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. INTRODUCTION

In this article, we consider a new symmetric C° finite element method for the biharmonic problem
with clamped-plate boundary conditions:

Au=f inQ, (1.1a)
u=0 ono<, (1.1b)

9

M _0 onoq. (1.1¢)

on

Here, @ ¢ RY(d = 2,3)is a open, connected, polyhedral domain, f € H (Q)isa given

forcing function, A? := Zfl j=1 9%/ 8xi28x_/2. denotes the biharmonic operator, and du/dn := Vu-n,
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C° FINITE ELEMENT METHOD FOR THE BIHARMONIC PROBLEM 1255

where n denotes the outward unit normal of the boundary 32. A function u € HZ () is defined
to be a solution to (1.1) provided

/Dzu : Dzvdxszvdx Vv € HX(Q), (1.2)
Q Q

where D*u : D*v := Zld =1 622(;;1 af,zavv, denotes the Frobenius inner product between the two
Hessian matrices D?u and D*v. Additional notation is given in the subsequent section.

Due to their simplicity, computational efficiency, and availability on commercial software, C°
finite element methods are an attractive choice to compute fourth-order elliptic problems. The
first such method was introduced in [1], where discontinuous Galerkin techniques were utilized
to construct an interior penalty (IP) C° method. This method was subsequently analyzed in con-
siderable detail in two dimensions (2D) on polygonal domains in [2, 3]. A defining feature of this
method is the presence of a user-defined penalization parameter which must be taken sufficiently
large to ensure stability and convergence of the scheme. In general, it is not known a priori neither
how large to take the penalization term nor is it known what the optimal value (with respect to
approximation, conditioning, etc.) should be. In contrast, the weakly overpenalized IP method
given in [4] is stable for any positive penalization parameter. However, due to the inconsistent
scaling of the method, the condition number is of order O(h~°) without preconditioning.

Recently, a new class of methods have been constructed for fourth-order problems based on a
local-discontinuous Galerkin (LDG) approach [5, 6]. This class of methods is based on a mixed
formulation of the fourth-order problem and the choice of appropriate numerical traces. Similar
to the C° TP methods, these schemes include an extrinsic term that penalizes the jumps of the
gradient across interelement boundaries. An advantage of these schemes is that they are stable
for any positive penalization parameter while still retaining the usual O(h~*) conditioning.

The class of C° finite element methods constructed in this article has a similar structure of
the LDG-type methods in [5, 6]. However, rather than defining our method through the use of
numerical traces, we use one-sided discrete second-order derivatives to construct our scheme; see
Definition 2.1. Using this approach, we show that the new method is stable and converge with
optimal order in a variety of norms. A distinctive feature of the method is that the results hold
without extrinsic penalization. Possible advantages of the scheme include computational simplic-
ity as well as the lack of tuning of a penalty parameter to ensure the stability and convergence of
the method. As far as we are aware, the proposed C° method is the first symmetric method with
these features on a general class of triangulations.

This work is motivated by the papers [7, 8], where a discrete differential calculus framework
for discontinuous functions is introduced. Here, one-sided discrete first-order derivatives are
defined and various calculus identities (e.g., integration by parts and product rule) are established.
Recently, the second author and Lewis used this discrete calculus framework to construct an LDG-
type scheme for the Poisson problem that requires no penalization [8]. The natural generalization
of this method for the biharmonic problem is presented here.

The organization of this article is as follows. In the next section, we provide the notation used
throughout the article and define the one-sided discrete second-order operators and discrete Hes-
sian matrices. With these definitions set, we define the C° method and compare the method to the
local-continuous-discontinuous Galerkin method given in [5]. In Section III, we state the main
results of the article, namely, existence, uniqueness, and optimal-order estimates in the energy
norm and H' norm. The next two sections, the bulk of the article, is devoted to proving these
results. In Section IV, we prove some preliminary identities and establish some results of the
Morley finite element space. The proofs of the main results are then given in Section V. Finally,
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1256 KARAKOC AND NEILAN

we discuss some extensions of the method to Kirchhoff plates in Section VI and provide some
numerical experiments in Section VII.

Il. THE FINITE ELEMENT METHOD

A. Notation

Let 7, be a conforming, quasiuniform triangulation of the domain 2, and let €, denote the
set of (d — 1)-dimensional simplices in 7, for example, the set of faces (d = 3) or edges
(d = 2) in 7,,. In addition, we set £? to be the set of boundary (d — 1)-dimensional simplices
and set & = &,\EP, the set of interior (d — 1)-dimensional simplices in 7. For a number
p € [l,00] and m > 0, we define the piecewise Sobolev spaces with respect to the triangu-
lation as W™?(7,) = ]_[TGTh W™P(T). For notational convenience, we set the special cases
H™(T,) == W™2(T,), V" := H*(T}), and define the piecewise Sobolev norms

[l 7y, = Z [0lm -
TeT),

The piecewise L?-inner product over the triangulation 7, is given by

(v,w)Th = Z / v°wdx,
T

TeTy

and the L2-inner product over a subset S, C &, is given by

(v,w)sh = Z /v"wds,

eESh ¢

where o denotes the product, inner product, or Frobenius inner product depending on whether
v,w are scalar, vector, or matrix-valued functions. If v,w € L%*(R2), then we simply write
(v, w) := (v, w)7,. We also denote by (-, ) the pairing between some Banach space and it’s
dual.

We denote by P, (D) the space of polynomials with domain D C €2 and degree not exceed-
ing r(> 0). The space of piecewise polynomials with respect to the triangulation is given by
V! = [l;eq, Pr(T). We also set V! = V' N Hj (), the globally continuous Lagrange finite
element space of degree r. We note the obvious inclusions V" C V! C V". In addition, we set
Vo= (v V= (v and V)= (v

Let T* € 7, withe = dTT N AT~ € &!. Without loss of generality, we assume that the
global labeling number of T+ is smaller than that of 7. The unit normal of e is defined by
n,=@n"n?, ... .n?" :=nr+|, = —ns-|,, and jumps and average of a function v € H'(7;,)
are defined, respectively, by

1
(vl == (U+ =V )es {{U}He = E(U+ +v7)le.

