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1 Introduction

The Italian mathematician Gerolamo Cardano first discovered complex
numbers while trying to solve a simpler state of the cubic equation.
After, Leonard Euler illustrated the complex numbers as points with
rectangular coordinates by using the notation i =

√
−1. In 19th cen-

tury, Clifford presented the dual number system and dual numbers as in
the form A = a+ εa∗, where a, a∗ ∈ R, ε ̸= 0 and ε2 = 0 [6]. Dual num-
bers and dual complex numbers emerge in many areas in physics and
mathematics such as coordinate transformation, matrix modeling, dis-
placement analysis, rigid body dynamics, velocity analysis, static anal-
ysis, dynamic analysis, 2D rigid transformation, mechanics, kinemat-
ics and applications of geometry. So far, there are number of studies
in the literature related with dual numbers and dual complex num-
bers [2, 5, 8, 17, 19, 20, 27]. A dual complex number w is an ordered
pair of complex numbers (z, t) associated with the complex unit 1 and
dual unit ε which is a nilpotent number such that ε ̸= 0 and ε2 = 0.
Messelmi, in [20], defined the set of dual complex numbers as

DC = {w = z + εt | (z, t) ∈ C, ε ̸= 0 and ε2 = 0}. (1)

He also studied generalization of the concept of holomorphicity to
dual complex functions using complex analysis. In (1), if z = x1 + ix2
and t = y1 + iy2, then any dual complex number can be expressed by
w = x1+ix2+εy1+εiy2. Another interesting topic is bicomplex numbers
which arise in various areas such as quantum mechanics, digital signal
processing, electromagnetic waves and curved structures, determination
of antenna patterns, fractal structures and many related fields of physics
and mathematics [18, 23–26]. Any set of bicomplex numbers can be
expressed by

C2 = {q1 + iq2 + jq3 + ijq4 | q1, q2, q3, q4 ∈ R}, (2)

where the basis 1, i, j and ij satisfy the conditions i2 = −1, j2 = −1 and
ij = ji [21]. By taking into account the definition of the dual numbers
and bicomplex numbers the dual bicomplex numbers are defined by

X̃ = X + εX∗, (3)
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where X = x0+ ix1+jx2+ ijx3 and X∗ = x∗0+ ix∗1+jx∗2+ ijx∗3 [3]. Let X̃
and Ỹ be two dual bicomplex numbers. Then, the addition, subtraction
and multiplication of two dual bicomplex numbers are defined by

X̃ ± Ỹ = (X ± Y ) + ε (X∗ ± Y ∗) , (4)

X̃.Ỹ = XY + ε (Y X∗ +XY ∗) , (5)

respectively. Furthermore, three different conjugations of dual bicom-
plex numbers, according to the imaginary units i, j and ij, can be ex-
pressed by

X̃ = (x0 + εx∗0)− (x1 + εx∗1) i+ (x2 + εx∗2) j− (x3 + εx∗3) ij, (6)

X̃ = (x0 + εx∗0) + (x1 + εx∗1) i− (x2 + εx∗2) j− (x3 + εx∗3) ij, (7)

X̃ = (x0 + εx∗0)− (x1 + εx∗1) i− (x2 + εx∗2) j+ (x3 + εx∗3) ij (8)

The Fibonacci and Lucas numbers play an important role in various
areas such as mathematics, physics, computer science and related fields.
For more information about Fibonacci and Lucas numbers and their
properties, we refer to book [16]. For n ∈ N0, the Fibonacci and Lucas
numbers are defined by the recurrence relations

