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Abstract

In this work, a septic B-spline collocation method is implemented to find the numerical solution of the generalized equal 
width (GEW) wave equation by using two different linearization techniques. Test problems including single soliton, 
interaction of solitons and Maxwellian initial condition are solved to verify the proposed method by calculating the error 
norms L2 and L∞ and the invariants I1, I2 and I3. Applying the Von-Neumann stability analysis, the proposed method is 
shown to be unconditionally stable. As a result, the obtained results are found in good agreement with the some recent 
results.
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1. Introduction

The generalized equal width (GEW) equation’s form is 
given by,

Ut + ɛU pUx – δU xxt = 0,                       (1)

with physical boundary conditions U  0 as x  , 
where p is a positive integer, ɛ and δ positive constant, t is 
time and x is the space coordinate. In this study, boundary 
and initial conditions are chosen

               (2)

where f (x) is a localized disturbance inside the considered 
interval and will be determined later. In the fluid problems, 
U is related to the wave amplitude of the water surface or 
similar physical quantity. In the plasma applications, U is 
the negative of the electrostatic potential.

The GEW equation was presented firstly as a model 
for small-amplitude long waves on the surface of water in 
a channel by Peregrine (1967) and Benjamin et al. (1972). 
GEW equation derived for long waves propagating in the 
positive x-direction is related to the generalized long wave 
(GRLW) equation and the generalized Korteweg-de Vries 
(GKdV) equation and is based upon the equal width wave 

(EW) equation. These general equations are nonlinear 
wave equations with ( p +1)th nonlinearity and have 
solitary solutions, which are pulse-like Raslan (2006). 
Equation (1) is an alternative model to the generalized 
RLW equation and GKdV equation. So, the solitary wave 
solution of the GEW equation has an important role in 
understanding the many physical phenomena.

GEW equation has been solved with various methods. 
Hamdi et al. (2003) presented the analytic solution 
technique for this problem. Evans & Raslan (2005) solved 
the equation numerically by using quadratic B-spline 
collocation method. Raslan (2006) obtained the numerical 
solutions of the equation with collocation method using 
cubic B-spline. Roshan (2011) studied the equation 
numerically using linear hat function by Petrov-Galerkin 
method. A RBF collocation method has been presented by 
Panahipour (2012). Exact solution of the GEW equation 
has been obtained by Taghizadeh et al. (2013) using the 
homogeneous balance method.

If p = 1 in Equation (1), we get the equal width (EW) 
wave equation. As the EW equation define the many 
physical phenomena like no shallow water waves and 
ionacoustic plasma waves, it has an important role in 
nonlinear wave propagation. The EW equation has been 
solved by using various numerical methods. For example, 
the EW equation was solved with cubic, quartic and septic 
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B-spline collocation method by Dağ & Saka (2004); 
Raslan (2005) and Fazal-i-Haq et al. (2013). Gardner 
et al. (1997) and Zaki (2001) presented the quadratic 
B-spline Petrov-Galerkin method to find the numarical 
solution of the EW equation. A cubic B-spline Galerkin 
method was implemented to the EW equation by Gardner 
& Gardner (1991). A spectral method for the EW equation 
was given by Garcia-Archilla (1996). Numerical solution 
of the EW equation was investigated by using an adaptive 
method of lines Hamdi et al. (2001). For p = 2, we get the 
modified equal width (MEW) wave equation. The MEW 
equation was solved numerically finite element methods 
by Esen (2006); Saka (2007); Geyikli & Karakoç (2011); 
Geyikli & Karakoç (2012); Karakoç & Geyikli (2012) 
and Islam et al. (2010). The tanh and sine-cosine method 
was investigated for solving the ZK-MEW equation 
byWazwaz (2006). He’s variational iteration method was 
used for solving the MEW equation by Lu (2009). Also, 
spline functions were used for different solving techniques 
by Prenter (1975); Rubin & Graves (1975); Dogan (2005); 
Esen (2005); Karakoç et al. (2014); Karakoç et al. (2014); 

Karakoç et al. (2015) and Başhan et al. (2015).

In the present paper, GEW equation has been solved 
numerically by using the septic B-spline collocation 
method with two different linearization techniques.

