DFT/B3LYP ve HF Metodları Kullanılarak 4,5-Dihidro-1*H*-1,2,4-triazol-5-on Türevlerinin Teorik Özelliklerinin İncelenmesi

Haydar Yüksek¹, Fevzi Aytemiz¹, Hilal Medetalibeyoğlu^{1,*}, Şule Bahçeci²

¹Kafkas Üniversitesi, Fen Edebiyat Fakültesi, Kimya Bölümü, Kars ²Karadeniz Teknik Üniversitesi, Fatih Eğitim Fakültesi, Fen Bilgisi Eğitimi Bölümü, Trabzon

Öz

Bu çalışmada, 3-fenil-4-(4-dimetilaminobenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (**1**) ve 1-asetil-3-benzil-4-(4dimetilaminobenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (**2**) bileşiklerinin geometrik özellikleri (bağ açıları, bağ uzunlukları ve dihedral açıları), termodinamik özellikleri, elektronik özellikleri (toplam enerji, dipol moment), en yüksek dolu moleküler orbital (HOMO) ve en düşük moleküler boş orbitallerin (LUMO) enerjileri, Mulliken atom yükleri Gaussian 09W programı kullanılarak incelenmiştir. 6-31G(d,p) Temel seti kullanılarak yoğunluk fonksiyoneli metodu (DFT/B3LYP) ve Hartree-Fock metodu (HF) ile **1** ve **2** bileşiklerinin spektroskopik ve yapısal değerleri hesaplanarak deneysel verilerle karşılaştırılmıştır.

Anahtar Kelimeler: 4,5-Dihidro-1H-1,2,4-triazol-5-on, Gaussian 09W, 6-31G(d,p), DFT/B3LYP, HF.

Investigation of Theoretical Properties of 4,5-Dihydro-1*H*-1,2,4-triazol-5-one Derivates by Using DFT/B3LYP and HF Methods

Abstract

In this study, geometric properties (bond angles, bond lengths and dihedral angles), thermodynamic parameters, electronic properties (total energy, dipole moment), the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), Mulliken atomic charges of 3-phenyl-4-[4-(dimethylamino)benzylidenamino]-4,5-dihydro-1*H*-1,2,4-triazol-5-one (1) and 1-acetyl-3-benzyl-4-[4-(dimethylamino)benzylidenamino]-4,5-dihydro-1*H*-1,2,4-triazol-5-one (2) have been investigated by using Gaussian 09W program. The spectroscopic and structural data of compounds 1 and 2 have been calculated by using 6-31G(d,p) basis set with density functional method (DFT/B3LYP) and Hartree-Fock method (HF) and compared with experimental values.

Keywords: 4,5-Dihydro-1H-1,2,4-triazol-5-one, Gaussian 09W, 6-31G(d,p), DFT/B3LYP, HF.

^{*}e-mail: <u>hilalmedet@kafkas.edu.tr</u>

1. Giriş

Birçok heterosiklik bileşik doğal ürünlerin yapısında yer alır ve yaşamda çok çeşitli yerlerde kullanılmaları nedeniyle büyük öneme sahiptirler. Özellikle ilaç ve boya sanayinde kullanılmaları, ayrıca birçoğunun sentetik olarak elde edilmeleri önemlerini daha da artırmıştır. Karbohidratlar, nükleik asitler, peptitler ve proteinler heterosiklik moleküllere örnek olarak gösterilebilir [1].

1,2,4-Triazol ve 4,5-dihidro-1*H*-1,2,4-triazol-5-on halkası içeren heterosiklik bileşiklerin antimikrobiyal [2], [3], antifungal [4], antitümöral [5], anti-HIV [5], antikanserojen [6], antiviral [7], antitüberkülostatik [8], iltihap önleyici [9], ağrı kesici [10], antioksidan [11], antikonvülzan [12], antimikobakteriyal [13] ve birçok farmakolojik ve biyolojik özelliklere sahip [14], [15] olduğu ortaya konmuştur.

Günümüzde kullanılan teorik yöntemler ile moleküllerin birçok özellikleri deney yapmaya gerek kalmadan hesaplanmaya başlanmıştır. Kimyasal araştırmalarda bilgisayar kullanılarak yapılan kimyasal hesaplamalar, deneysel yöntemlerle elde edilen birçok maddenin; ¹³C- ve ¹H-NMR spektral verileri, IR frekans değerleri, UV-vis değerleri, bağ açıları, bağ uzunlukları, dihedral açıları, Mulliken atomik yükleri, HOMO-LUMO enerjileri, dipol momentleri, termodinamik özellikleri ve enerjileri gibi çok sayıda özelliğinin daha kısa sürede ve daha güvenilir bir şekilde elde edilmesini sağlar. Standart değerler elde etmek için birçok teorik yöntemler kullanılmış ve bu değerler esas alınarak deneysel çalışmalar yapılmıştır. Nitekim, bazı 4,5-dihidro-1*H*-1,2,4-triazol-5-on türevlerinin teorik ve deneysel spektroskopik özellikleri incelenmiştir [16]–[19].

2. Materyal ve Metot

Bu çalışmadaki tüm hesaplamalarda moleküler mekanik, yarı-deneysel ve *ab-initio* yöntemlerini içeren, çok sayıda teori ve temel set seçeneğine sahip olan oldukça kapsamlı Gaussian 09W [20] ve GaussView [21] programlarında bulunan Hartree-Fock yöntemi (HF) ve Becke'nin üç parametreli enerji fonksiyoneli hibrid yaklaşımı [22] ile Lee-Yang ve Parr'ın korelasyon fonksiyonelinden [23] oluşan B3LYP teorisi kullanılarak 6-31G(d,p) temel seti ile çalışılmıştır.

¹³C- ve ¹H-NMR isotropik kayma değerleri Gaussian G09W paket programı kullanılarak GIAO metoduna [24] göre hesaplanmıştır. Deneysel [25] ve teorik olarak bulunan değerler δ exp=a+b. δ calc. eşitliğine göre grafiğe geçirilmiştir. Sigmaplot programı kullanılarak regresyon katsayıları bulunmuştur. IR değerlerinin hesaplanmasında veda4f programı [26] kullanılmıştır. Ayrıca bu moleküllerin (**1** ve **2**) teorik olarak DFT/6-31G(d,p) ve HF/6-31G(d,p) temel setleri kullanılarak bağ açıları, bağ uzunlukları, dihedral açıları, termodinamik ve elektronik özellikleri, Mulliken atomik yükleri, HOMO-LUMO enerjileri hesaplanmıştır. Bu moleküllerin (**1** ve **2**) teorik olarak incelenen spektroskopik verileri, deneysel verileri [25] ile kıyaslanmıştır.

3. Bulgular

3.1. Moleküler Geometrisi

3-Fenil-4-(4-dimetilaminobenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (**1**) ve 1-asetil-3benzil-4-(4-dimetilaminobenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (**2**) [25] moleküllerinin üç boyutlu geometrisi GaussView [21] programında çizilmiş ve her iki molekül için atomların uzay yerleşimlerini belirlemiştir. Şekil I ve II'de literatürde kayıtlı olan moleküllerin (**1** ve **2**) B3LYP/6-31 (d,p), HF/6-31G(d,p) metotlarıyla hesaplanmış geometrik yapıları atomların numaralandırılmış şekliyle gösterilmiştir.

Şekil I. 1 Bileşiğinin GaussView görünümü

Şekil II. 2 Bileşiğinin GaussView görünümü

Moleküllerin (1 ve 2) B3LYP/6-31 (d,p), HF/6-31G(d,p) metodlarına göre hesaplanan geometrik özellikleri (bağ açıları, dihedral açıları, bağ uzunlukları) Tablo I ve II'de verilmiştir.

