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Abstract. The modi�ed equal width wave (MEW) equation is solved numeri-
cally by giving two di¤erent linearization techniques based on collocation �nite
element method in which cubic B-splines are used as approximate functions. To
support our work three test problems; namely, the motion of a single solitary
wave, interaction of two solitary waves and the birth of solitons are studied.
Results are compared with other published numerical solutions available in the
literature. Accuracy of the proposed method is discussed by computing the nu-
merical conserved laws L2 and L1 error norms. A linear stability analysis of the
approximation obtained by the scheme shows that the method is unconditionally
stable.

Key words: Finite element method; Collocation; MEW equation; B-Spline;
Solitary waves.
2000 Mathematics Subject Classi�cation: 97N40, 65N30, 65D07, 76B25, 74S05,
74J35.

1. Introduction

This paper is concerned with applying the cubic B-spline function to develop a
numerical method for approximating the analytic solution of the MEW equation
which was introduced by Morrison et al.[9] as a model for nonlinear dispersive
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waves. This equation has been solved analytically for a limited set of boundary
and initial conditions. So the numerical solutions of the MEW equation have
been the subject of many studies [1-7,11-19]. In this paper, we have used two
di¤erent linearization techniques to obtain the numerical solution of the MEW
equation. The performance of the method has been tested on three numerical
wave propagation experiments: the motion of a single solitary wave, the inter-
action of two solitary waves and birth of solitons. The stability analysis of the
the approximation obtained by the method is also investigated.

2. The Governing Equation and Collocation Solutions

MEW equation takes the form of

(1) Ut + 3U
2Ux � �Uxxt = 0; a � x � b

with the physical boundary conditions U ! 0 as x ! �1; where t is time , x
is the space coordinate and � is a positive parameter. Appropriate boundary
conditions will be chosen as

(2)
U(a; t) = 0; U(b; t) = 0;
Ux(a; t) = 0; Ux(b; t) = 0:

Let us consider the interval [a; b] is partitioned into N �nite elements of uni-
formly equal length by the knots xi, i = 0; 1; 2; :::; N such that
a = x0 < x1 � � � < xN = b and h = (xi+1 � xi). The cubic B-splines �i(x)
, (i= -1(1) N+1), at the knots xi are de�ned over the interval [a; b] by [8]

(3)

�i(x) =
1
h3

8>>>><>>>>:
(x� xi�2)3; x 2 [xi�2; xi�1];
h3+3h2(x� xi�1) + 3h(x� xi�1)

2�3(x� xi�1)
3
; x 2 [xi�1; xi];

h3+3h2(xi+1�x) + 3h(xi+1�x)
2�3(xi+1�x)

3
; x 2 [xi; xi+1];

(xi+2 � x)3; x 2 [xi+1; xi+2];
0 otherwise:

The set of splines
�
��1(x); �0(x); : : : ; �N+1(x)

	
forms a basis for the functions

de�ned over [a,b]. Therefore, an approximation solution UN (x; t) can be written
in terms of the cubic B- splines as trial functions:

(4) UN (x; t) =
N+1X
i=�1

�i(x)�i(t)

where �i�s are unknown, time dependent quantities to be determined from the
boundary and cubic B-spline collocation conditions. Each cubic B-spline covers
four elements so that each element [xi; xi+1] is covered by four cubic B-splines.
For this problem, the �nite elements are identi�ed with the interval [xi; xi+1]
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and the elements knots xi; xi+1. Using the nodal values Ui; U
0

i and U
00

i are given
in terms of the parameter �i by:

(5)
Ui = U(xi) = �i�1 + 4�i + �i+1;
U 0i = U

0(xi) =
3
h (��i�1 + �i+1);

U 00i = U
00(xi) =

6
h2 (�i�1 � 2�i + �i+1)

and the variation of UN (x; t) over the typical element [xi; xi+1] is given by

(6) UN (x; t)=
i+2X
j=i�1

�j(t)�j(x) :

