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Abstract In this paper, a lumped Galerkin method is

applied with cubic B-spline interpolation functions to find

the numerical solution of the modified Korteweg-de Vries

(mKdV) equation. Test problems including motion of sin-

gle solitary wave, interaction of two solitons, interaction of

three solitons, and evolution of solitons are solved to verify

the proposed method by calculating the error norms L2 and

L1 and the conserved quantities mass, momentum and

energy. Applying the von-Neumann stability analysis, the

proposed method is shown to be unconditionally stable.

Consequently, the obtained results are found to be harmony

with the some recent results.
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1 Introduction

The dynamics of shallow water waves is one of the most

popular areas of research in the fields of fluid mechanics

and nonlinear evolution equations. There are several

equations that govern this dynamics. These are Korteweg-

de Vries (KdV) equation (Korteweg and de Vries 1895;

Triki et al. 2016; Wazwaz 2016; Dyachenko et al. 2016),

Boussinesq equation (Wazwaz 2008; Siddigi and Arshed

2014; Greenwood et al. 2016; Ueckermann and Lermusi-

aux 2016), Kawahara equation (Haq et al. 2010; Karakoc

et al. 2014a), Peregrine equation (Girgis et al. 2010),

Benjamin–Bona–Mahony equation (Biswas 2010; Wazwaz

and Triki 2011; Vaneeva et al. 2015; Gheorghiu 2016) and

several many others (Karakoc et al. 2014a, b; Rashidi et al.

2009a, b; Shukla et al. 2014). All of these equations stem

from Euler’s equation or rather Navier–Stokes equation in

fluid dynamics. However, two-layered flow along lake

shores and beaches are also modeled by Gear–Grimshaw

model (Biswas and Ismail 2010; Triki et al. 2014),

Zhareamogoddam model, Bona–Chen model (Biswas et al.

2013) and the other models.

With all of these varieties of models, there are several

papers that reported analytical results. These covered

soliton solutions, shock wave solutions, rogue wave solu-

tions, soliton perturbation theory, stability analysis, quasi-

stationary solutions, and several other aspects. What is

visibly missing from this plethora of papers is a deep-down

numerical analysis of these model equations that provide

visual effects and thus appealing to the eye rather than

applied analysis. However, there are a limited number of

numerical studies in the literature about the mKdV equa-

tion. The explicit solutions to the higher order modified

Kortewegde Vries equation with initial condition are cal-

culated using the Adomian decomposition method (Kaya
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2005). The equation is numerically solved using a new

algorithm based on the finite element approach applying

Galerkin’s method with quadratic spline interpolation

functions by Biswas and Raslan (2011). The equation is

numerically solved using the finite-difference method. An

energy conservative finite-difference scheme was pro-

posed. Accuracy and stability of the difference solution

were proved by Raslan and Baghdady (2015). This paper,

therefore, carries out a detailed numerical study of the

modified KdV equation that is another version of KdV

equation (Triki and Wazwaz 2009; Wazwaz 2012; Wazwaz

and Xu 2015; Dutykh and Tobisch 2015; He and Meng

2016). Moreover, better numerical results from earlier

results in the literature are obtained.

This paper employs a lumped Galerkin method based on

cubic B-spline interpolation functions to solve the mKdV

equation. The proposed method is shown to represent

accurately the migration of single solitary wave. Then, the

interaction of two and three solitary waves and evolution of

solitons are studied. A linear stability analysis based on the

Fourier method is also investigated.

2 The Governing Equation and Cubic B-Splines

In this study, we will consider the modified Korteweg-de

Vries (mKdV) equation

Ut þ eU2Ux þ lUxxx ¼ 0; ð1Þ

with the physical boundary conditions U ! 0 as x ! �1;

where e and l are positive parameters and the subscripts

x and t denote the differentiation. In Eq. (1), the derivative

Ut characterizes the time evolution of the wave propagat-

ing in one direction, the nonlinear term U2Ux describes the

steepening of the wave, and the linear term Uxxx stands for

the spreading or dispersion of the wave.