2. Septic B-spline collocation method

To be able to apply the numerical method, the solution 
region of the problem is restricted over an interval a ≤ x 
≤  b. The interval [a,b] is partitioned into uniformly sized 
finite elements of length h by the knots xm such that a = x0 
< x1 < ... < xN = b and  . The set of septic B-spline 
functions  forms a basis 
over the solution region [a,b]. The numerical solution 
UN (x,t) is expressed in terms of the septic B-splines as 

                   (3)

where δm(t) are time dependent parameters and will be 
determined from the boundary and collocation conditions. 
Septic B-splines m(x), (m = –3, –2, ...,N+3) at the knots 
xm are defined over the interval [a,b] by Prenter (1975)

                      (4)

Each septic B-spline covers 8 elements, thus each 
element [xm,xm+1] is covered by 8 splines. A typical finite 
interval [xm,xm+1] is mapped to the interval [0,1] by a local 
coordinate transformation defined by hξ = x –xm, 0 ≤ ξ ≤  
1. So septic B-splines (4) in terms of ξ over [0,1] can be 
given as follows:
      

   

  (5)

For the problem, the finite elements are identified with 
the interval [xm,xm+1]. Using Equation (4) and Equation 
(3), the nodal values of , , ,  are given in terms 
of the element parameters δm by

 (6)

and the variation of U over the element [xm,xm+1] is 
given by

 
                            

(7)
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Now, we identify the collocation points with the knots and 
use Equation (6) to evaluate Um, its space derivatives and 
substitute into Equation (1) to obtain the set of the coupled 
ordinary differential equations: For the first linearization 
technique, we get the following equation:

 

   (8)

where

For the second (Rubin & Graves (1975)) linearization 
technique, we obtain the following general form of the 
solution method:

  (9)

where

Zm = (Um) p–1(Um)x

and . denotes derivative with respect to time. If time 
parameters δi and its time derivatives  in Equation (8) 
and Equation (9) are discretized by the Crank-Nicolson 
formula and usual finite difference aproximation, 
respectively,

           
(10)

for the first linearization, we obtain a recurrence 
relationship between two time levels n and n+1 relating 
two unknown parameters ,  for i = m – 3, m – 2, ...,m 
+ 2,m+3

 

    (11)

where

 

(12)

For the second (Rubin & Graves (1975)) linearization 
technique, the recurrence relationship has been obtained 
as follows

    
 (13)

where

(14)

In the first linearization technique, the U p term in nonlinear 
term U pUx is taken as

 
(15)

In the second (Rubin & Graves (1975)) linearization 
technique, the U p –1Ux term in non-linear term U pUx is 
taken as

Zm = (Um) p –1(Um)x.                        (16)

When the Rubin & Graves (1975) linearization technique 
is applied to the U p –1Ux term, we get

(17)

The system (11) and (13) consist of (N + 1) linear 
equations including (N + 7) unknown parameters (δ–3,δ–

2,δ–1,...,δN+1,δN+2,δN+3)T. To obtain a unique solution for 
this system, we need six additional constraints. These are 
obtained from the boundary conditions (2) and can be used 
to eliminate δ–3,δ–2,δ–1 and δN+1,δN+2,δN+3 from the systems 
(11) and (13) which then becomes a matrix equation for 
the N+1 unknowns dn = (δ0,δ1,...,δN)T of the form

Adn+1 = Bdn.                             (18)

The matrices A and B are (N + 1)  (N + 1) septa-diagonal 
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matrices and this matrix equation can be solved by using 
the septa-diagonal algorithm.

Two or three inner iterations are applied to the term 
δn*  = δn +  (δn – δn–1) at each time step to cope with the 
nonlinearity caused by Zm. Before the commencement 
of the solution process, initial parameters d 0 must be 
determined by using the initial condition and following 
derivatives at the boundaries;

So we have the following matrix form for the initial vector 
d 0;

Wd 0 = b,

3. A linear stability analysis

To apply the Von-Neumann stability analysis, the GEW 
equation can be linearized by assuming that the quantityU p 
in the nonlinear term U pUx  is locally constant. Substituting 
the Fourier mode  in which k is a 
mode number and h is the element size, into the Equation 
(11) gives the growth factor ξ of the form

where

The modulus of  is 1, therefore the linearized scheme is 
unconditionally stable.