Above, v¥ := v|r+ is the restriction of v to the simplex 7. On a boundary simplex e € £?,
we simply take [v]l|. = {{v}}|. = vl..

Numerical Methods for Partial Differential Equations DOI 10.1002/num



C° FINITE ELEMENT METHOD FOR THE BIHARMONIC PROBLEM 1257

B. Discrete Derivatives

In this section, we state the definitions of the discrete second-order derivatives which are the
building blocks of our scheme. The definition is motivated by the following elementary identity
which holds for all v € H*(2) and w € V.

v dv dw v\ .
== o o - o ) n wlds, 2.1
/an,«ax_,w ’ Z r 9x; dx; x+ee25:h/e‘r<3xi)ne Llds @1

TeT)

where tr(-) denotes the usual trace operator. We would now like to consider a discrete operator
from V" to Vr" which maps to the right-hand side of (2.1). However, the trace operator acting on
v € V" is multivalued on interior edges, and therefore (2.1) does not apply for such functions.
Instead, we shall consider the following three trace operators acting on the space V" (see [7] for
more details).

Definition 2.1. Let e € 5,11 with e = 0T* N 3T ~. The trace operators QT, Q; on e in the
direction x; are defined as

limv(y) ifn¥ <0,

yeT+

QF()(x) =1 2.2)

limv(y) ifnd =0,
yGTi

y—>x

1
Qi(W)(x) := E(Q;(v)(X) + Q7 (V) () = {{v}} (2.3)

foranyve V' x ce,and j =1,2,...,d.
Ife € EF, we set

QW) = Q7 (WX) = Q;(V)(x) := }iergv(y) Vx €e. 2.4

y—=x
Remark 2.1.

(i) The functions QJT (v) and Qj* (v) can be regarded, respectively, as the “left” and “right” limit
of vatx € ein the direction of x;. Indeed, in the 1D case, we have Q]*(v)(x) = limiv(y).

y—ox

(i) On an interior edge e € &/, we may alternatively write

1 _
Q7 () = {{v}) = Jsen(r V]
We shall use this identity frequently in the analysis below.

The discrete second-order differential operators are now simply defined by (2.1), where the
trace operator is replaced by Q,i

Numerical Methods for Partial Differential Equations DOI 10.1002/num



1258 KARAKOC AND NEILAN
Definition 2.2.

(i) The discrete second differential operators 3. .: V' — V" are determined by the

conditions

hii,j*

(ahlj ) T = (Q?:(aiv)n(j)a [[w]])gh - (3,-v, ajw)'Th Yw € Vrh,

where 9;v: = 337” is the partial derivative of v with respect to x;. We also deﬁne the aver-
Mt}

aged discrete second differential operator d;; ; : V" — V" as 8, ; = (Bh it i)

that is,

(Op,i v, w)T;, = (Qj(aiv)n(j), [[w]]>gh — (9, 8jw)7h
= ({8, [wl) g, — Brv,0,w)
forallw € V.

(ii) If boundary data g = (g, g®,...gD) € L*(9Q) is given, we set 9, ;
satisfy

h h
h,, V' — V' to

(@) ) h
@50 w), = @ 0w, + (@ = v w)gp Yw e V),

and define 9}, ; 1= l(ahz] + 9,15
(iii) The discrete Hessian operators HF, H}fg VAN f/f are defined as
(Hj; (), ; = 85,0, (Ha())i; = i v,

+
(HE), =d55v, (Hiy,, = of, v.

ij hlj hlj

Remark 2.2. The discrete second-order derivatives and the discrete Hessian defined in Defini-

tion 2.2 differ from those given in [7]. In particular, the discrete Hessians in [7] are defined as the
composition of discrete first-order derivatives.

Remark 2.3. Since Qf(v) = {{v}} £ isgn(n{”)[[v] on interior edges (cf. Remark 2.1), we have
by integration by parts

@iy va ). =<{{a,«v}}n<”i%sgn(n<f>>n<f)[[aiv]],|1w1|> — @v.dw)g

gh
, 1.
= @0, w) g — ([3;vIn", {{w}})g, £ §<|n(”|I13iv]], Twies

Consequently, there holds
1
(Hj v, )7, = (D™, W, = (VoD @ n, {1hh)e, + S(IVOD @ I, [

for all p € Vf. Here, ([Vv] ®n);; = [8iv]nY and ([Vv] ® |n]);; = [8;v]n| for
ii=1,2....d

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Remark 2.4. The definition of the discrete derivatives is completely local. In particular, S,fi’ ;U
on a simplex T only depends on the values of v on all simplices 7’ with a7 N T" # @. To see this,
let w € V" have support only on a single simplex 7 € 7, in Definition 2.2. We then have

av . dv Jw
/;(8,fi’jv)wdx = Z Q,i (3_36,) nwlds — /T ——dx Yw e P.(T).

ecar V¢ dx; 0x;

C. Definition of the Method

The finite element method for the biharmonic problem (1.1) is based on the variational formu-
lation (1.2), where we simply replace the differential operators by a combination of discrete
Hessians. To this end, let r and k be two nonnegative integers and define the bilinear form
an(-,) 1 VI x V" — Ras

1 _ _
ap(v,w) == E((H,tov, H;w)+ (H, v, H, jw)),

~ h
where H iov, H hi’ow € V.. We then consider the following problem: find a function u;, € V'
such that

ap(up,v) = (f,v) Yve V. 2.5)

Remark 2.5. Seto, = Hj ju; € Vf Then, the finite element method (2.5) can be written in
the mixed formulation

1 -
@5 1) = (D' w7, = (V] @ n {uhe, £ S (IV D @ nl Lul)ey Vi€ V.