To implement the numerical method, solution domain is

restricted over an interval a� x� b: Boundary conditions

will be selected from the following homogeneous boundary

conditions:

Uða; tÞ ¼ 0; Uðb; tÞ ¼ 0;

Uxða; tÞ ¼ 0; Uxðb; tÞ ¼ 0; t[ 0;
ð2Þ

and the initial condition

Uðx; 0Þ ¼ f ðxÞ; a� x� b: ð3Þ

The cubic B-splines /mðxÞ for m ¼ �1ð1ÞN þ 1, at the

knots xm are defined over the interval [a, b] by the rela-

tionships (Prenter 1975):

The set of functions /�1ðxÞ;/0ðxÞ; . . .;/Nþ1ðxÞ
� �

forms a

basis for approximate solution defined over [a, b]. The

approximate solution UNðx; tÞ to the exact solution

U(x, t) is given by

UNðx; tÞ ¼
XNþ1

j¼�1

/jðxÞdjðtÞ; ð5Þ

where djðtÞ are time-dependent parameters to be deter-

mined from the boundary and weighted residual conditions.

Each cubic B-spline covers four elements so that each

element ½xm; xmþ1� is covered by four splines. In each ele-

ment, using the following local coordinate transformation:

hn ¼ x� xm; 0� n� 1; ð6Þ

cubic B-spline shape functions in terms of n over the

domain ½xm�1; xmþ2� can be defined as

/m�1

/m

/mþ1

/mþ2

¼

ð1� nÞ3;
1þ 3ð1� nÞ þ 3ð1� nÞ2 � 3ð1� nÞ3;
1þ 3nþ 3n2 � 3n3;

n3:

8
>>><

>>>:

ð7Þ

All splines apart from /m�1ðxÞ;/mðxÞ;/mþ1ðxÞ and

/mþ2ðxÞ are zero over the element ½xm; xmþ1�. Variation of

the function U(x, t) over element ½xm; xmþ1� is approxi-

mated by

UNðn; tÞ ¼
Xmþ2

j¼m�1

dj/j; ð8Þ

/mðxÞ ¼
1

h3

ðx� xm�2Þ3; x 2 ½xm�2; xm�1�;
h3 þ 3h2ðx� xm�1Þ þ 3hðx� xm�1Þ2 � 3ðx� xm�1Þ3; x 2 ½xm�1; xm�;
h3 þ 3h2ðxmþ1 � xÞ þ 3hðxmþ1 � xÞ2 � 3ðxmþ1 � xÞ3; x 2 ½xm; xmþ1�;
ðxmþ2 � xÞ3; x 2 ½xmþ1; xmþ2�;
0; otherwise:

8
>>>>>><

>>>>>>:

ð4Þ
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where dm�1; dm; dmþ1; dmþ2 act as element parameters and

B-splines /m�1;/m;/mþ1;/mþ2 as element shape func-

tions. The values of /m xð Þ and its derivatives may be

tabulated as in Table 1.

Using trial function (5) and cubic splines (4), the values

of U;U0;U00 at the knots are determined in terms of the

element parameters dm by

Um ¼ UðxmÞ ¼ dm�1 þ 4dm þ dmþ1;

hU0
m ¼ U0ðxmÞ ¼ 3ð�dm�1 þ dmþ1Þ;

h2U00
m ¼ U00ðxmÞ ¼ 6ðdm�1 � 2dm þ dmþ1Þ;

ð9Þ

where the symbols 0 and 00 denotes first and second dif-

ferentiation with respect to x, respectively. The splines

/mðxÞ and its two principle derivatives vanish outside the

interval ½xm�2; xmþ2�.