4. Numerical examples and results

To show the accuracy of the numerical scheme and to 
compare our results with both exact values and other 
results given in the literature, the L2 and L∞ error norms are 
calculated by using the analytical solution in (19). Three 
test problems including: motion of a single solitary wave, 
interaction of two solitary waves and the maxwellian 

initial condition are investigated. Also three invariants 
(20) are calculated to show the conservation properties 
of the numerical scheme. The error norms L2 and L∞ are 
given as follows:

and the error norm L∞

The analytic solution of GEW equation (1) obtained by 
applying the transformation U (x,t) = f (x – ct), given by 
Evans & Raslan (2005), Raslan (2006) is

(19)

where c is the the constant velocity of the wave travelling in 
the positive direction of the x-axis, x0 is arbitrary constant. 
And the three invariants of motion which correspond to 
conservation of mass, momentum and energy given by 
Evan & Raslan (2005), Raslan (2006) are

(20)

4.1. The motion of single solitary wave

In this section, to apply our numerical method, we have 
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considered the five sets of parameters for different values 

of p, c and  The other parameters 
for all of five sets are chosen to be h = 0.1, Δt = 0.2, ɛ = 3, 
δ = 1, x0 = 30, 0 ≤ x ≤ 80 and the numerical computations 
are done up to t = 20.

Firstly, we take p = 2, c = 1/32, so the solitary wave 
has amplitude = 0.25. The invariants I1, I2, I3 and the error 
norms L2, L∞ have been calculated by using our numerical 
method. The obtained results are reported in Table 1. As 
seen in Table 1, the changes of the invariants I1 × 105, I2 × 
105 and I3 × 105 from their initial count are less than 0.0038, 
0.0027 and 0.0002, respectively. Also, we observed that 
the quantity of the error norms L2 and L∞ obtained with 
second linearization technique are less than the obtained 
with first linearization technique.

Secondly, we consider the values p = 2, c = 1/2, hence 
the solitary wave has amplitude = 1. The invariants I1, 
I2, I3 and the the error norms L2, L∞ have been calculated 
by using our numerical method. The obtained results are 
given in Table 2. Table 2 shows that the changes of the 
invariants I1 × 103, I2 × 103 and I3 × 103 from their initial 
state are less than 0.0005, 0.0017 and 0.0017, respectively. 
If the magnitude of the error norms L2 and L∞ calculated 
with first and second linearization technique compare, it 
is shown that the magnitude for the second linearization 
technique is smaller than the ones.

Thirdly, if it is taken the paremeters p = 3, c = 0.001, 
the solitary wave has amplitude = 0.15. The invariants I1, 
I2, I3 and the the error norms L2, L∞ have been calculated 
by using our numerical method. The obtained results are 
tabulated in Table 3. It is observed from Table 3 that he 
changes of the invariants I1 × 106, I2 × 106 and I3× 106 from 
their initial case are less than 0.0001, 0.0001 and 0.0001, 
respectively. When we evaluate the error norms L2 and L∞ 
obtained using the first and second linearization, it is seen 
that the second linearization is better for our numerical 
scheme.

And we choose the parameters p = 3, c = 0.3, that’s 
why the solitary wave has amplitude =1. The invariants I1, 
I2, I3 and the the error norms L2, L∞ have been calculated 
by using our numerical method. The obtained results are 
shown in Table 4. It is clearly seen from Table 4 that the 
changes of the invariants I1 × 103, I2 × 103 and I3 × 103 
from their initial value are less than 0.0637, 0.1606 and 
0.1607, respectively. And the values of the error norms 
L2 and L∞ in the second linearization are smaller than the 
first. Solitary wave profiles are depicted at different time 
levels in Figure 1. In this figure, the soliton moves to the 
right at a constant speed and nearly unchanged amplitude 
as time increases, as expected.

Finally, for the quantities p = 4, c = 0.2, the solitary 
wave has amplitude = 1. The invariants I1, I2, I3 and the error 
norms L2, L∞ have been calculated by using our numerical 
method. The obtained results are listed in Table 5. It is 
detected from Table 5 that the changes of the invariants 
I1 × 103, I2 × 103 and I3 × 103 from their initial quantity 
are less than 0.1305, 0.2822 and 0.2823, respectively. By 
using the second linearization, we found that the quantity 
of the error norms L2 and L∞ is smaller than the ones. 
Figure 2 shows that our numerical scheme performs the 
soliton, which moves to the right at a constant speed and 
conserves its amplitude and shape with increasing time, 
as expected.