Tablo I. 1 Bileşiğinin bağ açıları,	dihedral açıları,	bağ uzunlukları (A ⁰)

Bağ Açıları (A ⁰)	B3LYP	HF	Dihedral Açılar (A ⁰)	B3LYP	HF	Bağ Uzunluğu(A ⁰)	B3LYP	HF
C1-N36-N35	104.879	105.197	C1-N36-N35-C2	-1.340	-0.749	C1-N36	1.308	1.273
C1-N37-N38	122.353	121.933	N36-N35-C2-N37	0.899	-0.006	C1-N37	1.395	1.383
C1-N37-C2	108.225	107.903	H18-N35-C2-O40	-3.681	-2.763	C1-C10	1.471	1.477
C1-C10-C11	123.003	122.140	O40-C2-N37-N38	-8.128	-9.476	C10-C11	1.404	1.391
C1-C10-C15	117.840	118.247	C2-N37-N38-C3	12.702	15.947	C11-H24	1.082	1.072
C10-C11-H24	119.723	120.134	N36-C1-C10-C11	-151.773	-141.932	C11-C12	1.394	1.384
C10-C11-C12	120.062	119.986	N36-C1-C10-C15	25.544	35.150	C12-H25	1.086	1.075
H24-C11-C12	120.216	119.879	C1-C10-C11-H24	-2.682	2.756	C12-C13	1.395	1.385
C11-C12-C13	120.547	120.281	C1-C10-C15-H28	2.447	2.570	C13-H26	1.086	1.076
C11-C12-H25	119.390	119.604	C10-C11-C12-H25	-179.787	-179.668	C13-C14	1.397	1.385
H25-C12-C13	120.062	120.115	C10-C11-C12-C13	-0.047	0.188	C14-H27	1.086	1.075
C12-C13-C14	119.623	119.887	H24-C11-C12-H25	0.351	0.233	C14-C15	1.391	1.383
C12-C13-H26	120.196	120.040	C11-C12-C13-C14	-0.160	-0.289	C15-H28	1.084	1.074
H26-C13-C14	120.181	120.073	H25-C12-C13-H26	-0.447	-0.396	N37-N38	1.378	1.370
C13-C14-C15	120.200	120.049	C12-C13-C14-H27	179.888	179.981	N35-H18	1.007	0.991
H27-C14-C15	119.634	119.745	C12-C13-C14-C15	0.243	0.101	N35-C2	1.370	1.346
C14-C15-C10	120.463	120.246	H26-C13-C14-H27	-0.087	-0.057	C2-O40	1.242	1.202
H28-C15-C10	118.898	119.345	H26-C13-C14-C15	-179.732	-179.936	C2-N37	1.417	1.387
N36-N35-H18	120.465	121.005	H27-C14-C15-C10	-179.767	-179.694	N38-C3	1.293	1.220
N36-N35-C2	114.496	113.655	H28-C15-C10-C11	179.901	179.731	C3-H19	1.088	1.075
N35-C2-O40	129.341	129.092	N37-N38-C3-H19	0.462	-0.036	C3-C4	1.456	1.470
H18-N35-C2	124.910	125.291	N38-C3-C4-C5	-176.927	-177.368	C4-C5	1.404	1.383
O40-C2-N37	129.167	128.686	H19-C3-C4-C5	3.630	2.988	C5-H20	1.087	1.077
C2-N37-N38	128.877	129.341	C3-C4-C5-C6	179.852	179 428	C5-C6	1.387	1.388
N37-N38-C3	118.692	119.625	C3-C4-C5-H20	-0.278	0.069	C6-H21	1.083	1.072
N38-C3-H19	121.981	122.367	H20-C5-C6-H21	-0.176	0.392	C6-C7	1.415	1.390
N38-C3-C4	120.336	120.338	C6-C7-N39-C16	-5.662	-11.637	C7-N39	1.381	1 404
H19-C3-C4	117.680	117.294	C6-C7-N39-C17	-173.912	126 482	N39-C16	1.453	1 445
C3-C4-C5	119.333	119.185	C7-N39-C16-H29	59.703	72.260	C16-H29	1.097	1.092
C3-C4-C9	123,137	122,765	C7-N39-C16-H30	178.368	-167.849	C16-H30	1.090	1.083
C4-C5-H20	119.225	119.692	C7-N39-C16-H31	-61.553	-49 854	C16-H31	1.099	1.082
C4-C5-C6	121.800	121.485	C7-N39-C17-H32	-179.067	163.920	N39-C17	1.453	1 4 5 3
H20-C5-C6	118.974	118 820	C7-N39-C17-H33	-60.418	45.125	C17-H32	1.090	1.083
C5-C6-C7	120,750	120.556	C7-N39-C17-H34	60.933	-76.027	C17-H33	1.097	1.092
C5-C6-H21	118,814	118 685	N39-C7-C8-H22	-1.267	-0.814	C17-H34	1.099	1.079
C6-C7-N39	121 410	122 883	N39-C7-C8-C9	179.088	-178 844	C7-C8	1.022	1 405
C7-N39-C16	119 857	117.618	C7-C8-C9-C4	0.182	0 572	C8-H22	1.083	1.105
C7-N39-C17	120.027	116 733	H22-C8-C9-H23	-0.099	1 272	C8-C9	1 383	1 372
N39-C16-H29	111 255	113 468	H22-C8-C9-C4	-179 468	-177 460	C9-H23	1.085	1.074
N39-C16-H30	109 190	108 641	H22-C9-C4-C5	-178 868	-178 355	C9-C4	1.005	1 384
N39-C16-H31	112 523	110.258	C9-C4-C5-H20	179 342	179.659	0) 04	1.407	1.504
H29-C16-H30	107 641	107.810	0) 04 05 1120	177.542	177.057			
H29-C16-H31	107.041	107.010						
H30-C16-H31	107.920	107.853						
N39-C17-H32	100.140	107.855						
N39-C17-H33	111 330	112 185						
N39-C17-H34	112 519	111.162						
H32-C17-H33	107.613	108 301						
H32-C17-H33	107.015	107.803						
H33_C17_H34	107 956	108 803						
N30-C7 C8	121 210	110 252						
133-07-00 C7-C8 Цээ	121.219	119.232						
$C_7 C_8 C_9$	120.1/2 121 127	121 250						
U1-CO-CY	121.137	121.239						
CP CD C4	121 404	119.290						
C8 C0 1122	121.404	120.811						
U22 C0 C4	119./33	119.895						
H23-C9-C4	118.859	119.282						
C9-C4-C5	117.530	118.049						

Tablo II. 2 Bileşiğinin bağ açıları, dihedral açıları, bağ uzunlukları (A⁰)