3 Galerkin Finite Element Method

By applying the Galerkin method to Eq. (1) with weight

function W(x), the weak form of Eq. (1) is obtained as
Z b

a

WðUt þ eU2Ux þ lUxxxÞdx ¼ 0: ð10Þ

For a single element ½xm; xmþ1�; using transformation (6)

into the Eq. (10) and

Z 1

0

W Ut þ e
U2

h

� �
Un þ l

1

h3

� �
Unnn

� �
dn ¼ 0; ð11Þ

integrating Eq. (11) by parts and using Eq. (1) lead to

Z 1

0

½WðUt þ ekUnÞ � gWnUnnð Þ�dnþ gWUnnj10 ¼ 0;

ð12Þ

where k ¼ U2

h
and g ¼ l

h3
. Taking the weight function as cubic

B-spline shape functions given by Eq. (7) and substituting

approximation (8) in integral equation (12) with some

manipulation,weobtain the element contributions in the form:

Xmþ2

j¼m�1

Z 1

0

/i/jdn

� �
_dej þ

Xmþ2

j¼m�1

ek
Z 1

0

/i/
0
jdn

� ��

� g
Z 1

0

/0
i/

00
j dn

� �
þ g/i/

00
j j
1
0

� 	�
dej ¼ 0:

ð13Þ

In matrix notation, this equation becomes

½Ae� _de þ ekBe � g Ce � Deð Þ½ �de ¼ 0; ð14Þ

where de ¼ ðdm�1; dm; dmþ1; dmþ2ÞT are the element

parameters and the dot denotes differentiation with respect

to t. The element matrices Ae;Be;Ce and De are given by

the following integrals:

Ae
ij ¼

Z 1

0

/i/jdn ¼ 1

140

20 129 60 1

129 1188 933 60

60 933 1188 129

1 60 129 20

2

6664

3

7775

Be
ij ¼

Z 1

0

/i/
0
jdn ¼ 1

20

�10 � 9 18 1

�71 � 150 183 38

�38 � 183 150 71

�1 � 18 9 10

2

6664

3

7775

Ce
ij ¼

Z 1

0

/0
i/

00
j dn ¼ 1

2

�9 15 � 3 � 3

�15 9 27 � 21

21 � 27 � 9 15

3 3 � 15 9

2

6664

3

7775

De
ij ¼ /i/

00
j j

1
0 ¼

�6 12 � 6 0

�24 54 � 36 6

�6 36 � 54 24

0 6 � 12 6

2

6664

3

7775

where the suffices i, j take only the values m� 1;m;mþ
1;mþ 2 for the typical element ½xm; xmþ1�. A lumped value

for k is found from ðUm þ Umþ1Þ2=4 as

k ¼ 1

4h
ðdm�1 þ 5dm þ 5dmþ1 þ dmþ2Þ2: ð15Þ

By assembling all contributions from all elements, Eq. (14)

leads to the following matrix equation:

½A� _dþ ekB� g C � Dð Þ½ �d ¼ 0; ð16Þ

where d ¼ ðd�1; d0. . .dN ; dNþ1ÞT are global element

parameters. The matrices A; kB;C and D are septadiagonal

and row of each has the following form:

A ¼ 1

140
ð1; 120; 1191; 2416; 1191; 120; 1Þ;

kB ¼ 1

20
ð�k1;�18k1 � 38k2; 9k1 � 183k2

�71k3; 10k1 þ 150k2 � 150k3 � 10k4;

71k2 þ 183k3 � 9k4; 38k3 þ 18k4; k4Þ;

C ¼ 1

2
ð3; 24;�57; 0; 57;�24;�3Þ;

D ¼ ð0; 0; 0; 0; 0; 0; 0Þ;

where

Table 1 Cubic B-splines and its derivatives at nodes xm

x xm�2 xm�1 xm xmþ1 xmþ2

/m xð Þ 0 1 4 1 0

h/0
m xð Þ 0 3 0 -3 0

h2/00
m xð Þ 0 6 -12 6 0
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k1 ¼
1