In Table 6, we compare the values of the invariants 
and error norms obtained by the present method with 
methods obtained by Evans & Raslan (2005), Raslan 
(2006), Roshan (2011) at t = 20. In this table, we observed 
that the error norms obtained by our method is smaller 
than the ones in previous studies for p = 2,3 values and 
nearly same the given before for p = 4. The values of 
the invariants are also found in good agreement with the 
others.

Fig. 1. Single solitary wave with p = 3, c = 0.3, x0 = 30, 0 ≤  x ≤ 80, 
t = 0,10,20.

Fig. 2. Single solitary wave with p = 4, c = 0.2, x0 = 30, 0 ≤  x ≤ 80, 
t = 0,10,20.
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Table 1. The invariants and the error norms for single solitary wave with p = 2, amplitude = 0.25, Δt = 0.2, h = 0.1, ɛ = 3,δ = 1, 0 ≤ x ≤ 80.

t 0 5 10 15 20
I1 First 0.7853966 0.7853966 0.7853965 0.7853965 0.7853965

Second 0.7853966 0.7853966 0.7853966 0.7853966 0.7853965
I2 First 0.1666664 0.1666663 0.1666663 0.1666663 0.1666663

Second 0.1666664 0.1666663 0.1666663 0.1666663 0.1666663
I3 First 0.0052083 0.0052083 0.0052083 0.0052083 0.0052083

Second 0.0052083 0.0052083 0.0052083 0.0052083 0.0052083
L2 × 105 First 0.00000000 0.03067279 0.06285007 0.09693233 0.13336822

Second 0.00000000 0.02900012 0.05967250 0.09243870 0.12775844
L∞ × 105 First 0.00000000 0.01989833 0.04083748 0.06230627 0.08399884

Second 0.00000000 0.01721060 0.03441138 0.05158717 0.06887276

Table 2. The invariants and the error norms for single solitary wave with p = 2, amplitude = 1, Δt = 0.2, h = 0.1, ɛ = 3,δ = 1, 0 ≤ x ≤ 80.

t 0 5 10 15 20
I1 First 3.1415863 3.1415861 3.1415859 3.1415857 3.1415854

Second 3.1415863 3.1415864 3.1415862 3.1415860 3.1415858
I2 First 2.6666616 2.6666613 2.6666610 2.6666607 2.6666604

Second 2.6666616 2.6666616 2.6666611 2.6666606 2.6666600
I3 First 1.3333283 1.3333275 1.3333272 1.3333269 1.3333266

Second 1.3333283 1.3333283 1.3333278 1.3333272 1.3333267
L2 First 0.00000000 0.00438263 0.00853676 0.01262954 0.01671823

Second 0.00000000 0.00421699 0.00849425 0.01279079 0.01708960
L∞ First 0.00000000 0.00289068 0.00539302 0.00789694 0.01040121

Second 0.00000000 0.00261076 0.00524102 0.00787126 0.01050088

Table 3. The invariants and the error norms for single solitary wave with p = 3, amplitude = 0.15, Δt = 0.2, h = 0.1, ɛ = 3,δ = 1, 0 ≤ x ≤ 80.

t 0 5 10 15 20
I1 First 0.4189154 0.4189154 0.4189154 0.4189154 0.4189154

Second 0.4189154 0.4189154 0.4189154 0.4189154 0.4189154
I2 First 0.0549807 0.0549807 0.0549807 0.0549807 0.0549807

Second 0.0549807 0.0549807 0.0549807 0.0549807 0.0549807
I3 × 104 First 0.7330748 0.7330748 0.7330748 0.7330748 0.7330748

Second 0.7330748 0.7330748 0.7330748 0.7330748 0.7330748
L2 × 107 First 0.00000000 0.01575841 0.03157299 0.04744419 0.06337251

Second 0.00000000 0.01574216 0.03154053 0.04739557 0.06330776
L∞ × 107 First 0.00000000 0.00855102 0.01715751 0.02582082 0.03454222

Second 0.00000000 0.00855128 0.01715803 0.02582167 0.03454333

Table 4. The invariants and the error norms for single solitary wave with p = 3, amplitude = 1, Δt = 0.2, h = 0.1, ɛ = 3,δ = 1, 0 ≤ x ≤ 80.