1
(o) +0,.Dv) ;. —({{o} +o, ), [Vvl®@n), + 5([[02 =0, 1LIVVI ® Inl)er = 2(f,v)
Yv e V.

Equivalent formulations of this mixed system are also possible. For example, if we set o, :=
%(a;{ +0,)=H,ou,and 7, := a;{ — 0, , then the method (2.5) reads

(@1 t) = (Dus W, — [Vl @ ., ({1)))e, YR €V,

(@) = [Vl @ nl [l gr Ve V),

1
(@1, D)7, = ({{ou}}, IVVI @ m)e, + ([Tl IVVI ® I}y = (f.v) Vv eV
For comparison, the local-continuous-discontinuous-Galerkin method reads [5]
~
(Ghv I") = (Dzuhv I") - <[[Vl"h]] ® n, {{M}})gk V”’ € Vr’
(01, D*v) — ({{o4}}, [VV] @ 1) + ([ Vu I, [VVD) g, = (f>v) Vv €V,

where «;, is a piecewise constant penalty parameter. Using the discrete Hessian framework
(cf. Remark 2.3), it is easy to see that this method is equivalent to

(H youp, Hypv) + (ap[Vuy, [[VU]])gh =(f,v) Yve V£~ (2.6)

Numerical Methods for Partial Differential Equations DOI 10.1002/num



1260 KARAKOC AND NEILAN
lll. MAIN RESULTS

A. Existence and Uniqueness

The well-posedness of the C° finite element method (2.5) is addressed in the next theorem.

Theorem 3.1. Suppose that r > k — 1 and that each T € T, has at most (r — k +2)(d — 1)
-dimensional boundary simplices. There exists a unique solution u;, € V' to (2.5).

Proof. Since the method (2.5) represents a square linear system, it suffices to show that if
f=0, then u, is identically zero.
Setting v = u, in (2.5), we obtain H ,ﬁouh = 0. Hence by Remark 2.3, we obtain the identity

. 1 .
@ juns w) g — (1B, ({wh))g, + §<|n(”|[[3iuh]],llw]]>g,{ =0 VweV! (3.1
fori,j =1,2,...,d. Subtracting the above two equations, then yields
(In(“l[[aiuh]],[[wlbg; =0 VweV!

Setting w|r = 0;uy|r for each T € 7;,, we conclude [Vu,]] = 0 across all interior edges.
Therefore, u, € H*(2) N Hy (2) and (3.1) reads

0 = (9 jun, w)Th — (Qupn, w>8}f' (3.2)

We now construct w € Vrh as follows. If T € 7, with 9T N 32 = @, then we set w|;y = 0.

Otherwise, we denote by {e_,»};f’zo with 0 < m < r —k + 1 the boundary simplices of 7, and define

w|r uniquely by the following conditions (cf. Lemma 4.4):

/wtcdx:/Bi,juthx Vi € P_,_1(T),
T T

/ wkds = —/ dunPVrds Vi e Po_jle;)) j=0,1,...,m.

J J
— 1192 2 : . .
Note that ]T 0; jupwdx = ||8i,juh||L2(T) since k —2 < r — m — 1. Moreover, fe_,- QunDwds =
||8,-uh||iz(e_) sincek — 1 <r —m <r — jfor j <m. Therefore by (3.2), we have
"]

2
> D w2 + Y IV, = 0.

TeTy eEé‘f
ATNIQFED

Thus, u;, € HZ(S2). By (3.2) once again, we have (9; ju, w),, = 0forallw e V. Choosing
w|y = 9; juy|r on each T € 7, we conclude that D*u = 0. Since u;, € Hi(2), this implies
u, = 0. |

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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B. Error Estimates

In this section, we state the error estimates of the finite element solution. First by Theorem 3.1,
the operator || - ||, : V — R given by

2
L2(Q)

2

Ioll; == an( )—l(IIH+ I )
vl i=ap(v,v) = > oV 2@

+ [1H ol

is a norm on V,f. Therefore, the proof of [9, Lemma 10.1.9] gives us our starting point in the error
analysis.

Corollary 3.1. The error of the finite element method (2.5) satisfies

ap(u — up, w)

llu —uplly < inf [lu —v|[ + sup ——/———. (3.3)
veV weVI\(0) wlln
A few remarks concerning this result are in order. First, we note that || - ||, is not a norm on

H?(Q) + V!, and therefore we must establish that the error ||u — u,]||, gives us a meaningful
quantity. We also observe that the consistency term in the right-hand side of (3.3) is nonzero since
an,(u,w) # (f,w) in general. To address these issues and to carry out the convergence analysis
below, we shall assume that the solution of the biharmonic problem (1.1) satisfies u € H>(£2) and
Nullgz@) < Cllflg-1.- In 2D, this elliptic regularity is known to hold provided the domain €2
is convex [10, 11].

Lemma 3.1. Suppose that the solutionto (1.1) satisfiesu € H*(Q2) withs > 3andthatr > k—2.
Define £ := min{s — 2,r + 1}. Then there holds

-1 2
s —upw) (Lece, h MUV, )
sup — < Ch | |M | |H.Y(Q) sup
weVI\(0) Hwlln weVi(0}

Hwlln

Lemma 3.2. Suppose u satisfies u € H*(2) with s > 3 and define p := min{s,k + 1}. We then
have

. )
inf [lu —v|l, < CA" " |ullps (-
UEV]?

The proofs of Lemmas 3.2 and 3.1 are postponed to the following section. Lemma 3.1 indicates
that the error estimate for the finite element method reduces to showing that the induced norm
|| - || intrinsically controls the jump of the gradient, weighted by /. This issue is addressed in
the next crucial lemma. Again, we postpone its proof to the next section.