Bağ Açıları (A ⁰)	B3LYP	HF	Dihedral Açılar (A ⁰)	B3LYP	HF	Bağ Uzunluğu(A ⁰)	B3LYP	HF
C1-N43-N42	105.021	105.539	C1-N43-N42-C2	0.000	-0.008	C1-N43	1.295	1.264
C1-N44-N45	120.785	120.852	N43-N42-C2-N44	-0.038	0.014	C1-N44	1.390	1.382
C1-N44-C2	108.240	108.201	C19-N42-C2-O47	-0.119	-0.001	C1-C10	1.500	1.499
C1-C10-C11	113.984	113.906	C2-N42-C19-O48	-179.715	-179.919	C10-H26	1.096	1.085
C1-C10-H26	107.842	107.645	N43-N42-C19-O48	0.194	0.053	C10-H27	1.097	1.085
C1-C10-H27	107.751	107.650	N42-C19-C20-H39	179.993	179.952	C10-C11	1.514	1.513
H26-C10-H27	105.214	105.818	N42-C19-C20-H40	59.079	59.426	C11-C12	1.400	1.387
H26-C10-C11	110.790	110.715	N42-C19-C20-H41	-59.067	-59.532	C12-H28	1.087	1.076
H27-C10-C11	110.824	110.721	O47-C2-N44-N45	-0.191	0.045	C12-C13	1.394	1.384
C10-C11-C16	120.541	120.560	C2-N44-N45-C3	0.416	-0.187	C13-H29	1.086	1.076.
C10-C11-C12	120.641	120.560	N43-C1-C10-C11	2.122	-0.019	C13-C14	1.396	1.385
C11-C12-C13	120.654	120.648	N44-C1-C10-C11	-178.159	179.997	C14-H30	1.086	1.076
C11-C12-H28	119.542	119.732	N43-C1-C10-H26	125.579	123.143	C14-C15	1.395	1.384
H28-C12-C13	119.803	119.621	N43-C1-C10-H27	-121.311	123.192	C15-H31	1.086	1.076
C12-C13-C14	120.107	120.089	H26-C10-C11-C12	154.153	148.285	C15-C16	1.395	1.384
C12-C13-H29	119.779	119.792	H26-C10-C11-C16	-25.401	-31.011	C16-H32	1.087	1.077
H29-C13-C14	120.113	120.119	C1-C10-C11-C12	-84.003	-90.242	C16-C11	1.399	1.388
C13-C14-C15	119.670	119.651	C1-C10-C11-C16	96.443	90.463	N43-N42	1.393	1.382
H30-C14-C15	120.178	120.174	C10-C11-C12-H28	0.612	0.770	N42-C19	1.426	1.409
C14-C15-C16	120.052	120.089	C10-C11-C12-C13	-179.647	179.388	O48-C19	1.208	1.184
H32-C16-C11	119.520	119.732	H28-C12-C13-H29	-0.178	-0.089	C19-C20	1.510	1.506
C16-C11-C12	118.816	118.876	C11-C12-C13-C14	0.084	0.064	C20-H39	1.090	1.080
H31-C15-C16	119.791	119.791	C12-C13-C14-H30	179.919	179.961	C20-H40	1.092	1.082
N43-N42-C19	119.107	119.276	C12-C13-C14-C15	-0.045	-0.045	C20-H41	1.093	1.082
N42-C19-O48	119.914	119.815	H29-C13-C14-H30	-0.079	-0.043	N42-C2	1.401	1.374
N42-C19-C20	115.957	116.836	H29-C13-C14-C15	179.957	179.951	C2-O47	1.222	1.200
O48-C19-C20	124.129	123.349	H30-C14-C15-C16	-179.955	-179.962	C2-N44	1.402	1.374
C19-C20-H39	107.218	106.907	H31-C15-C16-C11	-179.966	179.935	N44-N45	1.380	1.370
C19-C20-H40	111.193	111.036	H32-C16-C11-C12	179.999	179.927	N45-C3	1.293	1.262
C19-C20-H41	111.205	111.029	H32-C16-C11-C10	-0.439	-0.765	C3-H21	1.088	1.075
H39-C20-H40	110.520	110.438	N44-N45-C3-H21	0.030	0.067	C3-C4	1.454	1.469
H39-C20-H41	110.520	110.434	N45-C3-C4-C5	-179.972	-179.969	C4-C5	1.405	1.383
H40-C20-H41	106.217	107.037	H21-C3-C4-C5	0.054	0.402	C5-H22	1.087	1.077
N43-N42-C2	112.381	111.825	C3-C4-C5-C6	-179.974	179.688	C5-C6	1.387	1.387
N42-C2-O47	129.494	129.222	C3-C4-C5-H22	0.008	0.349	C6-H23	1.082	1.072
O47-C2-N44	128.312	128.068	H22-C5-C6-H23	-0.003	0.361	C6-C7	1.416	1.390
C2-N44-N45	130.966	130.947	C6-C7-N46-C17	-0.378	-10.604	C7-N46	1.378	1.402
N44-N45-C3	118.751	120.052	C6-C7-N46-C18	-179.563	128.214	N46-C17	1.453	1.446
N45-C3-H21	121.811	122.241	C7-N46-C17-H33	60.567	72.105	C17-H33	1.098	1.092
N45-C3-C4	120.730	120.685	C7-N46-C17-H34	-60.651	-50.040	C17-H34	1.098	1.082
H21-C3-C4	117.458	117.074	C7-N39-C17-H35	179.906	-168.003	C17-H35	1.091	1.083
C3-C4-C5	119.212	119.074	C7-N39-C18-H36	-60.642	176.532	N46-C18	1.453	1.453
C3-C4-C9	123.242	122.943	C7-N39-C18-H37	60.696	44.657	C18-H36	1.098	1.092
C4-C5-H22	119.238	119.709	C7-N39-C18-H38	-179.924	163.446	C18-H37	1.098	1.079
C4-C5-C6	121.806	121.521	N46-C7-C8-H24	-0.058	-0.590	C18-H38	1.090	1.084
H22-C5-C6	118.956	118.767	N46-C7-C8-C9	179.953	-178.756	C7-C8	1.421	1.405
C5-C6-C7	120.717	120.587	C7-C8-C9-C4	0.022	0.625	C8-H24	1.083	1.074
C5-C6-H23	118.872	118.655	H24-C8-C9-H25	0.016	1.407	C8-C9	1.383	1.371

C6-C7-N46	121.385	122.793	H24-C8-C9-C4	-179.967	-177.547	C9-H25	1.085	1.074
C7-N46-C17	120.055	117.727	H25-C9-C4-C5	-179.982	-178.801	C9-C4	1.408	1.398
C7-N46-C18	120.287	117.065	C9-C4-C5-H22	179.976	179.953			
N46-C17-H33	111.811	113.429						
N46-C17-H34	111.905	110.291						
N46-C17-H35	109.237	108.622						
H33-C16-H34	107.929	108.664						
H33-C16-H35	107.884	107.841						
H34-C16-H35	107.920	107.821						
N46-C18-H36	111.870	112.132						
N46-C18-H37	111.950	111.253						
N46-C18-H38	109.181	109.139						
H36-C18-H37	107.965	108.090						
H36-C18-H38	107.838	108.321						
H37-C17-H38	107.876	107.769						
H24-C8-C9	118.762	119.214						
H25-C9-C4	118.838	119.340						
C9-C4-C5	117.546	117.982						

3.2. Titreşim Frekansları ve Spektrumları

Moleküllerin (1 ve 2) B3LYP/6-31(d,p), HF/6-31G(d,p) metodları kullanılarak titreşim frekansları hesaplanmıştır. Moleküllerin titreşim hareket serbestliğine (3N-6) karşılık gelen sayıda titreşim frekansları elde edilmiştir ve bu değerler 6-31G(d,p) temel setine uygun skala faktörü ile çarpılmış, seçilmiş titreşim frekansları ve deneysel frekanslarla [25] birlikte tablolara geçirilmiştir (Tablo III ve IV). Moleküllerin IR spektrumları Şekil III ve IV'de verilmiştir.

Tablo III. I Bileşiğinin teorik (6-31G(d,p) B3LYP ve 6-31G(d,p) HF) IK değerleri (cm ⁻¹)							
Socilmis Titrosim Frakansları	6-31G(d,p) B3LYP/HF v						
Seeming Thream Frekansian	Deneysel (cm ⁻¹)	Skalalı DFT	Skalah HF				
τ CCCN(33), τ NCCC(29), τ CCCC(11)	700	711	756				
τ CCCC(18), τ HCCC(20)	745	755	770				
τ HCCC(99)	825	829	860				
ν NC(24)	1600	1540	1597				
v NC(14), v CC(38)	1620	1614	1707				
v OC(74)	1710	1750	1771				
ν NH(100)	3200	3553	3554				

 Tablo III. 1 Bileşiğinin teorik (6-31G(d,p) B3LYP ve 6-31G(d,p) HF) IR değerleri (cm⁻¹)

*Titreşim modları: v, gerilme; δ , makaslama; τ , bükülme.

Tablo IV. 2 Bileşiğinin teorik (6-31G(d,p) B3LYP ve 6-31G(d,p) HF) IR değerleri (cm ⁻¹	1)
--	----

Continuin Titanaim Frankanalam	Deneysel (cm ⁻¹)	6-31G(d,p) B3LYP/HF v		
Seçiimiş Türeşim Frekansıarı	IR	Skalah DFT	Skalalı HF	
τ CCCC(46), τ HCCC(30)	700	701	723	
τ HCCC(56)	825	824	852	
v NC(14), v CC(31)	1600	1600	1631	
v OC(39)	1710	1728	1763	
v OC(46)	1770	1767	1828	

*Titreşim modları: ν, gerilme; δ, makaslama; τ, bükülme.

