
Nevşehir Bilim ve Teknoloji Dergisi Cilt 4(2) 35-43 2015 
DOI: 10.17100/nevbiltek.211039 
URL: http://dx.doi.org/10.17100/nevbiltek.211039

 
 

 

The Completeness of System of Eigenfunctions of 1D Dirac Operators 

 
Hüseyin Tuna

1*
, Murat Çoruh

2
 

1
Mehmet Akif Ersoy Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Burdur 

2
Mehmet Akif Ersoy Üniversitesi, Fen Bilimleri Enstitüsü, Burdur 

Abstract 

 

In this paper, nonself-adjoint 1D Dirac operators in Weyl’s limit-circle  case are studied. Using Krein’s theorems, we investigate the 

completeness of the system of eigenvectors and associated vectors for these operators.  
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Bir Boyutlu Dirac Operatörlerinin Özfonksiyonlar Sisteminin Tamlığı 

 
Öz 

 

Bu çalışmada Weyl limit çember durumunda kendine eş olmayan bir boyutlu Dirac operatörleri çalışılmıştır. Krein teoremleri 

kullanılarak, bu operatörlerin öz ve asosye vektörler sisteminin tamlığı araştırıldı. 
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1. Introduction 

The Dirac equation is a cornerstone in the history of physics. The basic physics of relativistik 

quantum mechanics was formulated in the Dirac equation. It provides the origin of spin 1/2 of an electron 

and predicts the existence of an antiparticle. The Dirac equation has been applied to realistic models like 

hydrogen atom [13]. We refer to the monographs [16], [25], [34] for background and further information 

about Dirac operators and their applications. 

Dissipative operator is important part of non self adjoint operators. In the spectral analysis of a 

dissipative operator, we should answer the question that whether all eigenvectors and associated vectors 

of a dissipative operator span the whole space or not. 

The first general results on completeness property of non-homogeneous string with dissipative 

boundary condition was obtained by Krein and Nudelman [15]. The recent publications [17]-[20] devoted 

to the questions of completeness and spectral synthesis for general  n n   first order systems of ODE 

(see also references therein). In [17], [18], [20] it was shown that the completeness property for some 

classes of boundary conditions essentially depends on boundary values of the potential matrix and explicit 

conditions of the completeness were found. In particular, in [20], an example of incomplete dissipative 

2 2  Dirac operator was constructed. It was shown in [18], [19] that the resolvent of any complete 

dissipative Dirac type operator admits the spectral synthesis. Moreover, explicit conditions of the 

dissipativity and completeness of such operators were found. It is also worth to mention recent papers [5]-

[9] devoted to the Riesz basis property for  2 2  Dirac operator (see also references therein). 

In this paper we consider the one dimensional Dirac operator  0L   acting in the Hilbert space   

 22 ];,( CbaLA   with defect index (2.2). We prove the theorems on completeness of the system of 

eigenvectors and associated vectors of the dissipative Dirac operator using Krein's theorems. A similar 

way was employed earlier in [3], [4], [11], [12], [30]-[33].
†
 

 

2. Preliminaries 

We will consider the Dirac system 

(2.1)  

 
 

         babaIxxyxAxyxB
dx

xdy
Jyl ],,(:,:1   

with singular point  ;a  where     is a complex spectral parameter and  
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   0xA   ( for almost all  Ix  ); elements of the matrices   xA   and   xB   are real valued, 
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continuous functions on  I  and    .1bq  Equation (2.1) is the radial wave equation for a relativistic 

particle. Spectral properties of (2.1) have been investigated in [1], [2], [22]-[24], [26]-[29]. 

To pass from the differential expression         IxylxAyl  

1

1:   to operators we 

introduce the Hilbert space      
 (   ) (     ) of vector valued functions with values in    and 

with the inner product 

         .,, dxxzxyxAzy
E

b

a

  

Denote by  D   the linear set of all vectors  Hy   such that  1y   and  2y   are locally absolutely 

continuous functions on  I   and    .Hyl     

We define the operator  L   on  D   by the equality  .lyLy    

For two arbitrary vectors  ,, Dzy    we have Green's formula 

(2.2)                                                ab zyzyLzyzLy ],[],[,,   

where          xaxaxx zyzyxzxyxzxyzyWzy ],[lim],[,],[:],[ 1221  ( see [16], [21]). 

We assume that  L  has defect index (2.2), so that the Weyl's limit circle case holds. 

Denote   
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xu  the solutions of the equation  

(2.3)                                              Ixyyl  ,  

satisfying the initial conditions  

   

    .cos,sin,

,sin,,cos,

21

21









bvbv

bubu
 

 

The Wronskian of the two solutions (2.3) doesn't depend on  ,x  and the two solutions of this 

equation are linearly independent if and only if their wronskian is nonzero. It is clear that  

.,1],[],[ IxvuWvuW bx   

Since  L  has defect index   2.2  , ,, Hvu    and moreover  Dvu ,  . The solutions  

 ,xu  and  ,xv  form a fundamental system of (2.3) and they are entire functions of  

 . [16] see  Let     0,xuxu   and    0,xvxv   the solutions of the equation    0yl  

satisfying the initial conditions  

   

    .cossin

,sin,cos

21

21









bvbv

bubu
 

Let us consider the functions  Dy   satisfying the conditions 

(2.4)                                                  ,0sincos 21   byby  
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(2.5)                                                     ,0],[],[  aa vyhuy  

where            

 