Lemma 3.3. Suppose that the integers r and k satisfy r > k — 1 > 1. Suppose further that each
T € T, has at most (r — k + 2)(d — 1) -dimensional boundary simplices. Then, there exists a
constant C > 0, independent of h such that

> ORIV wl,, < Cllwlly  Yw e V). (34)

Lz(e) =
eESh

Numerical Methods for Partial Differential Equations DOI 10.1002/num



1262 KARAKOC AND NEILAN

Theorem 3.2. Letu € H°(Q2) N HOZ(Q) solve the biharmonic problem (1.1) with s > 3. Let
u, € V,f‘ be the solution to the finite element method (2.5). Then under the assumptions of Lemma
3.3, there holds

llu — uplly < Ch" + h? )| |ullps @) (3.5)
ID*u — Higupll 20y < Ch* 4+ R |ull s () (3.6)
llu — upllg @y < CR + R ull s o), (3.7

where £ = min{s — 2,r + 1} and p = min{s, k + 1}.

The estimate (3.5) easily follows from Corollary 3.1 and Lemmas 3.2-3.3. The other two
estimates are considerably more technical. We give their proofs in Section VD.

Remark 3.1. Theorem 3.2 indicates the requirement » > k — 1 > 1 to guarantee the optimal
order estimates (3.5)—(3.7). This requirement is due to Lemma 3.3, as Lemmas 3.1-3.2 only
require r > k — 2 > 0 to achieve optimal order. Of course, one possible remedy is to include
penalization terms in the method (2.5), that is, to consider the numerical method

an(up, v) + (@ [Vu, 1. [VoD)g, = (f.v) Vv eV, (3.8)
where «|, = aeh;' and o, is apositive constanton e € &,. Clearly, with the additional penalization
terms Lemma 3.3 holds, and therefore we obtain optimal order estimates withr > k—2 > 0. How-
ever, the numerical experiments presented in Section VII indicate that the additional penalization
is not needed, and that the method (2.5) satisfies the estimates (3.5)—(3.7) provided r > k—2 > 0.
IV. PRELIMINARY RESULTS
Before proving the results stated in Section III, we first establish a few results concerning the dis-
crete second-order derivatives and integration-by-parts formulas. First, we show that the discrete

Hessians acting on smooth functions are simply the L-projections.

Lemma 4.1. If ¢ € H{(Q), then H}, ¢ is the L*-projection of the Hessian D*¢ onto the finite

~ h
element space V .

Proof. Since [V¢] =0onall e € &,, we have by Remark 2.3
1
(Hj o0 — Dzw,M)Th =—([Vel®@n,{{n}})e, £ 5([[V<p]] ® Inl, [ul)e =0

forall p € f/f. This is the definition of the L?-projection of D?¢. n

Lemma 4.2. Suppose that r > k — 2. Then there holds for any ¢ € H3 (),
(D*p, D*v)7, = ay(p,v) + (IVv] @ n, {{H,00}})s, Vv eV 4.1

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Proof. Note that D*V}* C 17]: provided r > k — 2. Therefore by Lemma 4.1, we have
(D*¢p, D*v); = l(H+ D*v)._ + l(H‘ D?v) 4.2)
@, ho 5 h’()(p, v T, ) /1!0(p, v T .

forall v € th. Moreover, by Remark 2.3 we have
(Hjy v, Hyop) . = (D*v, Hy o) — ([VVI @ 1, {{Hyo0})e,

1
+ 5([[Vv]] ® |n|, [H o9l st s 4.3)

(Hj 0. Hyo9) . = (D', Hy o) . — ([VVI @ 1, {{H 00},
1
— 5 {IVVI ® |nl. [Hio0l)e (4.4)

where we have used the fact H ;Oga = H, ¢ = H,¢. The identity (4.1) now follows from (4.2)
to (4.4) and the definition of a, (-, -). [

Lemma 4.3 ([2], Lemma 5). Suppose the solution to (1.1) satisfies u € H>(S2). Then, there
holds

(f.v) = (D*u, D*v)7, — ({D*u}}, [Vv] @ m);, Vv e VL.

Lemma 4.4. Let r and m be two nonnegative integers withm < d. Let T € T, and let {e; }';’=0
be arbitrary (d — 1)-dimensional subsimplices of T. Then, any q € P,(T) is uniquely determined
by the following values

/qkdx Vi € Pr_p1(T), (4.5a)
T

/ grds Nk € P._j(ej), j=0,1,...,m. (4.5b)

°j

Here, Py denotes the empty set for s < —1.

Proof. Note that the number of degrees of freedom (DOF) given in (4.5) is

. - . _ — _1+d m _ .+d—l
S = () ()
j=0

=0
_ (’ Zd) — dim P, (RY).

Therefore, it suffices to show that g € P,(T) vanishes at the DOFs (4.5) if and only if ¢ = 0.
Let A; € P1(T) be nonnegative functions satisfying A; |e]. =0forj =0,1,...,m. By (4.5b),
q vanishes on ¢;, and therefore ¢ = A p, for some py, € P,_;(K). Since Ay > 0 on e, the DOF
(4.5b) imply ¢=0 on e; as well. Therefore, g = Ao, p; for some p; € P,_,(T). Continuing in
this fashion, we have g = (]_['J’;O A;j) pw forsome p,, € P,_,_(T).Finally by (4.5a), we conclude
thatg = 0. ]

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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A. The Morley Finite Element Space and its Properties

A key component in the convergence analysis of the finite element method (2.5) is the construc-
tion of an operator that connects the Lagrange finite element space with the Morley finite element
space. We recall the Morley finite element space, denoted by M" C V/, is a nonconforming finite
element space for the biharmonic problem. It consists of piecewise quadratic polynomials that

are continuous at the following values [12]:

1. fe E%ds for all (d — 1)-dimensional simplices e in 7,
2. fs vda for all (d — 2)-dimensional simplices s in 7;,.

Ford =2, fY vda = v(s), the evaluation of v at a vertex s. In addition, for simplices e and s on

the boundary, functions v € M" satisfy /. a%ds =0and | vda = 0.
Lemma 4.5.