4h
ðdm�2 þ 5dm�1 þ 5dm þ dmþ1Þ2;

k2 ¼
1

4h
ðdm�1 þ 5dm þ 5dmþ1 þ dmþ2Þ2;

k3 ¼
1

4h
ðdm þ 5dmþ1 þ 5dmþ2 þ dmþ3Þ2;

k4 ¼
1

4h
ðdmþ1 þ 5dmþ2 þ 5dmþ3 þ dmþ4Þ2:

Replacing the time derivative of the parameter _d by usual

forward finite-difference approximation and parameter d
by the Crank–Nicolson formulation:

_d ¼ 1

Dt
dnþ1 � dn

 �

; d ¼ 1

2
dnþ1 þ dn

 �

ð17Þ

into Eq. (16), it gives the ðN þ 3Þ � ðN þ 3Þ septadiagonal
matrix system:

Aþ ekB� g C � Dð Þ½ �Dt
2

� 

dnþ1

¼ A� ekB� g C � Dð Þ½ �Dt
2

� 

dn

ð18Þ

where Dt is time step. Applying the boundary conditions

(2) to the system (18), we obtain a ðN þ 1Þ � ðN þ 1Þ
septadiagonal matrix system. This system is efficiently

solved with a variant of the Thomas algorithm, but an inner

iteration is also needed at each time step to cope with the

nonlinear term. A typical member of the matrix system

(18) may be written in terms of the nodal parameters dn and

dnþ1 as

c1d
nþ1
m�3 þ c2d

nþ1
m�2 þ c3d

nþ1
m�1 þ c4d

nþ1
m þ c5d

nþ1
mþ1

þ c6d
nþ1
mþ2 þ c7d

nþ1
mþ3

¼ c7d
n
m�3 þ c6d

n
m�2 þ c5d

n
m�1 þ c4d

n
m þ c3d

n
mþ1

þ c2d
n
mþ2 þ c1d

n
mþ3

ð19Þ

where

c1 ¼
1

140
� ekDt

240
� 3gDt

4
;

c2 ¼
120

140
� 56ekDt

240
� 24

4
gDt;

c3 ¼
1191

140
� 245ekDt

240
þ 57gDt

4
;

c4 ¼
2416

140
;

c5 ¼
1191

140
þ 245ekDt

240
� 57gDt

4
;

c6 ¼
120

140
þ 56ekDt

240
þ 24

4
gDt;

c7 ¼
1

140
þ ekDt

240
þ 3gDt

4
;

which all depend on dn. The initial vector of parameters

d0 ¼ ðd0�1; . . .; d
0
Nþ1Þ must be determined to iterate the

system (18). To do this, the approximation is rewritten over

the interval [a, b] at time t ¼ 0 as follows:

UNðx; 0Þ ¼
XNþ1

m¼�1

/mðxÞd0m ð20Þ

where the parameters d0m will be determined. UNðx; 0Þ are
required to satisfy the following relations at the mesh

points xm:

UNðxm; 0Þ ¼ Uðxm; 0Þ;m ¼ 0; 1; . . .;N:

U0
Nðx0; 0Þ ¼ U0ðxN ; 0Þ ¼ 0:

ð21Þ

The above conditions lead to a tridiagonal matrix system of

the form

�3 0 3

1 4 1

. .
.

1 4 1

� 3 0 3

2

6666664

3

7777775

d0�1

d00

..

.

d0N
d0Nþ1

2

66666664

3

77777775

¼

U0ðx0; 0Þ
Uðx0; 0Þ

..

.

UðxN ; 0Þ
U0ðxN ; 0Þ

2

66666664

3

77777775

which can be solved using a variant of the Thomas

algorithm.