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1 (9)

and

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1, (10)

respectively. The Binet formulas for the Fibonacci and Lucas numbers
are

Fn =
αn − βn

α− β
and Ln = αn + βn, (11)

where α = 1+
√
5

2 and β = 1−
√
5

2 are the roots of the characteristic poly-

nomial x2 − x − 1 = 0. Until now, few researchers have studied the
bicomplex numbers with Fibonacci and Lucas numbers [9, 10, 21, 28].
For example, Nurkan and Güven defined the bicomplex Fibonacci num-
bers and bicomplex Lucas numbers and they examined the algebraic
properties of these numbers [21]. Halıcı and Karataş defined the bi-
complex Horadam numbers and they gave some additional identities for
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these numbers [10]. Moreover, they obtained the Binet formula and
generating functions for these numbers. Motivated by the above cited
works, Babadag, in [3], defined the dual bicomplex Fibonacci and dual
bicomplex Lucas numbers as

x̃n = Fn + iFn+1 + jFn+2 + ijFn+3 + ε (Fn+1 + iFn+2 + jFn+3 + ijFn+4) (12)

and

k̃n = Ln+iLn+1+jLn+2+ijLn+3+ε (Ln+1 + iLn+2 + jLn+3 + ijLn+4) , (13)

where Fn and Ln are the n−th Fibonacci and Lucas numbers respec-
tively. In addition, in (12) and (13), i, j and ij are the imaginary units
and ε is the dual unit which satisfy the conditions i2 = −1, j2 = −1, ij =
ji and ε2 = 0.

Quantum calculus, which may be viewed as generalization of ordi-
nary calculus, plays an important role in physics, combinatorics, number
theory and other fields of the mathematics. As there is a relationship
between quantum calculus and number sequences, this study can be ex-
tended to different areas by defining a relationship between fractal calcu-
lus and fractional calculus and quantum calculus. For more information
on fractal and fractional calculus, we refer the readers to [11,13,14,22].
In the second half of the twentieth century, studies related with quantum
calculus and its applications to mathematics and physics have increased
significantly. Up to the present, with the help of q−calculus, some re-
searchers have investigated the properties of quaternions and hybrid
numbers using Fibonacci and Lucas numbers [1, 15].

Now, we give definitions and facts from the quantum calculus neces-
sary for understanding of this paper. For n ∈ N0, a q−integer is defined
by

[n]q =
1− qn

1− q
= qn−1 + . . .+ q + 1. (14)

By means of (14), for m,n ∈ Z, we get

[m+ n]q = [m]q + qm[n]q. (15)

For more information about quantum calculus, we refer to the book [12]
to the readers.
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By analogy to the earlier works, in this paper, with a different
perspective, we define the q−Fibonacci dual bicomplex numbers and
q−Lucas dual bicomplex numbers by using the notations from quantum
calculus. We obtain several new results which are the generalization of
different dual bicomplex numbers.

2 q−Fibonacci Dual Bicomplex Numbers and
q−Lucas Dual Bicomplex Numbers

In this section, we define a new generalization of the dual bicomplex
Fibonacci numbers and dual bicomplex Lucas numbers. Moreover, with
the help of q−integer, we obtain the Binet formulas, exponential generat-
ing functions, several binomial sum identities, Catalan identity, Cassini
identity and d’Ocagne identity for the q−Fibonacci dual bicomplex num-
bers and q−Lucas dual bicomplex numbers.

Definition 2.1. The q−Fibonacci and q−Lucas dual bicomplex numbers
are defined by

F̃n(α; q) = αn−1[n]q + αn[n+ 1]qi+ αn+1[n+ 2]qj+ αn+2[n+ 3]qij

+ ε
(
αn[n+ 1]q + αn+1[n+ 2]qi+ αn+2[n+ 3]qj+ αn+3[n+ 4]qij

)
(16)

and

L̃n(α; q)

= αn [2n]q
[n]q

+ αn+1 [2n+ 2]q
[n+ 1]q

i+ αn+2 [2n+ 4]q
[n+ 2]q

j+ αn+3 [2n+ 6]q
[n+ 3]q

ij

+ ε

(
αn+1 [2n+ 2]q

[n+ 1]q
+ αn+2 [2n+ 4]q

[n+ 2]q
i+ αn+3 [2n+ 6]q

[n+ 3]q
j+ αn+4 [2n+ 8]q

[n+ 4]q
ij

)
. (17)

It is not difficult to see that the q−Fibonacci dual bicomplex numbers
and the q−Lucas dual bicomplex numbers can be reduced to several dual
bicomplex numbers for the special cases of q and α. For example,