(i) Let e € &, be a (d— 1)-dimensional simplex. Then, there holds
/I[Vv]]ds =0 VveM"

(ii) The following estimates are satisfied for all v € M":

—1 2 2
D n VLG, < Clola s

ecEy

vl < C|U|H2(Th)-

(iii) There holds for all piecewise constant tensors ji

Z (D*v — Hfv) : pdx =0 Vv e M".

TeTy, r

(iv) Forany v € M", there exists vy € V;! such that

|U_UO|H”’(’Th) =< Cl’lz_m|v|H’”(Th) m =0;1,2‘

(v) Forany ¢ € H*(Q) N H}(Q), there exists ¢, € M" such that

lo — @nlame,) < Ch37m|(p|H3(Q) m=0,1,2.

(4.6)

4.7

(4.8)

(4.9)

(4.10)

4.11)

Proof. Properties (i), (iv), (v), and (4.7) have been reported in [12, Lemmas 3-6]. Therefore,

it suffices to show (4.8) and (4.9).
~h
By Remark 2.3, we have forany p € V

1
(Hygv.p) . = (D*v,p)g, — [Vl ®n. {{n}))g, & S (VoI @ Il [l ;-
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Using the estimate (4.7) and the Cauchy—Schwarz, trace and inverse inequalities, we obtain
1/2 1/2

(VeI @ n, ({mdhe, < | D h NIV, | [ D2 Atz

ey ecl)

IA

C|U|H2(Th)||ﬂ||L2(sz)~

Similar arguments show %([[Vv]],, ® |n|,|[;l,]])g}{ < Clly2gllll 2@ Applying these
estimates to (4.12), we obtain

~
(H;f()v’ﬂ)q—h = C|U|H2(T,,)||IL||L2(Q) VpeV,.

The estimate (4.8) now easily follows by setting p = H hi,ov.
To show property (4.9), we combine (4.12) and (4.6) to obtain

1
Z (D*v — Hijpv) : pdx = ([Vol @ n, {{#}}) e, F E(HVU]] ® |nf, [l gr = 0.

T
TeT;,
h m

Lemma 4.6. Suppose that r > k — 2 > 0. Then, there exists an operator I, : Vi — M"
such that

IZovl gy + IIZavlln < Clivlli, (4.13)

7' @ =Ty < C [ I+ D 2 ITVTIEG,,, |- (4.14)

e€£h

2

h —1..12 . -2
forallv € V}. Here, |h7 v|H1(Th) = Zrefr,, hy |v|H1(T).

Proof. Given a function v € V', define Z,v € M" to be the unique function satisfying
(D*(Zyv), D*w) 7, = (Hyov, D*w),  Yw € M". (4.15)

By [12, Lemma 8], Z, v is well-defined.
Setting w = Z,v in (4.15), we obtain
|Ihv|§12(7—h) = ||Hh,OU||L2(Q)|le|H2(Th) = ||U||11|Ihv|1-12(7’h)-
Dividing by |Z,v| 27, ) and using Lemma4.5.ii gives us the estimate | | Z,v| |, < C|Zyv]y2(7,) <
C||v]|s. Thus, (4.13) is satisfied.

Next, let g € H~'(2) be arbitrary, and let ¢ € HZ(2) to be the unique function satisfying the
elliptic problem

Ap=g inQ, (4.16a)
9
=2 _0 onoq. (4.16b)
on
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By elliptic regularity, we have ¢ € H>(Q2) with el w3 < Cligly-19)-
By Lemma 4.5.iv, there exists a function vy € V! satisfying |[Z,v — volpm(z,) =<

Chz"”|Ihv|Hz(Th) for m € {0,1,2}. Multiplying the PDE (4.16a) by v — v, and integrating
by parts, we have
(8:v =) = =(VA@, V(v — vp))
= —(VAQ, V(0 — L)z, — (VAQ, V(T — v9) g,
=—-(VAp,V(Zyv — o)),
+ [(D*¢. D*(v — i) 4, — (({D*@}L IV (v — L) @ n)g, |
=:Ji+ /o (4.17)

By Lemma 4.5 and (4.13), we have
Ji el Zuv — vol gtz < ChlIgllg-1@) | Znvln2(z;,) < Chllglly-1@)llvllh. (4.18)

Next, since v — Z,v € th and H ¢ is the L2-projection of D?¢ onto f/f, we have by
Lemma 4.2

(D*¢, D*(v — Tyv)) 7, = (Hpop, Hyo(v — Tyv) g, + (IV = L)1 @ n, {{Hpop})g,
= (D*¢, H)o(v = Zyv)) 7, + (Vv = L)1 @ n, {{H, 00}, -

Using this identity in the definition of J,, we obtain

B, = (D*¢, Hyo(v = Tyv)) 7, + ({H o9 — D*@}}, V(v — Tyv) @ n)g,

To derive an upper bound for 7, we use the Cauchy—Schwarz and trace inequalities and
approximation properties of the L2-projection to obtain

1/2 1/2
2 _
L <[> hll{i{tHnop — D’} 2, > RNV = Tyl
eeEh eeé‘h
1/2
< Chllllwso | Y_ b IV = Zivlll,,
eeé’h

1/2

< Chllgllg-1e) | Y_ b IV = Zivllll,,,

eeé‘h
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Noting that the last term on the right-hand side can be bounded as [cf. (4.7)]

D IV = To)lla,, <2 k! [n[[Vv]]niz(e) + ||I[V(Ihv>)]1||iz(e>]
eeSh 86511

—1 2 2
< C Y m VI, + 1Tl
ee&y,

<C| YRV, + vl |

ec&y

we arrive at the following upper bound for /:
1/2

L < Chllglly-1ey | | Do VOl |+ 1ol |- (4.20)

ey

To estimate I, we let ¢, € M" satisfy |¢ — @, lw2e,) < Ch*~2||@|| s [cf. (4.11)]. We then
have