3.1 The Solution of Septadiagonal Matrix System

with Thomas Algorithm

The solution method of septadiagonal matrix system with

Thomas algorithm is stated as the following (Zeybek and

Karakoc 2016). The system can be written by

aidi�3 þ bidi�2 þ cidi�1 þ didi þ eidiþ1 þ fidiþ2 þ gidiþ3;

i ¼ 0; 1; . . .;N

ð22Þ

and

a0 ¼ b0 ¼ c0 ¼ a1 ¼ b1 ¼ a2 ¼ gN�2 ¼ gN�1 ¼ fN�1

¼ gN ¼ fN ¼ eN ¼ 0:

ð23Þ

First, the parameters are taken as

a0 ¼ b0; b0 ¼ c0; l0 ¼ d0; f0 ¼
e0

l0
; k0 ¼

f0

l0
; g0 ¼

g0

l0
; c0 ¼

h0

l0
;

a1 ¼ b1; b1 ¼ c1; l1 ¼ d1 � b1f0;

f1 ¼
e1 � b1k0

l1
; k1 ¼

f1 � b1c0
l1

; g1 ¼
g1

l1
; c1 ¼

h1 � b1c0
l1

;

ð24Þ
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and

a2 ¼ b2; b2 ¼ c2 � a2f0; l2 ¼ d2 � k0a2 � b2f1;

f2 ¼
e2 � g0a2 � b2k1

l2
; k2 ¼

f2 � b2g1
l2

;

g2 ¼
g2

l2
; c2 ¼

h2 � a2c0 � b2c1
l2

:

ð25Þ

Second, the following parameters are computed for

i ¼ 0; 1; . . .;N:

ai ¼ bi � aifi�3;

bi ¼ ci � aiki�3 � aifi�2;

l
i
¼ di � a0gi�3 � ki�2ai � bifi�1;

fi ¼
ei � gi�2ai � biki�1

li
;

ki ¼
fi � bigi�1

li
;

gi ¼
gi

li
;

ci ¼
hi � bici�1 � aici�2 � aici�3

li
:

ð26Þ

Then, the solution is given by

dN�2 ¼ cN�2 � kN�2dN � gN�2dN�1; dN�1

¼ cN�1 � gN�1dN ; dN ¼ cN
ð27Þ

and

di ¼ ci � fidiþ1 � kidiþ2 � gidiþ3; i ¼ 0; 1; . . .;N� 4;N� 3:

ð28Þ

4 Stability Analysis

The stability analysis is basedon the vonNeumann theory. The

growth factor n of the error in a typical mode of amplitude:

dnm ¼ nneijkh; ð29Þ

where k is the mode number and h is the element size, and is

determined from a linearization of the numerical scheme. To

apply the stability analysis, the mKdV equation can be lin-

earized by assuming that the quantity U2 in the nonlinear

termU2Ux is locally constant. Substituting the Fourier mode

(29) into (19), it gives the growth factor n of the form:

n ¼ a� ib

aþ ib
; ð30Þ

where

a ¼14496þ 8292 cos khð Þ þ 1440 cos 2khð Þ þ 12 cos 3khð Þ;
b ¼� 6000� 1715ek� 23940gð ÞDt½ � sin khð Þ

þ 392ekþ 10080gð ÞDt½ � sin 2khð Þ
þ 7ekþ 1260gð ÞDt½ � sin 3khð Þ: ð31Þ

The modulus of jnj is 1; therefore, the linearized scheme is

unconditionally stable.

Table 2 Invariants and error norms for single solitary wave with e ¼ 3; l ¼ 1; c ¼ 0:845; h ¼ 0:1 and Dt ¼ 0:01; 0� x� 80

t 1 5 10 15 20

I1 Present (Biswas and Raslan 2011) 4.442866 4.442866 4.442866 4.442866 4.442866

4.443000 4.443138 4.444142 4.443420 4.443171

I2 Present (Biswas and Raslan 2011) 3.676941 3.676941 3.676941 3.676941 3.676941

3.677069 3.677535 3.678094 3.678642 3.679192

I3 Present (Biswas and Raslan 2011) 2.072792 2.073533 2.073695 2.073772 2.073841

2.073575 2.074357 2.075303 2.076232 2.077161

L2-Error Present (Biswas and Raslan 2011) 6.279015e-04 1.252048e-03 2.138787e-03 2.960441e-03 3.656694e-03