Şekil III. 1 Bileşiğinin teorik (a: 6-31G(d,p) B3LYP ve b: 6-31G(d,p) HF) IR spektrumları

Şekil IV. 2 Bileşiğinin teorik (a: 6-31G(d,p) B3LYP ve b: 6-31G(d,p) HF) IR spektrumları

3.3. ¹³C- ve ¹H- NMR Kimyasal Kayma Değerleri ve Regresyon Analizleri

1 ve **2** Bileşiklerinin ¹³C- ve ¹H- NMR kimyasal kayma değerleri, gaz fazında ve DMSO çözücüsünde B3LYP/6-31(d,p), HF/6-31G(d,p) metodları kullanılarak hesaplanmıştır (Tablo V ve VI). Moleküllerin (**1** ve **2**) R² değerleri hesaplanmış ve ¹³C- ve ¹H- NMR kimyasal kayma değerleri grafiklere geçirilmiştir (Şekil V ve VI).

Tablo V. 1 Bileşiğinin TMS'ye göre ¹³C- ve ¹H-NMR deneysel ve teorik (6-31G(d,p) B3LYP/B3LYP (DMSO) ve 6-31G(d,p) HF/HF (DMSO)) kimvasal kavma değerleri (δ/ppm)

No	Denevsel	B3LYP	B3LYP/	Fark	Fark/	HF	HF/	Fark	Fark/
	5		DMSO		DMSO		DMSO		DMSO
C1	145.69	150.48	150.74	-4.79	-5.05	145.67	146.59	0.02	-0.90
C2	152.46	152.84	153.58	-0.38	-1.12	146.42	147.13	6.04	5.33
C3	151.53	154.68	155.15	-3.15	-3.62	149.72	150.79	1.81	0.74
C4	119.90	127.95	125.75	-8.05	-5.85	120.35	119.02	-0.45	0.88
C5	129.44	137.37	137.48	-7.93	-8.04	132.50	133.29	-3.06	-3.85
C6	111.57	113.99	114.50	-2.42	-2.93	109.45	111.06	2.12	0.51
C7	158.59	151.18	152.80	7.41	5.79	153.46	154.73	5.13	3.86
C8	111.57	115.44	115.91	-3.87	-4.34	116.28	116.14	-4.71	-4.57
С9	129.44	129.64	128.85	-0.20	0.59	125.63	125.00	3.81	4.44
C10	144.24	132.74	131.91	11.50	12.33	123.71	122.53	20.53	21.71
C11	128.40	133.06	132.87	-4.66	-4.47	128.26	128.26	0.14	0.14
C12	127.60	130.22	131.12	-2.62	-3.52	122.24	123.13	5.36	4.47
C13	126.86	131.81	133.06	-4.95	-6.20	127.38	128.73	-0.52	-1.87
C14	127.60	130.79	131.52	-3.19	-3.92	123.27	123.83	4.33	3.77
C15	128.40	131.80	131.17	-3.40	-2.77	127.43	126.83	0.97	1.57
C16	39.55	48.48	48.26	-8.93	-8.71	33.76	33.42	5.79	6.13
C17	39.55	48.30	48.05	-8.75	-8.50	37.54	37.13	2.01	2.42
H18	12.31	8.17	8.70	4.14	3.61	7.44	7.93	4.87	4.38
H19	9.30	11.09	11.01	-1.79	-1.71	10.28	10.26	-0.98	-0.96
H20	7.93	8.10	8.18	-0.17	-0.25	8.01	8.23	-0.08	-0.30
H21	6.78	7.35	7.55	-0.57	-0.77	7.15	7.40	-0.79	-0.62
H22	6.78	7.43	7.63	-0.65	-0.85	7.57	7.73	-2.00	-0.95
H23	7.93	9.07	9.00	-1.14	-1.07	8.78	8.76	-0.61	-0.83
H24	7.64	9.28	9.33	-1.64	-1.69	8.54	8.66	-0.34	-1.02
H25	7.59	8.31	8.53	-0.72	-0.94	7.98	8.24	-0.52	-0.65
H26	7.53	8.29	8.54	-0.76	-1.01	8.11	8.40	-0.48	-0.87
H27	7.59	8.32	8.53	-0.73	-0.94	8.01	8.24	-1.05	-0.65
H28	7.64	9.01	9.00	-1.37	-1.36	8.64	8.67	-1.00	-1.03
H29	3.00	3.41	3.67	-0.41	-0.67	2.66	2.81	0.34	0.19
H30	3.00	3.94	3.96	-0.94	-0.96	2.70	2.82	0.30	0.18
H31	3.00	4.13	4.14	-1.13	-1.14	2.86	2.84	0.14	0.16
H32	3.00	3.41	3.67	-0.41	-0.67	2.56	2.65	0.44	0.35
H33	3.00	3.94	3.96	-0.94	-0.96	2.72	2.85	0.28	0.15
H34	3.00	4.16	4.17	-1.16	-1.17	3.36	3.43	-0.36	-0.43

Şekil V. 1 Bileşiğinin 6-31G(d,p) B3LYP/HF(Vakum, DMSO) yöntemleriyle deneysel ve teorik ¹³C- ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması ve R² değerleri

Tablo VI. 2 Bileşiğinin TM	IS'ye göre ¹³ C- ve ¹ H-NMR	deneysel ve teorik (6	-31G(d,p) B3LYP/B3	LYP (DMSO) ve 6-31G(d,p)
	HF/HF (DMSO))	kimvasal kavma değe	erleri (δ/ppm)	

No	Deneysel	B3LYP	B3LYP/ DMSO	Fark	Fark/	HF	HF/ DMSO	Fark	Fark/ DMSO
C1	146.04	154.42	156.68	-8.38	-10.64	160.08	163.71	-14.04	-17.67
C2	152.24	154.26	155.15	-2.02	-2.91	160.62	161.06	-8.38	-8.82
C3	151.36	154.95	154.05	-3.59	-2.69	161.84	163.19	-10.48	-11.83
C4	120.18	126.98	123.80	-6.80	-3.62	131.63	130.40	-11.45	-10.22
C5	129.13	137.78	137.48	-8.65	-8.35	145.76	146.82	-16.63	-17.69
C6	128.93	113.85	111.90	15.08	17.03	120.74	121.34	8.19	7.59
C7	154.87	151.22	155.75	3.65	-0.88	169.14	170.27	-14.27	-15.40
C8	128.93	115.26	113.67	13.67	15.26	128.78	128.68	0.15	0.25
С9	129.13	129.47	128.29	-0.34	0.84	138.37	138.02	-9.24	-8.89
C10	31.15	43.22	35.01	-12.07	-3.86	35.60	35.20	-4.45	-4.05
C11	135.86	136.94	139.09	-1.08	-3.23	143.04	143.95	-7.18	-8.09
C12	134.67	133.83	133.54	0.84	1.13	139.88	140.05	-5.21	-5.38
C13	111.52	131.15	131.55	-19.63	-20.03	137.80	138.12	-26.28	-26.60
C14	126.58	130.00	130.47	-3.42	-3.89	136.82	137.01	-10.24	-10.43
C15	111.52	131.03	131.42	-19.51	-19.90	137.83	138.13	-26.31	-26.61
C16	129.57	133.11	134.04	-3.54	-4.47	139.90	140.05	-10.33	-10.48
C17	39.35	48.68	39.93	-9.33	-0.58	40.89	40.67	-1.54	-1.32
C18	39.35	48.65	39.80	-9.30	-0.45	45.23	44.96	-5.88	-5.61
C19	166.10	164.29	168.01	1.81	-1.91	168.73	172.95	-2.63	-6.85
C20	23.47	33.06	24.80	-9.59	-1.33	29.01	29.34	-5.54	-5.87
H21	9.40	10.89	10.05	-1.49	-0.65	9.67	9.69	-0.27	-0.29
H22	7.60	8.08	7.75	-0.48	-0.15	7.54	7.78	0.06	-0.18
H23	6.76	7.33	6.95	-0.57	-0.19	6.56	6.79	0.20	-0.03
H24	6.76	7.45	7.08	-0.69	-0.32	7.12	7.29	-0.36	-0.53
H25	7.60	9.09	8.56	-1.49	-0.96	8.41	8.48	-0.81	-0.88
H26	4.01	4.67	4.50	-0.66	-0.49	3.67	3.90	0.34	0.11
H27	4.01	4.77	4.48	-0.76	-0.47	3.67	3.89	0.34	0.12
H28	7.33	8.24	7.85	-0.91	-0.52	7.38	7.61	-0.05	-0.28
H29	7.35	8.30	7.93	-0.95	-0.58	7.48	7.67	-0.13	-0.32
H30	7.31	8.23	7.90	-0.92	-0.59	7.44	7.62	-0.13	-0.31
H31	7.35	8.25	7.96	-0.90	-0.61	7.48	7.68	-0.13	-0.33
H32	7.33	8.14	7.88	-0.81	-0.55	7.39	7.61	-0.06	-0.28
H33	3.00	4.05	3.49	-1.05	-0.49	2.29	2.42	0.71	0.58
H34	3.00	3.45	3.42	-0.45	-0.42	3.35	2.50	-0.35	0.50
H35	3.00	4.04	3.49	-1.04	-0.49	2.49	2.46	0.51	0.54
H36	3.00	4.09	3.54	-1.09	-0.54	2.98	2.22	0.02	0.78
H37	3.00	3.46	3.52	-0.46	-0.52	2.37	2.50	0.63	0.50
H38	3.00	4.07	3.24	-1.07	-0.24	2.17	3.05	0.83	-0.05
H39	2.49	2.74	2.27	-0.25	0.22	1.77	1.80	0.72	0.69
H40	2.49	3.43	2.94	-0.94	-0.45	2.24	2.39	0.25	0.10
H41	2.49	3.41	2.92	-0.92	-0.43	2.23	2.38	0.26	0.11