L = (D*(¢ — @), Hyo(v = T,0) 7, + (D>, Hyo(v — Tyv)
= (D*(¢ — ¢u), Hio(v = Tyv) 7. + (D@, D*(Tyv) — Hyo(Tyv)) 1,
= (D*(¢ — ¢n), Hyo(w — T,v)) .
=< Clo — oulp2(gllv = Zyolly = Chllgllg-1@ V] (4.21)

Here, we have used (4.9) and the fact that D*gj is piecewise constant.
Applying the estimates (4.20)—(4.21) to (4.19), we obtain

1/2

B = Chliglly-1ig) | ol + | D h VT2, : (4.22)

6’65;,
Finally, combining the estimates (4.17), (4.18), and (4.22), we have
172

(g:v—vo) < Chllglly-1g | 101l + | D 2 IIVVIIG,,,

eEgh
Consequently, there holds
1/2

v = vollyiiey < Ch [ oIl + | D A IIVVDI,,,

ey

The estimate (4.14) now follows from the triangle inequality, the estimate ||Z,v — vol|y1(7,) <
Ch|Zyvly2(7,) < Chl|vllx, and the quasiuniformity of the mesh. [ ]
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V. PROOFS

A. Proof of Lemma 3.1

We are now in position to prove Lemma 3.1. First by the definition of the finite element scheme,
we have a,(u — uy, w) = a,(u,w) — (f, w). Therefore, by Lemmas 4.2 and 4.3, we have

an(u —up, w) = ({{D*u — Hyou}}, [Vwl ®@ n),, . (5.1

By the Cauchy-Schwarz inequality and approximation properties of the L*-projection (cf.
Lemma 4.1), we have

1/2 1/2
2 2 -1 2
ay( — upw) < | D h D — Hyou}}l 2, > h VW,
ec&y ecl)
172

< Ch'llullms | D A VW,

GGEh

with £ = min{r 4 1, s — 2}. This completes the proof of Lemma 3.1.

B. Proof of Lemma 3.2

To prove Lemma 3.2, we first use the identity given in Remark 2.3 to obtain
(Hjo(u = v), p) = (D*(u — v), W7, — ([V@ — )] @ n, {{n}))e,
1 ~h
£ S IVu =0 nf, Inl)e, Vi € V,.

Now let v € V' be a function satisfying [u — v|gm @y < Ch?7™||ul|ps ) form = 0, 1,2 with
p = min{k + 1, s} [9, 13]. We then have by a trace inequality and scaling,

172 172

IV@—0T@n{ee, < | Y h V@~ o)1, | | D Rtz

€€€h eeé’h

A

IA

)
Ch?lullgs @1l L2(q)-

Similar arguments show %(I[V(u — VIR el [nl)e, < Ch”‘2||u||Hx(Q)||u||L2(Q). Conse-
quently, for this choice of v, we have

(H;o(u —v), 1)

+
||Hh,o(u—v)||L2(Q)= ]|
wev™\(0) Ril2@)

lu — v|H2('Th)||IL||L2(Q) + Chp_2||M||HS(Q)||IL||L2(Q)

< sup
wev\(0) ||’L||L2(Q)
< Ch**||ullps(@).
Lemma 3.2 now follows from this identity and the definition of || - ||.
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C. Proof of Lemma 3.3

To show that the norm || - ||, controls the jumps of the gradients across (d — 1)-dimensional
simplices, that is, to show (3.4) holds, we first use the algebraic identity %(a2 + b)) =
i(a +b)+ i(a —b)’to get the following identity

» 1 2 1 + - 12 h
Il = 711 Hnovll2q) + JI1H o0 = Hyovll 12, Vv €V, (5.2)

The next lemma shows that the second term in the right-hand side of (5.2) controls the jumps
across interior simplices modulo arbitrary small boundary terms.

Lemma 5.1.  Let the integers r and k satisfyr > k—1 > 1. Then for any v € V' and any t > 0,
there holds

SRVl < CiA+T IR+ Y A VR,

EEE;{ eeE}?
where the constant C; is independent of h and t.

Proof. By Remark 2.3, the difference H} jv — H v for a function v € V! satisfies

d
. ~ h
(Hjgv — Hy v, p0) . = IV ® [n]. [1]l)es = Z(Haiv]”n(”LI[/Li,j]])g}{ VeV,

i,j=1

Since r > k — 1, we may choose u € Vf such that u; ; = h='9vfori,j =1,2,...,d onall
T € 7,. We then have by the quasiuniformity of the mesh,

(Hjgv = Hygv.p) = C Y i IVl

eeé’é
Therefore by duality,

(Hjgv = Hygoop) _  Decey e IIVUDIG,,

+ —_
[|H)ov— H) V|l 2 = sup = P
wev™\(0) aell2q) \hz vz,

Multiplying this expression by |h}1v|H1(Th) and recalling (5.2), we obtain the following
trace-type estimate.

> RV, < Cllvlnlhz vl g, Yo e Vi

ol
ec&y

Next, we replace v with v — Z,v € V/" in the above expression (this inclusion holds since
k > 2). Using the triangle inequality and Lemma 4.5, we get

DRIV, <2 h VY = Tl +2 ) B IVl

1 1 1
ecly ecgy ecg),

= [l = Zovllhz' © = Tl + TivLipr, |-
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Applying the estimates (4.13)—(4.14) to this last expression then yields

1/2
-1 2 —1 2
DRIV, < Clivll | ol + | D A IV,
eeé';{ ecly
172 1/2
—1 2 — 2
< Clplly | ol + [ DAV, |+ D A IV,
eeé’,{ eegf

The desired result now follows from the algebraic identity ab < g + 5% for any a,b € R,
and & > 0. ]

Lemma 5.2. Let the integers r and k satisfy r > k — 1 > 1. Suppose that each T € I}, has at
most (r — k 4 2)(d — 1) -dimensional boundary simplices. Then there holds for all v € V!,

Y hIVIE,, < Co | I+ Yk IIVODI,, |- (53)

eEShB eeE}{
where the constant Cg > 0 is independent of h.