– – – – –

L1-Error Present (Biswas and Raslan 2011) 3.624348e-04 8.415234e-04 1.403498e-03 1.887116e-03 2.294197e-03

1.206756e-03 3.621519e-03 5.942047e-03 7.626772e-03 8.642137e-03

Fig. 1 Single solitary wave with e ¼ 3; l ¼ 1; c ¼ 0:845; h ¼ 0:1;
Dt ¼ 0:01 and 0� x� 80 at t ¼ 0; 1; 2; . . .; 20
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5 Numerical Examples and Results

Numerical results of the mKdV equation are obtained for

three problems: the motion of single solitary wave, inter-

action of two and three solitary waves. We use

L2 ¼ Uexact � UNk k2’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h
XN

j¼1

Uexact
j � UNð Þj

���
���
2

vuut ; ð32Þ

the error norm L2

Fig. 2 Single solitary wave with e ¼ 3; l ¼ 1; c ¼ 0:845; h ¼ 0:1; Dt ¼ 0:01 and 0� x� 80 at t ¼ 0; 4; 8; 12; 16 and 20

1114 Iran J Sci Technol Trans Sci (2017) 41:1109–1121
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L1 ¼ Uexact � UNk k1’ max
j

Uexact
j � UNð Þj

���
���; j ¼ 1; 2; . . .;N;

ð33Þ

and the error norm L1 to calculate the difference between

analytical and numerical solutions at some specified times.

mKdV equation (1) possesses only three conservation

constants given by

I1 ¼
Z b

a

Udx ’ h
XN

j¼1

Un
j ;

I2 ¼
Z b

a

U2dx ’ h
XN

j¼1

ðUn
j Þ

2;

I3 ¼
Z b

a

U4� 6l
e
ðUxÞ2

� �
dx ’ h

XN

j¼1

ðUn
j Þ

4� 6l
e
ðUxÞ

n
j

� �
;

ð34Þ

which correspond to conversation of mass, momentum, and

energy, respectively (Miura et al. 1968; Miura 1976). In

the simulation of solitary wave motion, the invariants I1, I2,

and I3 are monitored to check the accuracy of the numer-

ical algorithm.

5.1 The Motion of Single Solitary Wave

The solitary wave solution of the mKdV equation (1) is

considered with the boundary conditions U ! 0 as x !
�1 and the initial condition:

Uðx; tÞ ¼
ffiffiffiffiffi
6c

e

r

sech

ffiffiffi
c

l

r
x� ct � x0ð Þ

� �
; ð35Þ

where e, l, c, and x0 are arbitrary constants. The initial

condition is

Uðx; 0Þ ¼
ffiffiffiffiffi
6c

e

r

sech

ffiffiffi
c

l

r
x� x0ð Þ

� �
: ð36Þ

The conserved quantities of motion for a solitary wave of

amplitude
ffiffiffiffi
6c
e

q
and width depending on

ffiffi
c
l

q
may be eval-

uated analytically as (Biswas and Raslan 2011)

I1 ¼ p

ffiffiffiffiffiffi
6l
e

r

; I2 ¼
12

ffiffiffiffiffi
lc

p

e
; I3 ¼ � 64c2

e2

ffiffiffi
l
c

r
: ð37Þ

For the numerical simulation of the motion of a single

solitary wave, parameters e ¼ 3; l ¼ 1; c ¼ 0:845; h ¼ 0:1

and Dt ¼ 0:01 over the interval 0; 80½ � are chosen to

coincide with another study (Biswas and Raslan 2011). For

these parameters, the solitary wave has an amplitude 1.3.