• if we get α = 1+
√
5

2 and q = − 1
α2 in (16), we obtain Dual bicomplex

Fibonacci numbers,

• if we get α = 1+
√
2 and q = − 1

α2 in (16), we obtain Dual bicom-
plex Pell numbers,
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• if we get α = k+
√
k2+4
2 and q = − 1

α2 in (16), we obtain Dual
bicomplex k−Fibonacci numbers,

• if we get α = 2 and q = −1
2 in (16), we obtain Dual bicomplex

Jacobsthal numbers,

• if we get 1+
√
1 + k and q = − k

α2 in (16), we obtain Dual bicomplex
k−Pell numbers,

• if we get α = 1+
√
5

2 and q = − 1
α2 in (17), we obtain Dual bicomplex

Lucas numbers,

• if we get α = 1+
√
2 and q = − 1

α2 in (17), we obtain Dual bicom-
plex Pell−Lucas numbers,

• if we get α = k+
√
k2+4
2 and q = − 1

α2 in (17), we obtain Dual
bicomplex k−Lucas numbers,

• if we get α = 2 and q = −1
2 in (17), we obtain Dual bicomplex

Jacobsthal−Lucas numbers,

• if we get 1+
√
1 + k and q = − k

α2 in (17), we obtain Dual bicomplex
k−Pell−Lucas numbers.

The Binet formula was derived by Binet in 1843, although the re-
sult was known to Euler, Daniel Bernoulli, and de Moivre more than a
century earlier. So, the following theorem describes the q−analog of the
Binet formula of the Fibonacci and Lucas dual bicomplex numbers.

Theorem 2.2. The Binet formula for the q−Fibonacci dual bicomplex
numbers and q−Lucas dual bicomplex numbers are

F̃n(α; q) =
αnα− (αq)nγ

α(1− q)
+ ε

(
αn+1α− (αq)n+1γ

α(1− q)

)
(18)

and

L̃n(α; q) = αnα+ (αq)nγ + ε
(
αn+1α+ (αq)n+1γ

)
, (19)

where α =
(
1 + iα+ jα2 + ijα3

)
and γ =

(
1 + i(αq) + j(αq)2 + ij(αq)3

)
.
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Proof. From (14) and (16), we find that

F̃n(α; q)

= αn−1 1− qn

1− q
+ αn 1− qn+1

1− q
i+ αn+1 1− qn+2

1− q
j+ αn+2 1− qn+3

1− q
ij

+ ε

(
αn 1− qn+1

1− q
+ αn+1 1− qn+2

1− q
i+ αn+2 1− qn+3

1− q
j+ αn+3 1− qn+4

1− q
ij

)
=

αn

α(1− q)

(
1 + iα+ jα2 + ijα3)− (αq)n

α(1− q)

(
1 + i(αq) + j(αq)2 + ij(αq)3

)
+ ε

(
αn+1

α(1− q)

(
1 + iα+ jα2 + ijα3)+ (αq)n+1

α(1− q)

(
1 + i(αq) + j(αq)2 + ij(αq)3

))
=

αnα− (αq)nγ

α(1− q)
+ ε

(
αn+1α− (αq)n+1γ

α(1− q)

)
.

On the other hand, from (14) and (17), we get

L̃n(α; q)

= αn 1− q2n

1− qn
+ αn+1 1− q2n+2

1− qn+1
i+ αn+2 1− q2n+4

1− qn+2
j+ αn+3 1− q2n+6

1− qn+3
ij

+ ε

(
αn+1 1− q2n+2

1− qn+1
+ αn+2 1− q2n+4

1− qn+2
i+ αn+3 1− q2n+6

1− qn+3
j+ αn+4 1− q2n+8

1− qn+4
ij

)
= αn (1 + iα+ jα2 + ijα3)+ (αq)n

(
1 + i(αq) + j(αq)2 + ij(αq)3

)
+ ε

(
αn+1 (1 + iα+ jα2 + ijα3)+ (αq)n+1 (1 + i(αq) + j(αq)2 + ij(αq)3

))
= αnα+ (αq)nγ + ε

(
αn+1α+ (αq)n+1γ

)
,

which is the desired result. □

Theorem 2.3. The exponential generating functions for the q−Fibonacci
dual bicomplex numbers and q−Lucas dual bicomplex numbers are