If we substitute the global approximation (4) and its necessary derivatives (5)
into Eq. (1), we obtain the following set of the �rst order ordinary di¤erantial
equations:

(7) _�i�1 + 4_�i + _�i+1 +
9Zi
2h
(��i�1 + �i+1)� 6

�

h2
( _�i�1 � 2_�i + _�i+1) = 0

where
Zi = (�i�1 + 4�i + �i+1)

2

and : denotes derivative with respect to time. If time parameters �i�s and its
time derivatives _�i�s in Eq. (7) are discretized by the Crank-Nicolson formula
and usual �nite di¤erence aproximation, respectively:

(8) �i =
1

2
(�n + �n+1); _�i =

�n+1 � �n
�t

we obtain a recurrence relationship between two time levels n and n+1 relating
two unknown parameters �n+1i ; �ni for i = m� 1;m;m+ 1;

(9) m1�
n+1
m�1 + m2�

n+1
m + m3�

n+1
m+1 = m3�

n
m�1 + m2�

n
m + m1�

n
m+1

where

(10)
m1 = (1� EZm � �); m2 = (4 + 2M); m3 = (1 + EZm �M)
m = 0; 1; : : : ; N; E = 9

2h
�t; M = 6

h2
�:

For the �rst linearization (First Lin.), we suppose that the quantity U in the
non-linear term U2Ux to be locally constant. This is equivalent to assuming
that in Eq. (7) all U�s are equal to a local constant Zi:
For the second linearization (Second Lin.), using �rst order di¤erence formula

for the time derivative of the U and Crank-Nicolson approximation for the space
derivatives Ux and Uxx in Eq. (1) lead to

(11)
Un+1 � Un

�t
+ 3

(U2Ux)
n+1 + (U2Ux)

n

2
� �U

n+1
xx � Unxx
�t

= 0:
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Now, if we apply Rubin and Graves [17] linearization technique to Eq. (11)

(U2Ux)
n+1 = Un+1UnUnx + U

nUn+1Unx + U
nUnUn+1x � 2UUnUnx

we obtain

(12)
Un+1 + 3�t2 (U

n+1UnUnx + U
nUn+1Unx + U

nUnUn+1x )� �Un+1xx

= Un � 3�t2 (U
2Ux)

n � �Unxx + 6�t2 (U
nUnUnx ):

The system (9) consists of N +1 linear equations including N +3 unknown pa-
rameters (��1; : : : ; �N+1)T . To obtain a unique solution to this system, we need
two additional constraints. These are obtained from the boundary conditions
and can be used to eliminate ��1 and �N+1 from the system (9) which then
becomes a matrix equation for the N +1 unknowns d = (�0; �1; : : : ; �N )T of the
form

(13) Adn+1 = Bdn:

The matrices A and B are tridiagonal (N + 1) � (N + 1) matrices and so are
easily solved . However, two or three inner iterations are applied to the term
�n� = �n+ 1

2 (�
n� �n�1) at each time step to cope with the non-linearity caused

by Zi.

2.1. Initial state

The initial vector d0 is determined from the initial and boundary conditions.
So the approximation (4) must be rewritten for the initial condition

(14) UN (x; 0)=
N+1X
i=�1

�0i (t)�i(x)

where the �0i�s are unknown parameters. We require the initial numerical ap-
proximation UN (x; 0) satisfy the following conditions:

(15)
UN (x; 0) = U(xi; 0); i = 0; 1; :::; N

(UN )x(a; 0) = 0; (UN )x(b; 0) = 0:

Thus, these conditions lead to matrix equation

(16) Wd0 = b

where

W =

266666664

4 2
1 4 1

1 4 1

. . .
1 4 1

2 4

377777775
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d0 = (�0; �1; �2; : : : ; �N�2; �N�1; �N )
T

and

b = (U(x0; 0); U(x1; 0); U(x2; 0); : : : ; U(xN�2; 0); U(xN�1; 0); U(xN ; 0))
T :