Şekil VI. 2 Bileşiğinin 6-31G(d,p) B3LYP/HF(Vakum, DMSO) yöntemleriyle deneysel ve teorik ¹³C- ve ¹H-NMR kimyasal kayma değerlerinin karşılaştırılması ve R² değerleri

3.4. UV-Vis. Spektroskopisi, HOMO-LUMO Analizleri ve Elektronik Özellikleri

1 ve **2** Moleküllerinin etil alkol çözücüsündeki UV-Vis hesaplamaları B3LYP/6-31G(d,p) ve HF/6-31G(d,p) metodlarına göre yapılmış bulunan değerler deneysel veriler [25] ile birlikte tabloya geçirilmiştir (Şekil VII ve VIII). Ayrıca, B3LYP/6-31G(d,p) ve HF/6-31G(d,p) metodları ile hesaplanan en yüksek dolu moleküler orbital (E_{HOMO}) ve en düşük boş moleküler orbital enerjileri (E_{LUMO}) Şekil XI ve X'da verilmiştir. HOMO ve LUMO enerji değerleri arasındaki boşluk molekülün kimyasal kararlığını tanımlar [27]. ΔE Enerji değerinin küçük olması reaktantların etkileşimini ve reaksiyon kolaylığını tanımlar. HOMO ve LUMO enerjileri kullanılarak iyonizasyon potansiyeli (*I*), elektron ilgisi (*A*), elektronegatiflik (χ), kimyasal sertlik (η) ve kimyasal yumuşaklık (*S*) gibi elektronik özellikler [28], [29] B3LYP/6-31G(d,p) ve HF/6-31G(d,p) metodları ile incelenmiştir (Tablo VII ve VIII).

Şekil VII. 1 Bileşiğinin deneysel ve teorik (a: 6-31G(d,p) B3LYP ve b: 6-31G(d,p) HF) UV-vis spektrumları ve λ, eV, f değerleri

Uyarma Enerjisi (eV) B3LYP/HF	f (osilatör gücü) B3LYP/HF
3.5499/4.9760	1.0101/0.9622
3.9826/5.6753	0.0613/0.0059
4.4059/6.1283	0.0416/0.0142
	Uyarma Enerjisi (eV) B3LYP/HF 3.5499/4.9760 3.9826/5.6753 4.4059/6.1283

Şekil VIII. 2 Bileşiğinin deneysel ve teorik (**a**: 6-31G(d,p) B3LYP ve **b**: 6-31G(d,p) HF) UV-vis spektrumları ve λ, eV, f değerleri

Tablo VII. 1 Bileşiğinin elektronik yapı değerleri						
	DFT/6-31G(d,p)	HF/6-31G(d,p)				
E _{HOMO} (eV)	-0.18901	-0.28680				
E _{LUMO} (eV)	-0.04327	0.0979				
$\Delta E = E_{LUMO} - E_{HOMO}(eV)$	0.14574	0.3847				
I(eV)	0.18901	0.28680				
A(eV)	0.04327	-0.0979				
χ(eV)	0.11614	0.1889				
η(eV)	0.07287	0.19235				
S(eV ⁻¹)	6.8615	2.5994				

Tablo VIII. 2 Bileşiğinin elektronik yapı değerleri	
---	--

	DFT/6-31G(d,p)	HF/6-31G(d,p)
E _{HOMO} (eV)	-0.19521	-0.29274
E _{LUMO} (eV)	-0.04869	0.08836
$\Delta E = E_{LUMO} - E_{HOMO}(eV)$	0.14652	0.3811
I(eV)	0.19521	0.29274
A(eV)	0.04869	-0.08836
χ(eV)	0.12195	0.20438
η(eV)	0.07326	0.19055
S(eV ⁻¹)	6.8250	2.6240

E_{LUMO} B3LYP : -0.04327 Hartree

E_{LUMO} HF: 0.09790 Hartree

Şekil IX. 1 Bileşiğinin (6-31G(d,p) B3LYP ve 6-31G(d,p) HF) hesaplanan HOMO-LUMO enerjileri

E_{LUMO} B3LYP : -0.04869 Hartree

E_{LUMO} HF : 0.08836 Hartree

Şekil X. 2 Bileşiğinin (6-31G(d,p) B3LYP ve 6-31G(d,p) HF) hesaplanan HOMO-LUMO enerjileri

3.5. Mulliken Atomik Yükleri ve Termodinamik Özellikleri

Elektron yoğunluğundan farklı olarak atomik yükler kuantum mekaniksel olarak kesin bir şekilde hesaplanamaz. Bu durumda bu niceliği hesaplamak için geliştirilen bütün metodlar belli ölçülerde rastgelelik ihtiva eder [30]. Mulliken yük dağılımları hala bazı eksikler içermesine rağmen tercih edilen bir metottur. Mulliken yükleri deneysel sonuçları, nicel olarak tahmin etmekten ziyade nitel bir takım tahminler yapmak için kullanılır [31]. **1** ve **2** Bileşiklerindeki her bir atom için Mulliken atomik yükleri, B3LYP/6-31G(d,p) ve HF/6-31G(d,p) metodları kullanılarak hesaplanmıştır (Tablo XI ve X). Isı oluşumunda termokimyasal parametreler önem arz etmektedir. Kuantum hesaplamalar için ısı etkilerinin

incelenmesi önemlidir. Bu yüzden organik bileşiklerin reaksiyon mekanizmalarını incelerken termodinamik kuantum kimyasal veriler fazlasıyla kullanılmaktadır. Molekül 1 ve 2 için termodinamik parametreler Tablo XI ve X'de verilmiştir.