∞∑
n=0

F̃n(α; q)
xn

n!
=

eαxα− e(αq)xγ

α(1− q)
+ ε

(
eαxαα− e(αq)xαqγ

α(1− q)

)
(20)

and

∞∑
n=0

L̃n(α; q)
xn

n!
= eαxα+ e(αq)xγ + ε

(
eαxαα+ e(αq)xαqγ

)
, (21)

respectively.
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Proof. Using the Binet formula of the q−Fibonacci dual bicomplex
numbers, we have

∞∑
n=0

F̃n(α; q)
xn

n!
=

∞∑
n=0

[
αnα− (αq)nγ

α(1− q)
+ ε

(
αn+1α− (αq)n+1γ

α(1− q)

)]
xn

n!

=
α

α(1− q)

∞∑
n=0

αnx
n

n!
−

γ

α(1− q)

∞∑
n=0

(αq)n
xn

n!

+ ε

(
αα

α(1− q)

∞∑
n=0

αnx
n

n!
−

γαq

α(1− q)

∞∑
n=0

(αq)n
xn

n!

)

=
eαxα− e(αq)xγ

α(1− q)
+ ε

(
eαxαα− e(αq)xαqγ

α(1− q)

)
. (22)

Moreover, from (19), we get

∞∑
n=0

L̃n(α; q)
xn

n!
=

∞∑
n=0

[
αnα+ (αq)nγ + ε

(
αn+1α+ (αq)n+1γ

)] xn
n!

= α
∞∑
n=0

αnx
n

n!
+ γ

∞∑
n=0

(αq)n
xn

n!

+ ε

(
αα

∞∑
n=0

αnx
n

n!
+ γαq

∞∑
n=0

(αq)n
xn

n!

)
= eαxα+ e(αq)xγ + ε

(
eαxαα+ e(αq)xαqγ

)
. (23)

Thus, the proof is completed. □

Theorem 2.4. For nonnegative integers n and j, the following identities
hold:

n∑
k=0

(
n

k

)(
−α2q

)n−k F̃2k+j(α; q) =

{
(α− αq)

n F̃n+j(α; q), if n is even

(α− αq)
n−1 L̃n+j(α; q), if n is odd

,

(24)
n∑

k=0

(
n

k

)(
−α2q

)n−k L̃2k+j(α; q) =

{
(α− αq)

n L̃n+j(α; q), if n is even

(α− αq)
n+1 F̃n+j(α; q), if n is odd

,

(25)
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n∑
k=0

(
n

k

)
(−1)k

(
−α2q

)n−k F̃2k+j(α; q) =
(
−α [2]q

)n
F̃n+j(α; q), (26)

n∑
k=0

(
n

k

)
(−1)k

(
−α2q

)n−k L̃2k+j(α; q) =
(
−α [2]q

)n
L̃n+j(α; q). (27)

Proof. We first prove the identity (24). By means of (18), we get

n∑
k=0

(
n

k

)(
−α2q

)n−k F̃2k+j(α; q)

=

n∑
k=0

(
n

k

)(
−α2q

)n−k

[
α2k+jα− (αq)2k+jγ

α(1− q)
+ ε

(
α2k+j+1α− (αq)2k+j+1γ

α(1− q)

)]

=
αjα

α(1− q)

n∑
k=0

(
n

k

)(
−α2q

)n−k
α2k −

(αq)jγ

α(1− q)

n∑
k=0

(
n

k

)(
−α2q

)n−k
(αq)2k

+ ε

(
αj+1α

α(1− q)

n∑
k=0

(
n

k

)(
−α2q

)n−k
α2k −

(αq)j+1γ

α(1− q)

n∑
k=0

(
n

k

)(
−α2q

)n−k
(αq)2k

)