t 0 5 10 15 20
I1 First 2.8043580 2.8043577 2.8043575 2.8043572 2.8043570

Second 2.8043580 2.8043425 2.8043265 2.8043104 2.8042943
I2 First 2.4639101 2.4639097 2.4639094 2.4639090 2.4639086

Second 2.4639101 2.4638709 2.4638305 2.4637900 2.4637496
I3 First 0.9855618 0.9855613 0.9855610 0.9855606 0.9855602

Second 0.9855618 0.9855225 0.9854821 0.9854416 0.9854012
L2 First 0.00000000 0.00204205 0.00404586 0.00603031 0.00800997

Second 0.00000000 0.00166798 0.00341195 0.00522557 0.00708099
L∞ First 0.00000000 0.00144917 0.00275209 0.00406426 0.00537733

Second 0.00000000 0.00114859 0.00234526 0.00356386 0.00480353
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4.2. The interaction of two solitary waves

In this section, we have studied the interaction of two well 

seperated solitary waves by using the following initial 
condition

Table 5. The invariants and the error norms for single solitary wave with p = 4, amplitude = 1, Δt = 0.2, h = 0.1, ɛ =3,δ = 1, 0 ≤ x ≤ 80.

t 0 5 10 15 20
I1 First 2.6220516 2.6220514 2.6220512 2.6220510 2.6220508

Second 2.6220516 2.6220193 2.6219866 2.6219539 2.6219211
I2 First 2.3561915 2.3561912 2.3561909 2.3561905 2.3561902

Second 2.3561915 2.3561216 2.3560509 2.3559801 2.3559093
I3 First 0.7853952 0.7853948 0.7853945 0.7853942 0.7853939

Second 0.7853952 0.7853252 0.7852545 0.7851837 0.7851130
L2 First 0.00000000 0.00105910 0.00211286 0.00316045 0.00420836

Second 0.00000000 0.00075057 0.00156686 0.00245793 0.00341485
L∞ First 0.00000000 0.00078877 0.00151318 0.00223807 0.00296955

Second 0.00000000 0.00055460 0.00116121 0.00180868 0.00249360

Table 6. For p = 2,3 and 4, Comprasions of result for the single solitary wave with Δt = 0.2, h = 0.1, ɛ = 3,δ = 1, 0 ≤ x ≤ 80.

p 2 3 4

I1

Collocation (quadratic)[Evans and Raslan (2005)] 0.78528640
Collocation (cubic)[Raslan (2006)] 0.78466760 0.65908330

Petrov-Galerkin (quadratic)[Roshan (2011)] 0.78539800 0.41891600 2.62206000
Ours - Collocation (septic) 0.78539650 0.41891540 2.62192110

I2

Collocation (quadratic)[Evans and Raslan (2005)] 0.16658180
Collocation (cubic)[Raslan (2006)] 0.16643400 0.05938137

Petrov-Galerkin (quadratic)[Roshan (2011)] 0.16666900 0.05497830 2.35615000
Ours - Collocation (septic) 0.16666630 0.05498070 2.35590930

I3

Collocation (quadratic)[Evans and Raslan (2005)] 0.00520600
Collocation (cubic)[Raslan (2006)] 0.00519380 0.00006871

Petrov-Galerkin (quadratic)[Roshan (2011)] 0.00520829 0.00007330 0.78534400
Ours - Collocation (septic) 0.00520830 0.00007330 0.78511300

L2 × 103

Collocation (quadratic)[Evans and Raslan (2005)] 0.15695390
Collocation (cubic)[Raslan (2006)] 0.19588780 0.51496770

Petrov-Galerkin (quadratic)[Roshan (2011)] 0.00250172 0.00006407 2.30499000
Ours - Collocation (septic) 0.00127758 0.00000633 3.41485000

L∞ × 103

Collocation (quadratic)[Evans and Raslan (2005)] 0.20214760
Collocation (cubic)[Raslan (2006)] 0.17443300 0.32060590

Petrov-Galerkin (quadratic)[Roshan (2011)] 0.00275164 0.00008206 1.88285000
Ours - Collocation (septic) 0.00068872 0.00000345 2.49360000

  (21)

where ci and xi, i = 1,2 are arbitrary constants. Equation (21) 
represents two solitary waves having different amplitudes 
at the same direction. We have considered the three sets of 
parameters for different values of p, ci. The other parameters 
for all of three sets are chosen to be h = 0.1, Δt = 0.025, ɛ = 
3, δ = 1, x1 = 15,x2 = 30,0 ≤ x ≤ 80. The amplitudes of two 
well seperated solitary waves are 1, 0.5.