3. Main Results 

 Lemma 1.  Zero is not an eigenvalue  .L   

 Proof. Let   LDy   and  .0Ly   Then 

 
    ,0 xyxB

dx

xdy
J  

and       .21 xvcxucxy   Substituting this in the boundary conditions (2.4)-(2.5) we find that  

.0.,.;021  yeicc  

From Lemma 1, there exist the inverse operator  .1L   In order to describe the operator  
1L   

we use the Green's function method. We consider the functions   xv   and       .xhvxux    

These functions belong to the space  .H   Their Wronskian    .1, vW   

Let 

(3.1)                                            
   
   









bxtaxtv

btxatxv
txG

T

T

,

,
,




 

where  
T

 denotes the matrix transpose. The integral operator  K   defined by the formula 

  

(3.2)                                                  HfftxGKf H  ),,(  

is a compact linear operator in the space  .H    K   is a Hilbert Schmidth operator. It is evident that 

.1 LK  Consequently the root lineals of the operator  L   and  K   coincide and, therefore, the 

completeness in  H   of the system of all eigenvectors and associated vectors of  L   is equivalent to the 

completeness of those for  K  . Since the algebraic multiplicity of nonzero eigenvalues of a compact 

operator is finite, each eigenvector of  L   may have only a finite number of linear independent associated 

vectors. 

  

Definition 1 ([10]). Let  f   be an entire function. If for each  0   there exists a finite constant  

0C  , such that  

(3.3)                                                 | ( )|  C   | |    , 

then  f   is called an entire function of order  1   of growth and minimal type. 

Let us define  
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It is clear that 

   ( )         , ( )     

where   Lp   denotes the set of all eigenvalues of  .L  Since    ,b   is entire function of     of 

order  (1  see  ]),7[   consequently,      have the same property. Then      is entire functions of 

the order  1  of growth, and of minimal type. 

  

Lemma 2 ([1], [2]).  Let   bxavu x 1],[  for some real solutions   xu   and   xv   of 

equation    .0yl  Then, one has the equality 

(3.4)                                            .],[],[],[],[],[ xxxxx uzvyvzuyzy   

 

 Proof. Since the functions   xyi   and     2,1ixzi   are real valued and  

 ,1],[ bxavu x   we obtain 
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 Theorem 1.  The operator  L   is dissipative in  .H   

 Proof. Let  ,Dy   then by Lagrange identity we get 

    .],[],[,, ab yyyyLyyyLy   

Since  ,Dy  we have  

(3.5)                                                            .0],[ byy  
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From Lemma 2, 

(3.6)                                          
  .],[Im2

],[],[],[],[],[

2

a

aaaaa

vyhi

uyvyvyuyyy




 

From (3.5) and (3.6)  

(3.7)                                                     ,],[Im),Im
2

avyhyLy   

and so  L   is dissipative in  .H   

 

It follows from Theorem 1, all the eigenvalues of  L   lie in the closed upper half plane  

.0Im    

Let us remind Krein's theorem : 

 

 Theorem 2 ([10]). The system of root vectors of a compact dissipative operator  B   with nuclear 

imaginary component is complete in the Hilbert space  H  so long as at least one of the following two 

conditions is fulfilled: 

   
,0

,
limor ,0

,
lim  





 









RR BnBn
 

where   RBn ,   and   RBn ,   denote the numbers of the characteristic values of the real 

component  RB   of the operator  B   in the intervals  ],0[    and  ]0,[   , respectively. 

  

Theorem 3 ([14]). If the entire function  f   satisfies the condition (3.3), then 

   
0

,
lim 

,
lim 





 









fnfn
 

where   fn ,   and   fn ,   denote the numbers of the zeros of the function  f   in the intervals  

],0[    and  ]0,[   , respectively. 

 

 Theorem 4. The system of all root vectors of the dissipative operator  K   is complete in  .H   

 Proof. It will be sufficient to prove that the system of all root vectors of the operator  
1 LK   in (3.2) 

is complete in  .H   Since       ,xhvxux    setting  21 ihhh             , we get from (3.2) 

in view of (3.1) that  ,21 iKKK    where 

    HH ftxGfKftxGfK ),,(,),,( 2211   

and 
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      .0Im,, 222  hhtvxvhtxG T
 

 

The operator  1K   is the self-adjoint Hilbert--Schmidt operator in  H  , and  2K  is the self-

adjoint one dimensional operator in  H  . 

Let  1L   denote the operator in  H   generated by the differential expression  l   and the 

boundary conditions  

   

.Re,0],[],[

,0sincos

11

21

hhvyhuy

byby

aa 

 
 

It is easy to verify that  1K   is the inverse  .1L  Further 

(3.8)                                                  (  )         ,  ( )     

 

where  

(3.9)                                                    .: 211  h  

Then we find  

(3.10)                                                    | ( )|      
 | |             

 

Let  KT    and  ,21 iTTT    where  ., 2211 KTKT   The characteristic values of the 

operator  1K   coincide with the eigenvalues of the operator  1L  . From (3.8), (3.10) and Theorem 2, we 

have 

   
,0

,
limor ,0

,
lim 11  





 









TmTm
 

where   1,Tm    and   1,Tm   denote the numbers of the characteristic values of the real 

component  1TTR    in the intervals  ],0[    and  ]0,[   , respectively. Thus the dissipative operator  

T  (also of  K ) carries out all the conditions of Krein's theorem on completeness. The theorem is proved. 
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