2.2. Stability analysis

The investigation of the stability of the approximation obtained by the algorithm
will be based on the von Neumann theory in which the growth factor of a typical
Fourier mode is de�ned as:

(17) �nj = �̂
n
eijkh;

where k is the mode number and h is the element size. Thus the stability analysis
is determined for the linearisation of the approximation obtained by the numer-
ical scheme. Substituting the Fourier mode (17) into the linearised recurrence
relationship (9) shows that the growth factor for mod k is

(18) g =
a� ib
a+ ib

where

(19)
a = 2 +M + (1�M) cos[hk];
b = EZi sin[hk]:

The modulus of jgj is 1, therefore the linearised scheme is unconditionally stable.

3. Numerical Examples and Results

Numerical results of the equation for the three test problems were obtained and
all computations were executed on a pentium PC4 in the Fortran code using
double precision arithmetic. The MEW Eq. (1) possesses only three following
conservation laws:

(20)
I1 =

R b
a
Udx ' h

PN
J=1 U

n
j ;

I2 =
R b
a
U2 + �(Ux)

2
dx ' h

PN
J=1(U

n
j )
2 + � (Ux)

n
j;

I3 =
R b
a
U4dx ' h

PN
J=1(U

n
j )
4:

which correspond to mass, momentum and energy respectively [10]. The accu-
racy of the method is measured by both the error norm L2

47



(21) L2 =
Uexact � UN2 '

vuuth NX
J=0

���Uexactj � (UN )j
���2;

and the error norm L1

(22) L1 =
Uexact � UN1 ' max

j

���Uexactj � (UN )j
��� :

To implement the method, three test problems: motion of a single solitary
wave, interaction of two solitary waves and the maxwellian initial condition will
be considered.

4. Motion of a Single Solitary Wave

The solitary wave solution of the MEW Eq.(1) is given by

U(x; t) = A sech(k[x� x0 � vt])

where k =
p
1=�, v = A2=2. This solution corresponds to motion of a single

solitary wave of magnitude A; initially centered at the position x0 and propa-
gating to the right side with a constant velocity v. The initial condition is

U(x; 0) = A sech(k[x� x0]):

For this problem the analytical values of the invariants are [14]

(23) I1 =
A�

k
; I2 =

2A2

k
+
2�kA2

3
; I3 =

4A4

3k
:

The analytical values of the invariants are obtained from Eq. (1) as I1 =
0:7853982 , I2 = 0:1666667 , I3 = 0:0052083. To compare our results with the
earlier papers, parameters are taken as �t = 0:05; � = 1; x0 = 30; A = 0:25
and the interval 0 � x � 80 is divided into elements of equal lenght h = 0:1. The
simulation is run up to time t = 20, and the three invariants I1; I2 and I3 and
error norms L2, L1 are listed for the duration of the simulation. In Table 1, we
compare the values of the invariants and error norms obtained using the present
method with di¤erent approximations and those of [2, 5, 7] at di¤erent times.
As seen from the table, the error norms L2 and L1 are found to be small enough
and the quantities in the variants remain almost constant during the computer
run. While for the �rst linearization, invariants I1; I2 and I3 change by less than
0:03 � 10�5%, 5:48 � 10�5%, 0:33 � 10�5% for the second linearization they
change less than 0:02� 10�5%, 5:50� 10�5%, 0:30� 10�5% throught the run,
respectively. Thus it is seen that the invariants remain satisfactorily constant.
Figure 1 shows that the proposed method performs the motion of propagation