Firstly, we take p = 2, c1 = 0.5 and c2 = 0.125. The 
experiments are run from t = 0 to t = 60 and the values of 
the invariant quantities I1, I2 and I3 are listed in Table 7. 

Table 7 shows that the changes of the invariant I1 × 103, 
I2 × 103 and I3 × 103 from their initial case are less than 
0.0013, 0.0002 and 0.005, respectively. The invariants are 
also found to be very close with the obtained by using 
quadratic Petrov-Galerkin method.

Secondly, we take the parameters p = 3, c1 = 0.3 and c2 
= 0.0375. The simulations are done up to time t = 100 to 
find the numerical invariants I1, I2 and I3 at various time. 
The obtained results are reported in Table 8. From the 
Table 8 it is seen that the changes of the invariants I1 × 
103, I2 × 103 and I3 × 103 from their initial case are less 
than 0.002, 0.0001 and 0.0005, respectively. It is observed 
that the numerical values of the invariants remain almost 
constant during the computer run and are found in good 
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agreement with the quadratic Petrov-Galerkin method. 
Figure 3(a)-(d) illustrates the interaction of two solitary 
waves at different times. From this figure, we observed 
that at time t = 0 the wave with larger amplitude is to the 
left of the second wave with smaller amplitude. As the 
time increases, overlapping process occurres. After the 
time t = 50, waves start to resume their original shapes.

Finally, we have chosen the parameters p = 4, c1 = 0.2 
and c2 = 1/80. The computer program was run to time t = 
120. To record the conservate quantities of the invariants 
I1, I2 and I3, the calculated values are given in Table 9. As 
shown in Table 9, the changes of the invariants I1 × 104, 
I2 × 104 and I3 × 104 from their initial case are less than 
0.01, 0.001 and 0.005, respectively. The invariants are the 
almost same of the given by Roshan. The motion of two 
solitary waves using our method is plotted at different 
time levels in Figure 4(a)-(d). This figure shows that at 
time t = 0 the wave with larger amplitude is on the left of 
the second wave with smaller amplitude. In progress of 
time, interaction starts and overlapping process occurres. 
At the time t = 100, waves start to resume their original 
shapes.

Fig. 3. Interaction of two solitary waves at p = 3; a) t = 0,b) t = 50,c) 
t = 70,d ) t = 100.

Fig. 4. Interaction of two solitary waves at p = 4; a) t = 0 ,b) t = 50,c) 
t = 70,d) t = 100.
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Table 7. The invariants for interaction of two solitary waves with p = 2, c1 = 0.5, c2 = 0.125, x1 = 15, x2 = 30, Δt = 0.025, h = 0.1, 
ɛ = 3, δ = 1, 0 ≤ x ≤ 80.

t 0 10 20 30 40 50 60

I1

Ours - First 4.7123733 4.7123745 4.7123745 4.7123745 4.7123745 4.7123745 4.7123745
Ours - Second 4.7123733 4.7123745 4.7123743 4.7123665 4.7123702 4.7123746 4.7123747

QBSPG[Roshan (2011)] 4.7123900 4.7123900 4.7123900 4.7123900 4.7123900 4.7123900 4.7123900

I2

Ours - First 3.3333294 3.3333294 3.3333294 3.3333295 3.3333295 3.3333295 3.3333295
Ours - Second 3.3333294 3.3333294 3.3333290 3.3333139 3.3333214 3.3333296 3.3333296

QBSPG[Roshan (2011)] 3.3332400 3.3332400 3.3332400 3.3332400 3.3333300 3.3333800 3.3333300

I3

Ours - First 1.4166643 1.4166643 1.4166642 1.4166594 1.4166615 1.4166644 1.4166644
Ours - Second 1.4166643 1.4166643 1.4166639 1.4166446 1.4166532 1.4166642 1.4166644

QBSPG[Roshan (2011)] 1.1416660 1.1416660 1.1416660 1.1416640 1.1416650 1.1416660 1.1416660

Table 8. The invariants for interaction of two solitary waves with p = 3, c1 = 0.3, c2 = 0.0375, x1 = 15, x2 = 30, Δt = 0.025, h = 0.1, 
ɛ = 3, δ = 1, 0 ≤ x ≤ 80.