	Donomotivolor	Atomlan	Mulliken atomik yükleri (a.u.)	
	rarametreler	Atomar	DFT	HF
		C1	0.493	0.618
Termal Enerji, E (cal/mol K)	Dft/Hf	C2	0.818	1.051
Transnasyonal	0.000/0.000 0.889/0.889	C3	0.108	0.187
Rotasyonal	0.889/0.889	C4	0.086	-0.102
Vibrasyonal Toplam	256.297/273.002 258.075/274.780	C5	-0.146	-0.138
•		C6	-0.139	-0.205
		C7	0.356	0.314
Dipol Moment D (Debye)	Dft/Hf 4.660/5.231 -1.099/-1.135 -0.101/-0.163 4.788/5.355	C8	-0.135	-0.174
μ _x		С9	-0.119	-0.111
μ _y μ _z		C10	0.092	-0.044
μ _{Toplam}		C11	-0.091	-0.106
		C12	-0.102	-0.164
		C13	-0.077	-0.136
Sıfır Noktası Titreşim Enerjisi	Dft/Hf	C14	-0.096	-0.159
(kcal/mol)	242.153/259.991	C15	-0.097	-0.119
		C16	-0.169	-0.136
		C17	-0.169	-0.131
Elektronik ve Sıfır-Noktası Enerji	Dft/Hf	H18	0.287	0.339
i opiami (Hartree/Particle)	-1198.604/-1191.157	H19	0.152	0.223
		H20	0.091	0.164
		H21	0.082	0.158
Elektronik ve Termal Enerjiler	Dft/Hf	H22	0.082	0.158
(Hartree/Particle)	-1198.578/-1191.134	H23	0.100	0.186
		H24	0.114	0.170
		H25	0.087	0.154
Elektronik ve Termal Entalpiler	Dft/Hf -1198.577/-1191.133	H26	0.086	0.155
i opiami (Hartree/Particle)		H27	0.089	0.156
		H28	0.110	0.182
	Dft/Hf -1198.664/-1191.216	H29	0.111	0.100
Elektronik ve Termal Serbest Enerjiler		H30	0.120	0.127
(Hartree/Particle)		H31	0.126	0.135
		H32	0.112	0.105
		Н33	0.120	0.124
		H34	0.125	0.126
Determine Settler: (CHZ)	D&/116	N35	-0.427	-0.562
Kotasyon Sabitteri (GHZ) A	0.277/0.279	N36	-0.352	-0.350
B C	0.078/0.079	N37	-0.450	-0.647
	0.062/0.063	N38	-0.335	-0.336
		N39	-0.506	-0.662
		O40	-0.546	-0.659
Enerji (a.u.)	B3LYP:-1199.227		HF: -1191.572	

Tablo IX. 1 Bileşiğinin (6-31G(d,p) B3LYP ve 6-31G(d,p) HF) hesaplanan termodinamik parametreleri ve Mulliken atomik yükleri

	Doromotrolon	Atomlar	wunken atonik yukiei (a.u.)	
	rarametreler		DFT	HF
Termal Enerji, E (cal/mol K)	Dft/Hf	C1	0.548	0.625
Elektronik	0.000/0.000	C2	0.858	1.121
Transnasyonal	0.889/0.889	C3	0.113	0.191
Kotasyonal Vibrosyonal	0.889/0.889	C4	0.086	-0.102
Toplam	212.297/220.104	C5	-0.140	-0.137
- 0,000		C6	-0.139	-0.207
		C3	0.358	0.321
Dinol Moment D (Debve)	Dft/Hf		-0.134	-0.176
μ_x	1.834/2.360		-0.134	-0.176
μ _y	0.545/1.095	C9 C10	-0.115	-0.103
μ _z	0.112/0.131	C10 C11	-0.311	-0.274
μ _{Toplam}	1.917/2.605		0.129	0.002
		Cl2	-0.098	-0.137
		C13	-0.083	-0.143
		C14	-0.082	-0.148
6-6 N-14 Ti4i Fii	D&/116	C15	-0.083	-0.143
Sifir Noktası Titreşim Enerjisi (kcal/mol)	DII/HI 201 280/216 061	C16	-0.109	-0.137
(Kcal/mor)	201.280/210.001	C17	-0.170	-0.137
		C18	-0.170	-0.132
		C19	0.563	0.743
Elektronik ve Sıfır-Noktası Enerji		C20	-0.377	-0.408
Toplamı	Dft/Hf	H21	0.151	0.224
(Hartree/Particle)	-1006.7006/-1000.409	H22	0.092	0.164
		H23	0.084	0.159
		H24	0.084	0.160
Elektronik ve Termal Eneriiler		H25	0.103	0.179
Toplamı	Dft/Hf	H26	0.140	0.169
(Hartree/Particle)	-1006.680/-1000.390	H27	0.140	0.169
		1127	0.142	0.109
		1120	0.082	0.147
Elektronik vo Tormal Entalnilor		H29	0.086	0.150
Toplam	Dft/Hf	H30	0.085	0.150
(Hartree/Particle)	-1006.679/-1000.389	H31	0.085	0.150
		H32	0.080	0.147
		H33	0.113	0.102
		H34	0.124	0.128
Elektronik ve Termal Serbest		Н35	0.124	0.136
Energiler Toplami (Hartroo/Particla)	Dit/Hi 1006 752/ 1000 459	H36	0.113	0.108
(Hartree/Tarticle)	-1000.752/-1000.459	H37	0.125	0.126
		H38	0.124	0.127
		H39	0.134	0.158
		H40	0.150	.0.163
Rotasyon Sabitleri (GHZ)	Dft/Hf	H41	0.150	0.163
A	0.420/0.421	N42	-0.446	-0.687
В	0.121/0.125	N43	-0.314	-0.291
C	0.095/0.0047	N44	-0.435	-0.647
		N45	-0.340	-0 341
		N46	-0 509	-0.665
		047	-0.509	-0.005
		04/	-0.342	-0.031
Enorii (a.u.)	B3I VD- 1007 0212	048	-0.420	-0.514
Enerji (a.u.)	D3L11:100/.0213	H	1F:-1000.7537	

 Tablo X. 2 Bileşiğinin (6-31G(d,p) B3LYP ve 6-31G(d,p) HF) hesaplanan termodinamik parametreleri ve Mulliken atomik yükleri

 Mulliken atomik vükler (a u)

4. Tartışma ve Sonuç:

4.1. Moleküler Geometrisi

3-Fenil-4-(4-dimetilaminobenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (**1**) ve 1-asetil-3benzil-4-(4-dimetilaminobenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (**2**) molekülleri B3LYP/6-31G(d,p) ve HF/6-31G(d,p) metodlarına göre optimize edilmiştir. **1** ve **2** Bileşikleri için B3LYP/631G(d,p) ve HF/6-31G(d,p) metodlarına göre hesaplanmış N36=C1, N38=C3 ve N43=C1, N45=C3 çift bağ uzunlukları; 1.308/1.273, 1.293/1.220 ve 1.295/1.264, 1.293/1.262 A⁰; N37-C1, N37-C2, N35-C2, N39-C7, N39-C16, N39-C17 ve N44-C1, N44-C2, N42-C2, N46-C7, N46-C17, N46-C18 tek bağ uzunlukları; 1.395/1.383, 1.417/1.387, 1.370/1.346, 1.381/1.404, 1.453/1.445, 1.453/1.453 ve 1.390/1.382, 1.402/1.374, 1.401/1.374, 1.378/1.402, 1.453/1.446, 1.453/1.453 A⁰ ve C2=O40 ve C2=O47, C19=O48 bağ uzunlukları; 1.242/1.202 ve 1.222/1.200, 1.208/1.184 A⁰ olarak hesaplanmıştır. 1 Bileşiğindeki C2-NH bağının B3LYP ve HF yöntemlerine göre hesaplanan bağ uzunlukları incelendiğinde C(2)-NH bağ uzunluklarının DFT/6-31G(d,p)'ye göre 1.370 A⁰, HF/6-31G(d,p)'ye göre 1.346 A⁰olduğu görülmüştür (Tablo I). Hesaplanan bu değerlerin literatürde verilen C-N tek bağ uzunluğu (1.47 A⁰) ile C=N çift bağ uzunluğu (1.32 A⁰) arasında olduğu görülmektedir [32], ki teorik hesaplamalar sonucu 1 bileşiğindeki C2-NH bağının kısmi çifte bağ özelliği gösterdiği belirlenmiştir ve bu durum aşağıdaki rezonans formülleri ile açıklanabilir (Denklem 1). 2 Bileşiğinde B3LYP ve HF yöntemleri ile hesaplanan bağ uzunlukları incelendiğinde triazol-50n grubundaki karbonil karbonuna komşu azotlardaki bağ uzunluklarında önemli bir farklılık görülmemiştir. Yani C(2)-NH bağ uzunluklarında dikkate değer ölçüde bir kısalık görülmemiştir. Bunun muhtemel nedeni ise, asetil gurubu ile rezonans olarak acıklanabilir.