=
αjα

(
α2 − α2q

)n − (αq)j γ
(
(αq)2 − α2q

)n
α(1− q)

+ ε

(
αj+1α

(
α2 − α2q

)n − (αq)j+1 γ
(
(αq)2 − α2q

)n
α(1− q)

)

=
(α (α− αq))n αjα− (−αq (α− αq))n (αq)j γ

α(1− q)

+ ε

(
(α (α− αq))n αj+1α− (−αq (α− αq))n (αq)j+1 γ

α(1− q)

)
. (28)

If n is even in (28), we have

n∑
k=0

(
n

k

)(
−α2q

)n−k F̃2k+j(α; q)
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=
(α (α− αq))n αjα− (αq (α− αq))n (αq)j γ

α(1− q)

+ ε

(
(α (α− αq))n αj+1α− (αq (α− αq))n (αq)j+1 γ

α(1− q)

)

= (α− αq)n
[
αn+jα− (αq)n+jγ

α(1− q)
+ ε

(
αn+j+1α− (αq)n+j+1γ

α(1− q)

)]
= (α− αq)n F̃n+j(α; q).

On the other hand, if n is odd in (28), we obtain

n∑
k=0

(
n

k

)(
−α2q

)n−k F̃2k+j(α; q)

=
(α (α− αq))n αjα+ (αq (α− αq))n (αq)j γ

α(1− q)

+ ε

(
(α (α− αq))n αj+1α+ (αq (α− αq))n (αq)j+1 γ

α(1− q)

)

= (α− αq)n
[
αn+jα+ (αq)n+jγ

α(1− q)
+ ε

(
αn+j+1α+ (αq)n+j+1γ

α(1− q)

)]
= (α− αq)n−1 L̃n+j(α; q).

The rest of the results (25), (26) and (27) can be proven analogously.
Thus, the proof is completed. □

Theorem 2.5. For nonnegative integer n, we have

n∑
k=0

(
n

2k

)(
−α2q

)n−k F̃4k(α; q)

=


1
2

(
(α− αq)n + (α[2]q)

n
)
F̃n(α; q), if n is even

1
2

(
(α− αq)n−1 L̃n(α; q)− (α[2]q)

n F̃n(α; q)
)
, if n is odd

, (29)
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n∑
k=0

(
n

2k

)(
−α2q

)n−k L̃4k(α; q)

=


1
2

(
(α− αq)n + (α[2]q)

n
)
L̃n(α; q), if n is even

1
2

(
(α− αq)n−1 F̃n(α; q)− (α[2]q)

n L̃n(α; q)
)
, if n is odd

, (30)

n∑
k=0

(
n

2k + 1

)(
−α2q

)n−k F̃4k+1(α; q)

=


1
2

(
(α− αq)n − (α[2]q)

n
)
F̃n−1(α; q), if n is even

1
2

(
(α− αq)n−1 L̃n−1(α; q) + (α[2]q)

n F̃n−1(α; q)
)
, if n is odd

,

(31)

n∑
k=0

(
n

2k + 1

)(
−α2q

)n−k L̃4k+1(α; q)

=


1
2

(
(α− αq)n − (α[2]q)

n
)
L̃n−1(α; q), if n is even

1
2

(
(α− αq)n+1 F̃n−1(α; q) + (α[2]q)

n L̃n−1(α; q)
)
, if n is odd

.

(32)

Proof. Firstly, we prove the identity (29). By taking consideration the
Theorem 2.4 and using some binomial sum properties, we get

n∑
k=0

(
n

2k

)(
−α2q

)n−k F̃4k(α; q)

=
1

2

n∑
k=0

(
n

k

)(
1 + (−1)

k
) (

−α2q
)n−k F̃2k(α; q)

=
1

2

[
n∑

k=0

(
n

k

)(
−α2q

)n−k F̃2k(α; q) +

n∑
k=0

(
n

k

)
(−1)k

(
−α2q

)n−k F̃2k(α; q)

]

=


1
2

(
(α− αq)

n
+ (α[2]q)

n
)
F̃n(α; q), if n is even

1
2

(
(α− αq)

n−1 L̃n(α; q)− (α[2]q)
n F̃n(α; q)

)
, if n is odd

.