48



of a solitary wave satisfactorily, which moves to the right at a constant speed
and preserves its amplitude and shape with increasing time as expected. The
amplitude is 0:25 at t = 0 and located at x = 30:6, while it is 0:249880 at t = 20
and located at x = 30:6. The absolute di¤erence in amplitudes at times t = 0
and t = 20 is 12�10�5 so that there is a little change between amplitudes. The
error graph at t = 20 is given in Figure 2. As it is seen, the maximum errors
occur around the central position of the solitary wave.
This problem is also considered for di¤erent values of the amplitude at h = 0:1
and t = 0:01. In Table 2, the error norms and the invariants are listed for
A = 0:25; 0:5; 0:75; 1: A comparison with Ref. [2] shows that the present method
provides better results in terms of the error norms L2 and L1. Figure 3 shows
the solutions of the single solitary wave with h = 0:1;�t = 0:01 for di¤erent
values of amplitude A at time t = 20: It is clear that the soliton moves to the
right at a constant speed and almost preserves its amplitude and shape with
increasing of time, as expected.

5. Interaction of Two Solitary Waves

Now we consider Eq. (1) together with boundary conditions U ! 0 as x! �1
and the initial condition for all linearization techniques as

U(x; 0) =
2X
j=1

Aj sech(k[x� xj ])

where k =
p
1=�.

Firstly, we have studied the interaction of two positive solitary waves with the
parameters h = 0:1; �t = 0:025; � = 1; A1 = 1; A2 = 0:5 ; x1 = 15; x2 = 30
through the interval 0 � x � 80: The analytical values can be found as follows
[5]:

(24)
I1 = �(A1 +A2) = 4:7123889;
I2 =

8
3 (A

2
1 +A

2
2) = 3:3333333;

I3 =
4
3 (A

4
1 +A

4
2) = 1:4166667:

The experiment was run from time t = 0 to time t = 80 to allow the interaction
take place. In Figure 4, we show the interaction of two positive solitary waves
at di¤erent times. It can be seen that at time t = 5 the wave with larger
amplitude is to the left of the second wave with smaller amplitude. The larger
wave catches up the smaller one as time increases. Interaction starts at about
time t = 25, overlapping processes occurres between times t = 25 and t = 40
and the waves start to resume their original shapes after time t = 40. An
oscillation of small amplitude trailing behind the solitary waves in Fig. 4(f) was
observed. In order to see this oscillation the scale of Fig. 4(f) was magni�ed
as shown in Fig 5. At time t = 80; for the �rst linearization the amplitude
of the larger wave is 0:999694 at the point x = 44:4 whereas the amplitude of
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the smaller one is 0:510405 at the point x = 34:7. For the second linearization,
the amplitude of the larger wave is 0:999716 at the point x = 56:9 whereas the
amplitude of the smaller one is 0:498438 at the point x = 37:7. Table 3 compares
the values of the invariants of the two solitary waves with the obtained results
from the �rst and the second linearization. The absolute di¤erence between
the values of the invariants obtained by the �rst linearization at times t = 0
and t = 80 are �I1 = 1:2 � 10�6; �I2 = 4 � 10�7;�I3 = 0 whereas they are
�I1 = 1:1�10�6;�I2 = 7:8�10�6;�I3 = 8�10�66 for the second linearization.
Secondly, for the solitary of amplitudes �2 and 1 to interact, we have chosen
the region as 0 � x � 150 while keeping all other parameters the same as
given before. The experiment was run from time t = 0 to time t = 55 to
allow the interaction take place. Figure 6 shows the development of the solitary
wave interaction. As it is seen from the Figure 6, at t = 0 a wave with the
negative amplitude is to the left of another wave with the positive amplitude.
The larger wave with the negative amplitude catches up the smaller one with
the positive amplitude as time increases. At t = 55, for the �rst linearization
the amplitude of the smaller wave is 0:974353 at the point x = 52:5, whereas
the amplitude of the larger one is �1:986150 at the point x = 122:7. It is found
that the absolute di¤erence in amplitudes is 0:256� 10�1 for the smaller wave
and 0:138�10�1 for the larger one. For the second linearization, the amplitude
of the smaller wave is 0:973607 at the point x = 52:5, whereas the amplitude of
the larger one is �1:988065 at the point x = 123:6. It is found that the absolute
di¤erence in amplitudes is 0:263� 10�1 for the smaller wave and 0:119� 10�1
for the larger one. The analytical invariants by using Eq.(1) can be found as
I1 = �3:1415927, I2 = 13:3333333, I3 = 22:6666667. Table 4 lists the values of
the invariants of the two solitary waves with amplitude A1 = �2 and A2 = 1
in the region 0 � x � 150 . It can be seen that the values obtained for the
invariants are satisfactorily constant during the computer run.

