabilised the CS solution, allowing a
further pH increment by maintaining the homogeneous, injectable nature of the solution.
Further thermosensitive crosslinking of CS occurred with an increase in temperature which
involved the evaporation of liquid media and the formation of hydrophobic junctions. The
flower-like porous HA crystals (own synthesis) were mostly dispersed on the pores at the
cross-section region. Hep adopted a coating-like structure on rough HA and salt crystals.
Heparinised surfaces seem softer but anionic surface properties are considered attractive
for the attachment of biological molecules, enhancing bioactivity, as was confirmed later by
SBF tests (unpublished data).

Hydrogels obtained at elevated pHs showed a big enhancement in compressive
strength and elastic modulus. Composite hydrogels (CS/HA/Hep) exhibited greater
Young’s moduli than notified values for articular cartilage (0.45–0.80 MPa) [49,50]. The
maximum stress at 75% of elongation was 310 kPa and Young’s modulus was 1.5 MPa for
S0 (CS/HA/Hep) hydrogels. Hydrogels showed a progressive deformity which might
be associated with hierarchical interpenetrating hydrogel networks, with ranged porosity
dissipating compression force and delaying failures. Compressive stress measurements for
hydrogels at initial deformation levels were 51–172 kPa, which are considered sufficient
to ensure the differentiation of osteogenic stem cells (mentioned as 45–49 kPa) [51,52].
Hydrophobic and hydrophilic sites emerged as a result of glycerol–water media interacting
with CS, leading to inter- and intra-bonding in hydrogel networks [53,54]. As reported,
glycerol-treated chitosan–gelatine cross-linked hydrogels exhibited enhanced hydrogel
elasticity and resilience [55]. Ahmad et al. 2012 [56] also noted that, by enhancing flexibility,
plasticizers provide stress relaxation features, reducing deformities and strengthening
structures. The addition of PEG to alginate-based hydrogels resulted in biomimetic and
tuneable hydrogels with stress relaxation properties that led to enhanced biocompatibility
with fibroblasts and osteogenic stimulation [57].

In this study, Hep in hydrogel networks was located on the top layers of hydrogels,
forming bioactive surfaces. Hep release studies with low-pH hydrogels showed that Hep
has a progressive delivery profile and a small amount of Hep (8%) remained in hydrogels
after 7 days of release. Lu et al. 2007 [58] investigated Hep delivery from silk fibroin–
collagen scaffolds using the same TB assay. The results showed that around 40% of Hep
was released during 24 h; the remaining amount had a more prolonged release of up
to 8 days. He et al. 2010 [59] also reported a more sustainable release of Hep with a
chitosan–heparin scaffold and films. It is supposed that the higher-pH hydrogels in this
study could provide much more sustained releases of Hep due to inter- and intra-hydrogen
bonding creating stronger hydrogel networks. In the CAM studies, the densities of the
modified injectable solutions were appropriate to remain circular at the injection sites on the
CAMs without any leakages. The most profound pro-angiogenic effects, with developed
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microvascularity, blood vessel infiltration, and maturation, were seen with composite
hydrogels integrated with HA crystals and a small quantity of Hep (33 µg/mL). This
composition (S0) had a significantly higher vascular index count (45.7 ± 4.7) than those of
the CI sole CS (p = 0.0298) hydrogels and F.p.s (p = 0.0026). HA particles slightly increased
microvascularity compared to base–CS hydrogels. This can be explained by the influences
of bioceramics on the angiogenesis addressed by the researchers [4,5].

The hierarchical macro- and microporosities of hydrogels obtained with higher pHs
seem very beneficial in terms of their biological responses. It has been stated that the
presence of 10–20% of micropores (<20 µm) as well as macroporosity (>50 µm) increases
permeability in HA scaffolds. Thus, microporosity has triggered rapid bone ingrowth
due to an increase in permeability ensuring the transport of vital agents, e.g., oxygen,
nutrients, and cells, leading to bioactivity, osteointegration, and angiogenesis [60,61]. In our
study, due to enhanced permeability in hierarchical porous hydrogels, the release of Hep is
expected to occur in a more sustained manner, and blood infiltration and transportation
are expected to be enhanced, both of which contribute to angiogenesis. Therefore, this
study shows the substantial effects of hydrogel chemistries involving pH increments and
glycerol additives which led to a unique hierarchical and strong hydrogel morphology.
Hence, these composite hydrogels, with efficient drug delivery capacity and bioactive and
proangiogenic performances, might be great candidates for advanced, minimally invasive
bone tissue engineering and drug delivery applications.