t 0 10 20 40 60 80 90 100

I1

Ours - First 4.2065320 4.2065329 4.2065330 4.2065330 4.2065330 4.2065330 4.2065330 4.2065330
Ours - Second 4.2065320 4.2065328 4.2065328 4.2065303 4.2065314 4.2065325 4.2065324 4.2065323

QBSPG[Roshan (2011)] 4.2065500 4.2065500 4.2065500 4.2065500 4.2065500 4.2065500 4.2065500 4.2065500

I2

Ours - First 3.0798892 3.0798892 3.0798892 3.0798892 3.0798892 3.0798892 3.0798892 3.0798892
Ours - Second 3.0798892 3.0798889 3.0798887 3.0798842 3.0798862 3.0798879 3.0798877 3.0798875

QBSPG[Roshan (2011)] 3.9797700 2.0798600 3.0798200 3.0798600 3.0798700 3.0799100 3.0797400 3.0797200

I3

Ours - First 1.0163623 1.0163623 1.0163623 1.0163619 1.0163620 1.0163624 1.0163625 1.0163625
Ours - Second 1.0163623 1.0163621 1.0163619 1.0163573 1.0163585 1.0163606 1.0163604 1.0163602

QBSPG[Roshan (2011)] 1.0163400 1.0163400 1.0163400 1.0163400 1.0163300 1.0163300 1.0163300 1.0163400

Table 9. The invariants for interaction of two solitary waves with p = 4, c1 = 0.2, c2 = 1/80, x1 = 15, x2 = 30, Δt = 0.025, h = 0.1, 
ɛ = 3, δ = 1, 0 ≤ x ≤ 80.

t 0 10 20 40 60 80 100 120

I1

Ours - First 3.9330730 3.9330737 3.9330738 3.9330738 3.9330738 3.9330738 3.9330738 3.9330739
Ours - Second 3.9330730 3.9330736 3.9330735 3.9330732 3.9330702 3.9330709 3.9330728 3.9330725

QBSPG[Roshan (2011)] 3.9330900 3.9330900 3.9330900 3.9330900 3.9330900 3.9330900 3.9330900 3.9330800

I2

Ours - First 2.9452406 2.9452406 2.9452406 2.9452406 2.9452406 2.9452406 2.9452406 2.9452406
Ours - Second 2.9452406 2.9452403 2.9452401 2.9452394 2.9452339 2.9452353 2.9452384 2.9452379

QBSPG[Roshan (2011)] 2.9451200 2.9451800 2.9451700 2.9451500 2.9450500 2.9450600 2.9450800 2.9451100

I3

Ours - First 0.7976683 0.7976683 0.7976683 0.7976683 0.7976680 0.7976679 0.7976684 0.7976684
Ours - Second 0.7976683 0.7976680 0.7976677 0.7976671 0.7976617 0.7976622 0.7976655 0.7976649

QBSPG[Roshan (2011)] 0.7976140 0.7976120 0.7976110 0.7976120 0.7976220 0.7976130 0.7976110 0.7976110

4.3. A Maxwellian initial condition

As a last problem, we consider the Equation (1) with the 
following Maxwellian initial condition

U(x,0) = Exp(– x2),    – 20 ≤ x ≤ 20.           (22)

In this case, the behaviour of the solution depends on 
the values of δ. Therefore, we chose the values of δ = 0.01, 
δ = 0.025, δ = 0.05, δ = 0.1 for p = 2,3,4. The numerical 
computations are done up to t = 12. The values of the 
three invariants of motion for different δ are presented in 
Table 10. The changes of the invariants I1 × 103, I2 × 103 
and I3 × 103 from their initial values are less than 0.03, 
0.07 and 0.2 for p = 2; 0.05, 0.2 and 0.2 for p = 3; 0.08, 
0.2 and 0.6 for p = 4, respectively. The difference of the 

invariants between our method and quadratic Petrov-
Galerkin method is too little at the time t = 12.