Proof. We write the L>-norm of the average discrete Hessian as

(H v, )

. 5.4)
NG ||M||L2(Q)

||Hh,0U||L2<Q> =

Using the definition of the discrete Hessian (cf. Remark 2.3) and applying a trace inequality,
we have

(Hov, ) = (D*v, )7, — (IVV] @ 1, {{n}})e,
> (D0, )7, — (VI @ n. {{}}) g

172

_ ~ i
—C| DR MVolllae | Nkll2e YREV,.
esgi{
Applying this estimate to (5.4) and recalling (5.2), we obtain

1/2
(DZU,IL)Th —(Vor® n,u)gf

el 2

Wlls +C [ Y r NIVl | = sup Vv e V.

< h
eeé‘é reV,\(0})

(5.5)

We now construct u € f/f as follows. () If T € 7, with 9T N 2 = @, then we set |y = 0;
(ii) Let T be a simplex in the mesh such that 7 N 92 # . Denote the (d — 1)-dimensional
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boundary simplices of T by {e j}’;’:o with m < r — k + 1. We then define u|r uniquely by the
following conditions (cf. Lemma 4.4)

/ L:kdx =0 Vi e Pt (T),
T

fﬂ:xds:—hglf Vv®n,, : kds Vlce’lSr,j(ej)jzo,l,...,m.

J J

For such a i, we have by scaling ||[L||iz(7_) <C Zeegf h;1||Vv||iz(e) forall T € 7. Therefore,

by a trace and inverse inequality,

il 2 < Clhz vz, (5.6)

Moreover, sincer —m — 1>k —2andr — j >k — 1 for0 < j <m, we have

(Dzv,;L)Th — (Vv ® ",IUg,f = - Z va Qmn,: puds

eeSf ¢
— h*l \v/ 2
= nIVvenl?,,
665;,5
—1 2
= > kY, (5.7)
eeSE

Applying (5.6) and (5.7) to the inequality (5.5) and multiplying the result by |47 v| HI(Ty)
we find
1/2

D hMIVIGg, < Clhz Vg, | vl + | D2 A IVl Voe V! (58

eeEf eegé
Next, for a function v € V,ﬁ’, we write
DRIVl <2 ) BNV =Tl +2 ) b IVl
e L2(e) — e h L2(e) e h 12(e)’
eEé'hB eEghB eeé’f

where I, is operator constructed in Lemma 4.6. Since Z,v € M", we have by Lemmas 4.5
and 4.6,

> VI, < CITivlay, < Clivll;.

L2(e) = H2(Ty) —
eeff

By Lemmas 4.5-4.6 and the estimate (5.8) with v replaced by v — Z; v, we also find

> RV =Tk,

B
ecEy

1/2

< Clh W =Tz | v =Tovlle + | DA V@ = L)1,

I
ecgy
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172

< Clhz' v =Tz, | N0l + 1 Zoolizy, + [ D A IIVODI,,

eegh[
1/2
—1 2 -1 2
<C Pl + | Y A7 IEVODIE,,, olls + Y kYOI,
ec&y eeé';{

<(CH+T N [+ D A Vel | +1 > A VIR,

1 B
eEEh e€€h

Here, we have used the inequality ab < - + sg to derive the last inequality.

Combining the above estimates, we have

> RV, < Clvll + €+ 7 | vl + D A IVl | +1 Y k7 IVIE,,,

esé‘f eeEl{ eEEhB
forall v € V} and > 0. Taking 7 sufficiently small, we obtain (5.3). ]

Proof of Lemma 3.3. Combining Lemmas 5.1 and 5.2, we have for any ¢ > 0

> RV, < Cr(+ T DI+ Y A VI,

eGE/{ eeé‘f

<G+ +TCalllvl; +1Cp Y k7 ITVOII,,,,.
eeé‘}{

25, < Clv||?. Lemma 3.3 now

Taking 7 sufficiently small, we obtain Zeeg}{ h;! ITVTll,,, <

follows from this estimate and Lemma 5.2.

D. Proof of Theorem 3.2

In this section, we prove the error estimates given in Theorem 3.2. Since (3.5) easily follows
from Corollary 3.1 and Lemmas 3.2-3.3, we focus our attention on the other two estimates (3.6)
and (3.7).

First, since H f,ou is the L?-projection of the Hessian D?u onto the finite element space Vf,
we have by (3.5)

1D*u — Hygunll 20y < |lu— wplly + 11D*u — Hijgull 20y < Ch" + h"7)||ul|ps -
This establishes the estimate (3.6).
To show the H'-estimate, we use a duality argument. To this end, let ¢ € H*(Q2) N Hj ()
satisfy the auxiliary problem (4.16) for some g € H~'(2). By (5.1) we have
ar(p, w) — (g, w) = (({D’¢ — Hyop}}h, [Vwl ®@n),,  Vw e V.
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Therefore, we find
(g,u —up) = (D¢, D*u) — ay (¢, up) + ({({D°0 — Hyo0}}, [Vu, 1 @ n)e,
= [(D*¢, D*u) — ay (0, w)] + ay(@,u — uy) + ({{D°¢ — Hy090}}, [Vu, 1 ® n)g,
=L+ DL+ 5.9)

To estimate /,, we use the fact that H }fou and H i0¢ are the L>-projections of D?u and D%,
respectively, to obtain

Iy = (D¢, D*u) — (H 00, D*u) = (D*¢ — Hyo0, D’u — p) Yp e V.
Judiciously choosing u we obtain
I <||D*¢ — Hh,O(p“LZ(Q)”DZu = 12

< Ch"M|gll w3 llullus i@y < CHH gl =10y 1l s - (5.10)

To estimate 15, we let ¢, € V' be a function satisfying Decs, IV ]l Iiz(e) +llo—@ullz <
Ch?||e| |23(9); see the proof of Lemma 3.2. We then have by (5.1) and scaling,
bL=a,(u—up, @ — @) +an(u — uy, ;)
= ay( —up, ¢ — @p) + ({({D*u — Hyou}}, [Vl @ m),