4. Materials and Methods
4.1. Materials

For the production of HA particles, the following chemicals were acquired: calcium
nitrate tetra-hydrate (Ca(NO3)2·4H2O) (Acros Organics, Geel, Belgium); di-ammonium
hydrogen phosphate ((NH4)2HPO4) and ethanol (≥99.8%, AnalaR NORMAPUR®) (VWR-
Prolabo Chemicals, Lutterworth, UK); and ammonium hydroxide (NH4OH) (35%, Thermo
Fisher Scientific, Leicestershire, UK). The reagents used for hydrogel manufacture were as
follows: Chitosan (100–300 kDa, Deacetylation degree: ≥90%), glacial acetic acid, glycerol
(99%) (ACROS Organics™, Thermo Fisher Scientific, Geel, Belgium); sodium bicarbonate
(NaHCO3) (Fluka®, Sigma Aldrich, Morris Plains, NJ, USA); and sodium bovine heparin
(Injectable grade, 156 IU/mg) (a kind present from Extrasul (Ext. An. Veg. LTDA, Sao
Paulo, Brazil)). For the analyses, n-hexane (95+%), 1N-HCl and Phosphate-Buffered Saline
(PBS) (Thermo Fisher Scientific™, ACROS Organics™, Geel, Belgium) were purchased.
De-ionised ultrapure (Type-I) water (D.H2O) (Veolia, PURELAB® Chorus, 18.2 MΩ.cm,
Wycombe, UK) was used in all studies.

4.2. Production of Synthetic Hydroxyapatite by the Sol–Gel Method

Synthetic hydroxyapatite (HA) particles were manufactured by utilising a sol–gel
synthesis route adapted from the literature [62]. For a stoichiometric HA reaction, 0.5M
Ca(NO3)2.4H2O and 0.3M of (NH4)2HPO4 were dissolved in equal volumes of (500 mL)
ethanol and D.H2O, respectively. Subsequently, the pH of these solutions was fixed at
10.5 using NH4OH solution. Then, the phosphate precursor solution was mixed dropwise
with Ca(NO3)2.4H2O precursor at 85 ◦C by constant stirring. The reaction was maintained
for 4 h by keeping the pH at 10 (at 85 ◦C). HA precipitates were then acquired by filtration
and sufficient washing to achieve a solution with neutral pH. HA powders were acquired
upon drying at 200 ◦C and sieving under 150 µm.

4.3. Fabrication of Injectable CS/HA/Hep Hydrogels

Hydrogels were synthesised through a pre-sterile preparation technique in a sterile
fume hood. Solutions of Hep and NaHCO3 were produced by dissolving Hep and NaHCO3
in D.H2O and then passing the solutions through filters (0.22 µm polyethersulfone (PES))
for sterilisation. CS powders (1 g) as dispersions in 20 mL of D.H2O with glycerol added
(5% wt/v) were sterilised by autoclaving. Then, sterile CS dispersions were dissolved in
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glacial acetic acid (0.5 M of solution). HA was autoclaved as a powder, then 0.1 g of sterile
HA was blended into a CS solution by constant stirring overnight. Sterile Hep solution
(5 mL) was added dropwise into the CS/HA mixture. Subsequently, the CS/HA/Hep
solution was chilled for 15 min at 4 ◦C and neutralised in an ice bath by dropwise addition
of 0.48 M of NaHCO3 (at 4 ◦C) solution. Hydrogels were manufactured by incubation of
solutions at 37 ◦C. Hydrogel samples without Hep with sole CS and CS/HA compositions
were also synthesised similarly by neutralisation and were referred to as CI and CII,
respectively. Hep-containing composite CS/HA/Hep hydrogels were denoted S0 and SI,
with 33 µg/mL and 120 µg/ mL of Hep in their respective final solutions.

4.4. Morphology Analyses by SEM

Before SEM imaging, hydrogels were exposed to a freeze-drying (−20 ◦C) process and
gold-coating was applied (5 nm). Then, hydrogels were imaged (top, bottom, and vertically
half-sections) at an accelerating voltage of 5 kV, using a Schottky FE-SEM instrument (JEOL
JSM-7800F, Tokyo, Japan).

4.5. Chemical Analyses by FT-IR

Hydrogels were chemically characterised by the Attenuated Total Reflectance (ATR)
technique in an FT-IR spectrophotometer (Thermo Nicolet™ iS50, Thermo Fisher Scientific,
Inc., Madison, WI, USA) with a detector, DTGS ATR, and a and a beam splitter, KBr.
Analyses were performed by working in the mid-infrared region (400–4000 cm−1) with an
aperture of 150 and a resolution of 16 cm−1. Acquisition of spectra occurred after 128 scans,
and these were analysed after automatic baseline correction with OMNICTM software
(Version 9.5.9, Thermo Fisher Scientific, Inc., Madison, WI, USA).

4.6. Local Heparin Detection by Toluidine Blue Staining

Toluidine Blue (TB) powder was dissolved in 0.01 N solution of HCl (0.005 % (wt/v))
containing 0.2% NaCl [63]. Hydrogels were stained by immersion in TB solution for 30 min
and unbound stains were washed thrice with D.H2O. Then, stained hydrogels were imaged
with a mobile phone to indicate the local presence of Hep in hydrogel networks.