Thus the proof is completed. By analogy to this proof, the equalities
(30), (31) and (32) can be proven. □
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Theorem 2.6. For nonnegative integer n, we have

n∑
k=0

(
n

k

)
(α[2]q)

k (−α2q
)n−k F̃k(α; q) = F̃2n(α; q) (33)

and
n∑

k=0

(
n

k

)
(α[2]q)

k (−α2q
)n−k L̃k(α; q) = L̃2n(α; q). (34)

Proof. First we prove the identity (33). By the help of the Binet
formula of the q−Fibonacci dual bicomplex numbers in (18), we get

n∑
k=0

(
n

k

)
(α[2]q)

k (−α2q
)n−k F̃k(α; q)

=

n∑
k=0

(
n

k

)
(α(1 + q))

k (−α2q
)n−k

[
αkα− (αq)kγ

α(1− q)
+ ε

(
αk+1α− (αq)k+1γ

α(1− q)

)]

=
α

α(1− q)

n∑
k=0

(
n

k

)(
α2(1 + q)

)k (−α2q
)n−k

−
γ

α(1− q)

n∑
k=0

(
n

k

)(
α2q(1 + q)

)k (−α2q
)n−k

+ ε

(
αα

α(1− q)

n∑
k=0

(
n

k

)(
α2(1 + q)

)k (−α2q
)n−k

−
αqγ

α(1− q)

n∑
k=0

(
n

k

)(
α2q(1 + q)

)k (−α2q
)n−k

)

=
α2nα− (αq)2nγ

α(1− q)
+ ε

(
α2n+1α− (αq)2n+1γ

α(1− q)

)
= F̃2n(α; q).

On the other hand, the result (34) can be proven in a similar way. □

Theorem 2.7. For any integers, n, r and s, the q−Fibonacci and q−Lucas
dual bicomplex numbers satisfy the identity:

L̃n+r(α; q)F̃n+s(α; q)− L̃n+s(α; q)F̃n+r(α; q)

=
α2n+r+s−1qn(α[2]qε+ 1) (qr − qs) (αγ + γα)

1− q
.
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Proof. By virtue of both (18) and (19), we have

L̃n+r(α; q)F̃n+s(α; q)− L̃n+s(α; q)F̃n+r(α; q)

=
(
αn+rα+ (αq)n+rγ + ε

(
αn+r+1α+ (αq)n+r+1γ

))
×

(
αn+sα− (αq)n+sγ

α(1− q)
+ ε

(
αn+s+1α− (αq)n+s+1γ

α(1− q)

))
−
(
αn+sα+ (αq)n+sγ + ε

(
αn+s+1α+ (αq)n+s+1γ

))
×

(
αn+rα− (αq)n+rγ

α(1− q)
+ ε

(
αn+r+1α− (αq)n+r+1γ

α(1− q)

))
.

After some calculus, we get

L̃n+r(α; q)F̃n+s(α; q)− L̃n+s(α; q)F̃n+r(α; q)

=
α2n+r+s−1qn(α[2]qε+ 1) (qr − qs) (αγ + γα)

1− q
.

□

Theorem 2.8 (Catalan’s identity). For positive integers n and r such
that n ≥ r, we have

F̃n+r(α; q)F̃n−r(α; q)− F̃2
n(α; q) =

α2n−2qn−r (qr − 1)
(
γαqr − αγ

)
(1 + α[2]qε)

(1− q)2

(35)

and

L̃n+r(α; q)L̃n−r(α; q)− L̃2
n(α; q) = α2nqn−r (qr − 1)

(
γαqr − αγ

)
(1 + α[2]qε).