1/2 1/2
2
<l —unllalle — @ulls + | D 1D u — Hygu}}l 2, > IVenlia,,
eeg;l eeé‘h
< C"™ + R gl o)l as@ < CHT + P DIgl g1 11l s @- (5.11)
By the Cauchy—Schwarz inequality and scaling, we have
1/2 1/2
2 _
L < | Y hlt{D* — Hiophll 2 > IV,
eeé‘h eeé’h
1/2
< Ch| Y rNIVullGag, | lglla-10)- (5.12)
ec&y

Letv € V]? satisfy ||M - U||h < Chp_2||u||Hs(Q) and |I/t — v|H”’(Th) < Chp_mHM“HS(Q) for

m = 0,1,2, and p = min{k + 1, s}; see Lemma 3.2 and its proof. By the triangle inequality,
Lemma 3.3, scaling and (3.5), we have

172 1/2 172

SVl | = DAV @ = 012, | D] ATV @ = w12,

ecE), ecE), e€&y
< C(llw = vlls + A [ull s )
< C(llu — uplln + llu = vllp + 2" |ul |3 ()
< C(h* + ") ullgs -
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Applying this estimate to (5.12), we obtain
L <C (R +h" ) ullgs@llgl a1 q)- (5.13)
Therefore by (5.10)—(5.11), (5.13), and (5.9), we have
(g.u —uy) < C(h*! +hpil)||u||H°‘(Q)||g||H*1(§z)-
Since g € H™'(Q) was arbitrary, we have |lu — u,|| 1, < C(A*T" + h?~)||ul|ps (). The

proof is complete.

VI. EXTENSION TO THE KIRCHHOFF PLATES

In this section, we describe how the framework presented in Section II may be applied to the
clamped Kirchhoff plate model:

V-(V-Muw)+ f=0 ing, (6.1a)
u= B_u =0 ondQ. (6.1b)
on

Here, f represents the given vertical load of the plate,
M(u) := D[(v — 1)D*u — vAul,,,],

are the bending moments, v € (0,0.5) denote the Poisson ratio, D := Eh®/(12(1 — v?)) is the
(isotropic) plate rigidity, E is elastic modulus of the material, and # is the plate thickness. For
simplicity, we assume D = 1 in the discussion below. Following the framework given in [5],
we reformulate (6.1) as the second-order system

1
6 — ——tr(6) Iy = —D%u  in (6.22)
1—v 1—v2
V-V-o)=—f inQ, (6.2b)
ou
u=—=0 ondQ, (6.2¢)
on

where tr(o') := oy, + 02,. Using simple integration-by-parts formulas, the variational formulation
for this system is given by

/0 Cpdx — —— / tr(o)tr(p)dx = —/ Du: pdx Ve L(Q),
Q 11— Jg Q

/ o : D*vdx = —/ fvdx Yv e H; ().
Q Q

The proposed numerical method is based on this variational formulation, where the Hessian
matrices are replaced by their discrete versions. To this end, we first introduce two auxiliary
variables, approximations to the moment tensor (6.2a):

o = (v — DHEgu, — vir(HE ) s € V. (6.3)
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The C° finite element method for (6.1) is then defined as seeking u;, € V, such that
Ly T - H- h
z[(ah,Hhﬁov)—i—(ah,Hh’Ov)]:—(f,v) Yv e V.

Equivalently, the primal formulation is given by

a3 v) 1= (1= v)(H gy, Hijy0) + v(te(H ) tr(H )
+ (1= v)(Hj g, Hy o) + v(r(Hy gun), tr(Hy gv) = 2(f,0) Yo e V. (6.4)

Clearly, we have a;,(v,v) > 2(1 — v)|[v]|? for all v € V!'. As such, all of the results stated in
Section III apply. In particular, the solution to (6.4) satisfies the estimates (3.5)—(3.7).

ViIl. NUMERICAL EXPERIMENTS

A. Test1

In this test, we perform some simple numerical experiments which show that the finite element
method (2.5) converges optimally in the energy norm. The numerical runs are performed on
the unit square Q = (0, 1)%, and the data are chosen such that the exact solution is given by
u = sin’ (27T)c1)sin2 (2mx,) € C®(R). The resulting errors are listed in Table I below with poly-
nomial degree k € {2,3} and k — 2 < r < k. The table clearly shows that the discrete Hessians
converge to D*u with order O(h*~") in all cases, where as the H' and L? errors converge with
order O(h*) and O(h*), respectively, when k =3. The numerical experiments also show in the
quadratic case that the error converges optimally in the H'-norm, but suboptimal in the L?>-norm
(by one power). These rates are similar to other (primal) methods for the biharmonic problem
(e.g., [2, 14, 15]).

B. Test2

For the second set of experiments, we show by way of numerical example that the H?*(Q2) regu-
larity assumption can likely be relaxed in the convergence analysis. To this end, we compute the
finite element method (2.5) on the L-shaped domain Q2 = (—1, 1)*\(0, 1) x (—1,0) and choose
the data such that exact solution is given by [3, 10]

u=r*g(®),
where
8(0) = g1(1.5m)g2(0) — 81(6)g2(1.57),
g10) = p— 1sin((oz - 1)) — s 1sin((oz + 1)0),
22(0) = cos((x — 1)0) — cos((ax + 1)6),
and o« = 0.544483736782464 is (an approximation of) the noncharacteristic root of

sin*(1.57a) = a?sin®(1.57). The resulting errors for various values of % are reported in Table II
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with k=2 and r € {0, 1,2}. Similar to the previous test, the rates of convergence differ little with
respect to r. In all three cases, we observe the rates of convergence

= unlli2gy IV = w)ll 2 = OB, |lu — Hyuplly = Oh®).

Since the exact solution satisfies u € H>*%(2), these are the expected rates.
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