4.7. Drug Release Studies by Toluidine Blue Assay

TB assays were conducted as reported [58,64]. First, Hep standard solutions were
produced in D.H2O at known concentrations (0, 20, 40, and 60 µg/mL). Each standard
solution (1 mL) was blended with TB solution (1.5 mL) and rested for 30 min. Then, these
blends were sufficiently swirled to form TB–Hep complexes by the addition of hexane
(1.5 mL). The non-reacted TB solutions under the complexes were collected. The optical
density measurements of these liquids were taken at 630 nm. These data were plotted
against known Hep concentrations to obtain a standard curve. To determine the drug
release of hydrogels, cylindrical hydrogel specimens were prepared in triplicate, and after
weighing (~0.1 g) they were incubated in D.H2O (10 mL) at 37 ◦C. At test intervals (4, 24,
72, and 168 h), TB–Hep complexes were formed by the reaction of Hep-released solutions
(1 mL) and TB, adding hexane as aforementioned. The correlations between the optical
density values of the non-reactive TB liquid phases and the standard curve equations gave
the amounts of released Hep.

4.8. Mechanical Analyses by Compression Strength Tests

For compression tests, hydrogels (diameter: 16 mm; height: 8 mm) were produced
from liquid blend forms (2 mL) in test tubes by incubation at 37 ◦C for 48 h. Analyses
were conducted in universal testing machine (Instron® 3345, Norwood, MA, USA) in
conjunction with a 0.5 kN load cell. Hydrogels were exposed to a compression of up to 75%
of elongation at a momentum of 1 mm/min.
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4.9. Angiogenesis Analyses by CAM (Ex Ovo) Assay

A chick chorioallantoic membrane (CAM) assay was conducted by applying an ex-
ovo method for in situ-formed injectable hydrogels as we reported earlier [20]. Briefly,
fertilized chick eggs (Henry Stewart & Co., Ltd., Louth, UK), purified of dirt and germs
(using 20% ethanol), were incubated horizontally (for 3 days) in moisturised, rotational egg
incubators (at 37.5 ◦C). At development day 3, eggshells were removed and egg contents
were taken out (the chick embryos were on top) utilising an ex ovo, sterile method. At
day 7, hydrogel solutions (100 µL) were dropped onto CAM tissues of embryos using a
micro-syringe and turned into hydrogels after a few minutes at 37 ◦C. Microvascularity in
contact with hydrogels was photographed at days 10 and 14 with a portable microscope
(Maplin, (×)400). The number of blood vessels attached to hydrogels (9 to 11 specimens for
each sample group) was calculated by means of the ‘vascular index’ technique [65] using
ImageJ® software (Version 1.52 k, National Institutes of Health, Bethesda, MD, USA).

4.10. Statistical Analyses

Statistics analyses of the collected data were conducted using GraphPad Prism soft-
ware (Version 7.0, San Diego, CA, USA). Tukey’s multiple comparison test (one-way
ANOVA) was employed for statistical analysis of the CAM assay results. A p-value ≤ 0.05
was considered statistically significant.

5. Conclusions

The functionalisation of CS/HA/Hep hydrogels by glycerol in a pre-sterile synthe-
sis led to further pH increments in homogeneous injectable solutions. Freshly prepared
hydrogel solutions were conveniently injectable using 21-gauge needles. Although heat
sterilisation of CS in hydroalcoholic media did not compromise gelation, it caused an
increase in the viscosities of solutions during storage, though solutions were still injectable
with 18-gauge needles. An increase in pH ranges from 6.20–6.35 to 6.40–6.55 reduced
the incipient gelation times of the solutions by 2 to 3 min. Hydrogel networks had a flat
bone-like morphology having hierarchical porosity which consist of large pores at the
cross-sections (50–500 µm) with intersecting micropore (1–10 µm) walls. Flower-like porous
HA crystals covered the porous surfaces thoroughly. As a result of the combinational
effects of glycerol and pH, the mechanical strengths of CS/HA/Hep hydrogels have been
significantly improved. As confirmed by the SEM and TB analyses, Hep coated the top
surfaces of hydrogels, functionalising bioactive and pro-angiogenic features. Owing to the
optimised composition (S0 with 33 µg/mL Hep) facilitating the best induction of angio-
genesis, CS/HA/Hep hydrogels functionalised by glycerol have great potential for use in
enhanced, minimally invasive, vascularised tissue regeneration and drug delivery systems.
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Abbreviations

ATR Attenuated Total Reflectance
CAM Chick Chorioallantoic Membrane
CS Chitosan
ECM Extra Cellular Matrix
FE-SEM Field Emission-Scanning Electron Microscopy
FT-IR Fourier Transform-Infrared Spectroscopy
GFs Growth Factors
HA Hydroxyapatite
Hep Heparin
NaHCO3 Sodium Bicarbonate
PBS Phosphate Buffer Saline
PEG Polyethylene Glycol
SEM Scanning Electron Microscopy
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