5.1. The Maxwellian initial condition

For this equation another initial value problem is the initial Maxwellian pulse
that is used as the initial condition in solitary waves given by

(25) U(x; 0) = e�x
2

with the boundary condition

U(�20; t) = Ux(�20; t) = U(20; t) = Ux(20; t) = 0; t > 0:

As it is known Maxwellian initial condition (25) breaks up into a number of
solitary waves depending on values of �: So we have used various values for �:
During the run of algorithms, we have taken h = 0:1; �t = 0:01: The com-
putations are carried out for the cases of � = 1; 0:5; 0:1; 0:05; 0:02 and 0:005
. For � = 1; the Maxwellian initial condition develops into a pair of waves as
indicated in Figure 7. One wave with the negative amplitude is to the left of
the other wave with the positive amplitude. For � = 0:5; the Maxwellian initial
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condition does not cause development into a clean solitary wave. When � = 0:1;
we observed one clean solitary wave. For � = 0:05; the state is two solitary
waves. For � = 0:02 and 0:005 three and seven solitary waves are formed,
respectively. The recorded values of the invariants I1; I2 and I3 computed for
both linerazation techniques are given in Table 5 and 6. It is observed that the
obtained values of the invariants remain almost constant during the computer
run.

6. Conclusions

In this paper, numerical solutions of the MEW equation based on the cubic B-
spline �nite element have been presented. Three test problems are worked out
to examine the performance of the algorithms. The performance and accuracy
of the method is shown by calculating the error norms L2 and L1. For each
linearization technique, the error norms are su¢ ciently small and the invariants
are satisfactorily constant in all computer runs. The computed results show that
the present method is a remarkably successful numerical technique for solving
the MEW equation and advisable for getting numerical solutions of other types
of non-linear equations.
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Figures and Tables

Figure 1. The motion of a single solitary wave with
h = 1; �t = 0:05 at (a) t = 0 and (b) t = 20.

Figure 2. Error graph at t = 20:
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Figure 3. Single solitary wave solutions for various values of A at
t = 20:
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Figure 4. Interaction of two solitary waves at di¤erent times.
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Figure 5. An expanded vertical scale of Fig.4(f) at t=80.
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Figure 6. Interaction of two solitary waves at di¤erent times.

Figure 7. Maxwellianinitialcondition,stateattime t = 12; a) � = 1;
b) � = 0:5; c) � = 0:1; d) � = 0:05; e) � = 0:02; f) � = 0:005
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Table 1. The invariants and the error norms for single solitary wave with
h = 0:1; �t = 0:05; A = 0:25; 0 � x � 80:
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Table 2. The computed values I1; I2 and I3 and the error norms L2
and L1 for the single solitary wave with x0 = 30; h = 0:1; �t = 0:01
in the region 0 � x � 80:
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Table 3. Invariants and error norms for single solitary wave with
A1 = 1; A2 = 0:5; h = 0:1; �t = 0:05
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Table 4. Invariants and error norms for single solitary wave with
A1 = �2; A2 = 1; h = 0:1; �t = 0:05
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Table 5. The invariants I1; I2 and I3 obtained during the �rst linerazation
technique for Maxwellian initial condition and di¤erent values of �:

Table 6. The invariants I1; I2 and I3 obtained during the second
linerazation technique for Maxwellian initial condition and di¤erent
values of �:

62

View publication statsView publication stats

https://www.researchgate.net/publication/262841318

	Pages from sj12-17
	43-60