Also Figure 5(a)-(d), Figure 6(a)-(d) illustrates the 
development of the Maxwellian initial condition into 
solitary waves. In Figure 5(a) and Figure 6(a), the solitary 
wave with larger one is on the right of the smaller one. 
For δ = 0.1, only single stable solition appeared. When δ 
= 0.05, two stable solitary wave appeared in Figure 5(b) 
and Figure 6(b). As seen in Figure 5(c), (d) and Figure 
6(c), (d), three and five stable solitary wave occured at the 
δ = 0.025 and δ = 0.01, respectively. It is understood from 
these figures that as the value of δ is decrease, the number 
of the stable solitary wave is increase.
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Table 10. The invariants for Maxwellian initial condition.

δ t p = 2 p = 3 p = 4
I1 I2 I3 I1 I2 I3 I1 I2 I3

0 1.772453 1.265847 0.886226 1.772453 1.265847 0.792665 1.772453 1.265847 0.723601
4 1.773567 1.272162 0.913749 1.776431 1.280719 0.851731 1.803566 1.363095 1.083499

0.010 8 1.774354 1.273668 0.905325 1.782107 1.293911 0.847407 1.805571 1.392182 1.468426
12 1.773219 1.267638 0.897781 1.788222 1.329233 1.014441 1.757360 1.218707 0.577822

QBSPG[Roshan (2011)] 12 1.772400 1.265800 0.886200 1.772400 1.266500 0.794700 1.772500 1.266900 0.725300
0 1.772453 1.284646 0.886226 1.772453 1.284646 0.792665 1.772453 1.284646 0.723601
4 1.772624 1.285168 0.887871 1.772841 1.285658 0.799622 1.776099 1.298322 0.787247

0.025 8 1.772635 1.285208 0.887926 1.772963 1.285086 0.792383 1.770003 1.274934 0.705119
12 1.772636 1.285180 0.887737 1.772636 1.283938 0.793308 1.777013 1.302710 0.808295

QBSPG[Roshan (2011)] 12 1.772400 1.283500 0.885600 1.772300 1.283400 0.791000 1.772400 1.284900 0.724300
0 1.772453 1.315979 0.886226 1.772453 1.315979 0.792665 1.772453 1.315979 0.723601
4 1.772519 1.316150 0.886577 1.772578 1.316226 0.793414 1.772432 1.315294 0.722397

0.050 8 1.772520 1.316152 0.886582 1.772577 1.316198 0.793400 1.772717 1.316536 0.726374
12 1.772520 1.316151 0.886579 1.772592 1.316254 0.793420 1.773333 1.318824 0.731885

QBSPG[Roshan (2011)] 12 1.772400 1.316000 0.886100 1.772400 1.315600 0.792200 1.772400 1.317700 0.724500
0 1.772453 1.378645 0.886226 1.772453 1.378645 0.792665 1.772453 1.378645 0.723601
4 1.772478 1.378707 0.886327 1.772501 1.378748 0.792856 1.772530 1.378826 0.724088

0.100 8 1.772479 1.378707 0.886327 1.772500 1.378745 0.792853 1.772531 1.378843 0.724131
12 1.772479 1.378707 0.886327 1.772499 1.378742 0.792847 1.772524 1.378812 0.724054

QBSPG[Roshan (2011)] 12 1.772400 1.378500 0.886100 1.772400 1.378700 0.792600 1.773400 1.383600 0.722400

Fig. 5. Maxwellian initial conditon p = 3 at t = 12; a) δ = 0.1,b) 
δ = 0.05,c) δ = 0.025,d) δ = 0.01.

Fig. 6. Maxwellian initial conditon p = 4 at t = 12; a) δ = 0.1,b) 
δ = 0.05,c) δ = 0.025,d) δ = 0.01.



Seydi B.G. Karakoç , Halil Zeybek 30

5. Conclusion

In this paper, a numerical scheme based on the septic 
B-spline collocation method have been implemented 
to find the numerical solution of the GEW equation by 
using two different linearization techniques. To show the 
accuracy of the method, we have solved the three test 
problems including single soliton, interaction of solitons 
and Maxwellian initial condition by calculating the error 
norms L2, L∞ and the invariants I1, I2, I3. As seen from the 
tables, for each linearization technique, the changes of 
the invariants are adequately small and consistent with 
previous numerical results. The quantity of obtained 
error norms are less than the ones in existing collocation 
methods Evans & Raslan (2005), Raslan (2006) and 
Petrov-Galerkin method Roshan (2011) for each 
linearization technique. So, our numerical algorithm is 
efficient and reliable numerical technique for solving the 
GEW equation and can be efficiently applied to similiar 
types of non-linear partial differential equations.
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