1 Bileşiği için N38-C3-C4-C5 dihedral açı değeri; -176.927/-177.383 ve **2** bileşiği için N45-C3-C4-C5 dihedral açı değeri; -179.972/-179.969 A^0 olarak bulunmuştur. Ayrıca **1** ve **2** bileşiği için bazı bağ açı değerleri; C7-N39-C16, C7-N39-C17 ve C7-N46-C17, C7-N46-C18; 119.857/117.618, 120.027/116.733 ve 120.055/117.727, 120.287/117.065 A^0 bulunmuştur

4.2. Titreşim Frekansları

3-Fenil-4-(4-dimetilaminobenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (**1**) ve 1-asetil-3benzil-4-(4-dimetilaminobenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (**2**) molekülleri 40 ve 48 atoma sahiptir ve (3N-6) titreşim hareket serbestliğine karşılık gelen 114 ve 138 titreşim frekansı elde edilmiştir. 3-Fenil-4-(4-dimetilaminobenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (**1**) molekülünün deneysel N-H gerilme bandı 3200 cm⁻¹'de [25], DFT/HF metodlarına göre v(N-H) gerilme bandı 3553/3554 cm⁻¹'de, deneysel C=O gerilme bandı 1710 cm⁻¹'de [25], DFT/HF metodlarına göre v(C=O) gerilme bandı 1750/1771 cm⁻¹ ve deneysel C=N gerilme bandı 1620-1600 cm⁻¹'de [25], DFT/HF metodlarına göre v(N=C) gerilme bandı 1614/1707 cm⁻¹'de görülmüştür. 1-Asetil-3-benzil-4-(4dimetilaminobenzilidenamino)-4,5-dihidro-1*H*-1,2,4-triazol-5-on (**2**) molekülü için deneysel C=O gerilme bantları 1770-1710 cm⁻¹'de [25], DFT/HF metodlarına göre v(C=O) gerilme bantları 1728/1763 ve 1767/1828 cm⁻¹'de olmak üzere iki tane bant gözlenmiştir ve deneysel C=N gerilme bandı 1600 cm⁻¹' de [25], DFT/HF metodlarına göre v(N=C) gerilme bandı ise 1600/1631 cm⁻¹'de gözlemlenmiştir.

4.3. ¹³C- ve ¹H-NMR Kimyasal Kayma Değerleri ve Regresyon Analizleri

1 Bileşiği için B3LYP/6-31G(d,p) ve HF/6-31G(d,p) metodlarına göre R² değerleri gaz ortamında ve DMSO çözücüsünde değerlendirildiğinde; ¹³C: 0.9800 (vakum), ¹³C: 0.9800 (DMSO) ve ¹H: 0.7835 (vakum), ¹H: 0.8229 (DMSO) şeklinde bir ilişki olduğu görülmüştür. Teorik ve deneysel karbon ve proton kimyasal kayma oranları R² değerine göre doğrusal bir korelasyon gözlenmiştir. N-H protonları hariç **1** bileşiği için hesaplanan ve deneysel olarak elde edilen değerler [25] arasında bir uyum görülmüştür. Buna karşın, N-H protonları için hesaplanan değerler ile deneysel değerler [25] arasında beklenenden daha yüksek bir fark ortaya çıkmıştır. Bunun nedeni olarak da 4,5-dihidro-1*H*-1,2,4-triazol-5-on halkasındaki N-H protonunun asidik özellik taşıması gösterilebilir. Şöyle ki denklem 1'den de görüleceği üzere proton ayrıldıktan sonra N atomu üzerinde kalan elektron çifti karbonil gurubu ile rezonans sonucu delokalize olmuştur. Bu da oluşan anyonun kararlılığını artırır, dolayısıyla N-H protonunu asidik yapar. **2** Bileşiği için 6-31G(d,p) B3LYP/HF metotlarına göre R² değerleri gaz ortamında ve DMSO içerisinde çözücüsünde değerlendirildiğinde; ¹³C: 0.9617 (vakum), ¹³C: 0.9618 (DMSO) ve ¹H: 0.9852 (vakum), ¹H: 0.9922 (DMSO) şeklinde bir ilişki olduğu görülmüştür. **2** Bileşiğinde asidik N-H protonlarının olmaması nedeniyle teorik değerler ile deneysel değerler [25] arasında iyi bir uyum gözlemlenmiştir.

4.4. UV-Vis. Spektroskopisi

Moleküllerin (1 ve 2) etil alkol içerisindeki deneysel dalga boyları [25]; 350, 221 nm ve 351, 209 nm'de gözlemlenmiştir. 1 ve 2 Bileşikleri için B3LYP/6-31G(d,p) ve HF/6-31G(d,p) metodlarına göre etil alkol çözücüsündeki uyarma enerjileri (eV), osilatör güçleri (*f*) ve dalga boyları (λ) hesaplanmıştır. 1 Bileşiği için hesaplanan dalga boyları (λ); 356.57/247.58, 313.46/218.06, 296.02/214.13 (nm) ve 2 bileşiği için hesaplanan dalga boyları ise (λ); 349.27/249.16, 311.32/218.46, 281.41/202.31 (nm) olarak bulunmuştur.

4.5. Mulliken Atomik Yükleri

1 ve **2** Bileşikleri için gaz fazında B3LYP/6-31G(d,p) ve HF/6-31G(d,p) metodları kullanılarak Mulliken atomik yükleri [31] hesaplanmıştır. **1** ve **2** Bileşiklerinde elektronegatif olan atomların; N35, N36, N37, N38, N39, O40 ve N42, N43, N44, N45, N46, O47, O48 negatif yük değerlerine sahip oldukları gözlenmiştir. Bu atomların yük değerleri; -0.427/-0.562, -0.352/-0.350, -0.450/-0.647, -0.335/-0.336, -0.506/-0.602, -0.546/-0.659 (a.u.) ve -0.446/-0.687, -0.314/-0.291, -0.435/-0.647, -0.340/-0.341, -0.509/-0.665, -0.542/-0.651, -0.426/-0.514 (a.u.) olarak hesaplanmıştır. **1** ve **2** Bileşiklerinde elektronegatif atomlarla çevrelenen C1, C2, C3, C7 ve C19 atomlarını; 0.493/0.618 ve 0.548/0.625 (C1), 0.818/1.051 ve 0.858/1.121 (C2), 0.108/0.187 ve 0.113/0.191 (C3), 0.356/0.314 ve 0.358/0.321 (C7) ve 0.563/0.743 (C19) (a.u.) pozitif yüklere sahip oldukları görülmüştür. C1 atomu 2 (iki) elektronegatif atom (N,N), C2 atomu 3 (üç) elektronegatif atom (N,NO), C3 ve C7 atomları 1 (bir) elektronegatif atom tarafından çevrelenen C2 atomunun en yüksek atomik yüke sahip olduğu görülmüştür.