(36)

Proof. Using the Binet formula of the q−Fibonacci dual bicomplex
numbers in (18), we find that

F̃n+r(α; q)F̃n−r(α; q)− F̃2
n(α; q)
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=

(
αn+rα− (αq)n+rγ

α(1− q)
+ ε

(
αn+r+1α− (αq)n+r+1γ

α(1− q)

))

×

(
αn−rα− (αq)n−rγ

α(1− q)
+ ε

(
αn−r+1α− (αq)n−r+1γ

α(1− q)

))

−

(
αnα− (αq)nγ

α(1− q)
+ ε

(
αn+1α− (αq)n+1γ

α(1− q)

))2

.

After some calculations, we arrive at the desired result:

F̃n+r(α; q)F̃n−r(α; q)−F̃2
n(α; q) =

α2n−2qn−r (qr − 1)
(
γαqr − αγ

)
(1 + α[2]qε)

(1− q)2
.

Furthermore, from (19), the equality (36) can be proven in a similar
way. So, the proof is completed. □

Theorem 2.9 (Cassini’s identity). For n ≥ 1, the following identities
hold:

F̃n+1(α; q)F̃n−1(α; q)− F̃2
n(α; q) =

α2n−2qn−1
(
αγ − γαq

)
(1 + α[2]qε)

1− q
(37)

and

L̃n+1(α; q)L̃n−1(α; q)− L̃2
n(α; q) = α2nqn−1 (q − 1)

(
γαq − αγ

)
(1 + α[2]qε).

(38)

Proof. As this identity is the special case of the Theorem 2.8 for r = 1,
the proof is trivial. □

Theorem 2.10 (d’Ocagne’s identity). Let n be a nonnegative integer
and m be a natural number. If m > n+ 1, then we have

F̃m(α; q)F̃n+1(α; q)− F̃n(α; q)F̃m+1(α; q)

=
αm+n−1 (qm − qn) (αγq − γα)(1 + α[2]qε)

(1− q)2
(39)

and

L̃m(α; q)L̃n+1(α; q)− L̃n(α; q)L̃m+1(α; q)

= αm+n+1 (qm − qn) (γα− αγq)(1 + α[2]qε). (40)
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Proof. By means of Binet formula of the q−Fibonacci dual bicomplex
numbers in (18), we obtain

F̃m(α; q)F̃n+1(α; q)− F̃n(α; q)F̃m+1(α; q)

=

(
αmα− (αq)mγ

α(1− q)
+ ε

(
αm+1α− (αq)m+1γ

α(1− q)

))

×

(
αn+1α− (αq)n+1γ

α(1− q)
+ ε

(
αn+2α− (αq)n+2γ

α(1− q)

))

−

(
αnα− (αq)nγ

α(1− q)
+ ε

(
αn+1α− (αq)n+1γ

α(1− q)

))

×

(
αm+1α− (αq)m+1γ

α(1− q)
+ ε

(
αm+2α− (αq)m+2γ

α(1− q)

))
.

After some calculations, we get

F̃m(α; q)F̃n+1(α; q)− F̃n(α; q)F̃m+1(α; q)

=
αm+n−1 (qm − qn) (αγq − γα)(1 + α[2]qε)

(1− q)2
. (41)

In a similar way, from (19), the equality (40) can be derived. So, the
proof is completed. □

3 Conclusion

In this study, we introduce two family of dual bicomplex numbers with
components containing q−integers. First, we define q−Fibonacci and
q−Lucas dual bicomplex numbers. We give several algebraic properties,
exponential generating functions and the binomial sums. Besides, we
touch upon that these numbers can be reduced into several new dual bi-
complex numbers for the special cases of q and α. Afterwards, by means
of the Binet formula of these numbers, we investigate several identities
such as Catalan’ identity, Cassini’s identity, d’Ocagne’s identity and a
general identity (see Theorem 2.7). Thus, this study can be described as
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a study involving the connection between dual bicomplex numbers and
q−calculus.

On the other hand, in [7] and [4], the authors defined the biperi-
odic Fibonacci and the biperiodic Lucas sequences. By virtue of these
sequences, it would be interesting to study q−analog of the dual bicom-
plex biperiodic Fibonacci and Lucas numbers.
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