5. Kaynaklar

[1] H. Eydemir, "Biyolojik aktif bazı maddelerin teorik olarak İncelenmesi," Osmangazi Üniversitesi, *Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi*, 2010

- [2] G. Turan-Zitouni, Z. A. Kaplancıklı, M. T. Yıldız, P. Chevallet, and D. Kaya, "Synthesis and antimicrobial activity of 4-phenyl/cyclohexyl-5-(1-phenoxyethyl)-3-[N-(2thiazolyl)acetamido]thio-4H-1,2,4-triazole derivatives," *European Journal of Medicinal Chemistry*, 40, 607–613, 2005
- [3] H. Bayrak, A. Demirbas, N. Demirbas, and S. A. Karaoglu, "Cyclization of some carbothioamide derivatives containing antipyrine and triazole moieties and investigation of their antimicrobial activities," *European Journal of Medicinal Chemistry*, 45, 4726–4732, 2010
- K. Sancak, Y. Unver, C. Kazak, E. Dugdu, and B. Arslan, "Synthesis and characterisations of some new 2,4-dihydro-[1,2,4]-triazol-3-one derivatives and X-ray crystal structures of 4-(3-phenylallylidenamino)-5-thiophen-2-ylmethyl-2,4-dihydro-1,2,4-triazol-3-one," *Turkish Journal of Chemistry*, 34, 771–780, 2010
- [5] M. Ikizler, A. A., Ikizler, A. Yüksek, H., Serdar, "Antitumor activities of some 4,5-dihydro-1H-1,2,4-triazol-5-ones," *Modelling, Measurement and Control C, AMSE press*, 57, 25–33, 1998
- [6] N. U. Güzeldemirci and Ö. Küçükbasmaci, "Synthesis and antimicrobial activity evaluation of new 1,2,4-triazoles and 1,3,4-thiadiazoles bearing imidazo[2,1-b]thiazole moiety," *European Journal of Medicinal Chemistry*, 45, 63–68, 2010
- [7] A. I. Hashem, A. S. A. Youssef, K. A. Kandeel, and W. S. I. Abou-Elmagd, "Conversion of some 2(3H)-furanones bearing a pyrazolyl group into other heterocyclic systems with a study of their antiviral activity," *European Journal of Medicinal Chemistry*, 42, 934–939, 2007
- [8] H. Bektaş, A. Demirbaş, D. Neslihan, H. Bayrak, and S. A. Karaoğlu, "Synthesis and antimicrobial activities of some new biheterocyclic compounds containing 1, 2, 4-triazol-3-one and 1, 3, 4-thiadiazole moieties," *Turkish Journal of Chemistry*, 34, 517–527, 2010
- [9] S. P. Aytaç, B. Tozkoparan, F. B. Kaynak, G. Aktay, Ö. Göktaş, and S. Ünüvar, "Synthesis of 3,6-disubstituted 7H-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines as novel analgesic/antiinflammatory compounds," *European Journal of Medicinal Chemistry*, 44, 4528–4538, 2009
- [10] M. Tozkoparan, B., Kupeli, E., Yesilada, E., Ertan, "Preparation of 5-aryl-3-alkylthio-1,2,4triazoles and corresponding sulfones with anti-inflammatory-analgesic activity," *Bioorganic & Medicinal Chemistry*, 15 (4), 1808–1814, 2007
- [11] M. Alkan, H. Yüksek, F. Islamoğlu, Ş. Bahçeci, M. Calapoğlu, M. Elmastaş, H. Akşit, and M. Özdemir, "A study on 4-acylamino-4,5-dihydro-1H-1,2,4-triazol-5-ones," *Molecules*, 12, 1805– 1816, 2007
- [12] M. Shalini, P. Yogeeswari, D. Sriram, and J. P. Stables, "Cyclization of the semicarbazone template of aryl semicarbazones: synthesis and anticonvulsant activity of 4,5-diphenyl-2H-1,2,4triazol-3(4H)-one," *Biomedicine & Pharmacotherapy*, 63, 187–193, 2009
- [13] V. Klimešová, L. Zahajská, K. Waisser, J. Kaustová, and U. Möllmann, "Synthesis and antimycobacterial activity of 1,2,4-triazole 3-benzylsulfanyl derivatives," *Farmaco*, 59, 279– 288, 2004
- [14] S. Güniz Küçükgüzel, S. Rollas, H. Erdeniz, M. Kiraz, a Cevdet Ekinci, and a Vidin, "Synthesis, characterization and pharmacological properties of some 4-arylhydrazono-2pyrazoline-5-one derivatives obtained from heterocyclic amines.," *European Journal of Medicinal Chemistry*, 35, 761–771, 2000
- [15] Z. H. Chohan, S. H. Sumrra, M. H. Youssoufi, and T. B. Hadda, "Metal based biologically active compounds: Design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-

derived Schiff bases and their oxovanadium(IV) complexes," *European Journal of Medicinal Chemistry*, 45, 2739–2747, 2010

- [16] H. Yüksek, O. Gürsoy, I. Cakmak, and M. Alkan, "Synthesis and GIAO NMR calculations for some new 4,5-dihydro-1H-1,2,4-triazol-5-one derivatives: comparison of theoretical and experimental ¹H and ¹³C chemical shifts.," *Magnetic Resonance in Chemistry*, 43, 585–587, 2005
- [17] H. Yüksek, H., Çakmak, İ., Sadi, S., Alkan, M., Baykara, "Synthesis and GIAO NMR Calculations for Some Novel 4-Heteroarylidenamino-4.5-dihydro-1H-1.2.4-triazol-5-one Derivatives: Comparison of Theoretical and Experimental ¹H and ¹³C Chemical Shifts," *International Journal of Molecular Sciences*, 6, 219–229, 2005
- [18] H. Gökce, S. Bahçeli, O. Akyildirim, H. Yüksek, and Ö. G. Kol, "The Syntheses, Molecular Structures, Spectroscopic Properties (IR, Micro– Raman, NMR and UV–vis) and DFT Calculations of Antioxidant 3– alkyl–4–[3–methoxy–4–(4–methylbenzoxy)benzylidenamino]– 4,5–dihydro– 1H–1,2,4–triazol–5–one Molecules.," *Letters in Organic Chemistry*, 10, 395–441, 2013
- [19] H. Gökce, O. Akyildirim, S. Bahçeli, H. Yüksek, and Ö. G. Kol, "The 1-acetyl-3-methyl-4-[3-methoxy-4-(4-methylbenzoxy)benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-one molecule investigated by a joint spectroscopic and quantum chemical calculations," *Journal of Molecular Structure*, DOI: http://dx.doi.org/10.1016/j.molstruc.2013.10.044, 1056-1057: 273-284, 2014
- [20] G. M. J. Frisch, W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, and J. L. Sonnenberg, "Gaussian 09, Revision C.01," *Inc.: Wallingford, CT.*, 2009
- [21] J. B. Foresman and Æ. Frisch, "Exploring Chemistry with electronic structure methods (2nd ed.)," *Pittsburgh, PA: Gaussian Inc.*, 266, 278–283, 1996
- [22] A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior," *Physical Review A*, 38, 3098–3100, 1988
- [23] C. Lee, W. Yang, and R. Parr, "Development of the Colle- Salvetti correlation energy formula into a functional of the electron density," *Physical Review B*, 37, 785–789, 1988
- [24] K. Wolinski, J. F. Hinton, and P. Pulay, "Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations," *Journal of the American Chemical Society*, 112, 8251, 1990
- [25] Ş. Bahçeci, H. Yüksek, Z. Ocak, I. Azakli, M. Alkan, and M. Özdemir, "Synthesis and Potentiometric Titrations of Some New 4-(Benzylideneamino)-4,5-dihydro-1H-1,2,4-triazol-5one Derivatives in Non-Aqueous Media," *Collection of Czechoslovak Chemical Communications*, 67, 1215–1222
- [26] M. H. Jamr'oz, "Vibrational Energy Distribition Analysis VEDA4," 2004
- [27] K. Fukui, "Role of Frontier Orbitals in Chemical Reactions," Science, 218, 747–754, 1982
- [28] R. G. Pearson, "Absolute electronegativity and hardness: applications to organic chemistry," *Journal Organic Chemistry*, 54, 1423–1430, 1989

- [29] R. G. Pearson, "Absolute electronegativity and hardness correlated with molecular orbital theory.," *Proceedings of the National Academy of Sciences of the United States of America*, 83, 8440–8441, 1986
- [30] L.A. Woodward, "Introduction to the Theory and Molecular Vibration Spectroscopy", Oxford University Press, New York, 1-55, 1972
- [31] P. Hohenberg and W. Kohn, "The Inhomogeneous Electron Gas," *Physical Review B*, 136, 864-871, 1964
- [32] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor, "Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds," *Journal of the Chemical Society, Perkin Trans. II*, 12, S1-S19, 1987