The conserved quantities and error norms L2 and L1 are

shown at selected times up to time t ¼ 20: The obtained

results are tabulated in Table 2. It can be seen from Table 2

that the error norms L2 and L1 are found to be small

Fig. 3 Error with e ¼ 3; l ¼ 1; c ¼ 0:845; h ¼ 0:1 and

Dt ¼ 0:01; 0� x� 80, t ¼ 20

Table 3 Comparison of

invariants for the interaction of

two solitary waves with e ¼ 3;
l ¼ 1; h ¼ 0:1, Dt ¼ 0:01; c1 ¼
2; c2 ¼ 1; x1 ¼ 15 and x2 ¼ 25,

0� x� 80

t 1 5 10 15 20

I1 Present (Biswas and Raslan 2011) 8.885732 8.885732 8.885732 8.885732 8.885732

8.886014 8.886776 8.889742 8.885983 8.884880

I2 Present (Biswas and Raslan 2011) 9.659345 9.659345 9.659345 9.659345 9.659345

9.659527 9.663714 9.662547 9.661071 9.661224

I3 Present (Biswas and Raslan 2011) 10.270822 10.857214 10.954278 10.307099 10.338321

10.239870 10.249000 10.246790 10.242580 10.242030

Fig. 4 Interaction of two solitary waves with e ¼ 3; l ¼ 1; h ¼ 0:1,
Dt ¼ 0:01; c1 ¼ 2; c2 ¼ 1; x1 ¼ 15, x2 ¼ 25 and 0� x� 80 at

t ¼ 0; 1; 2; . . .; 20
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enough and the quantities in the invariants remain almost

constant during the computer run. Table 2 represents a

comparison of the values of the invariants and error norms

obtained by the present method with those obtained in

Biswas and Raslan (2011). It is clearly observed from the

Table 2 that the error norms obtained by the present

method are smaller than another method (Biswas and

Raslan 2011). In Fig. 1, the numerical solutions are dis-

played at t ¼ 0; 1; 2; . . .; 20. For numerical solution of

single solitary wave, the graphs are plotted with e ¼ 3;

l ¼ 1; c ¼ 0:845; h ¼ 0:1 and Dt ¼ 0:01 at selected times

from t ¼ 0 to t ¼ 20, in Fig. 2. To show the errors between

the analytical and numerical results over the problem

domain, errors’ distributions are depicted for solitary

waves with amplitudes 1.3 at time t ¼ 20 in Fig. 3.

5.2 Interaction of Two Solitary Waves

In this problem, we consider the interaction of two solitary

waves using the initial condition given by the linear sum of

two well-separated solitary waves having various

amplitudes:

Uðx; 0Þ ¼
X2

i¼1

ai sech bi x� xið Þ½ �; ð38Þ

where ai ¼
ffiffiffiffiffi
6ci
e

q
, bi ¼

ffiffiffi
ci
l

q
, ci, and xi are arbitrary con-

stants for i ¼ 1; 2.

For the simulation, the parameters e ¼ 3; l ¼ 1;

h ¼ 0:1, Dt ¼ 0:01; c1 ¼ 2; c2 ¼ 1; x1 ¼ 15 and x2 ¼ 25

are chosen over the range 0� x� 80 to coincide with those

used by Biswas and Raslan (2011). The experiment are run

from t ¼ 0 to t ¼ 20 and the calculated values of the

invariants I1; I2 and I3 obtained by the present method with

those obtained in Biswas and Raslan (2011) are compared

in Table 3. It is seen that the obtained values of the

invariants remain almost constant during the computer run.

The interaction of two solitary waves scenarios is showed

at t ¼ 0; 1; 2; . . .; 20 in Fig. 4.

Figure 5 shows the development of the interaction of

two solitary waves. It is clear from the figure that, at t ¼ 0,

the greater soliton is at the left position of the smaller

soliton, at the beginning of the run. With the increases of

the time, the greater soliton catches up the smaller until at

time t ¼ 7, then the smaller soliton is absorbed. The

overlapping process continues until t ¼ 8, and the greater

soliton has overtaken the smaller soliton and get in the

process of the separating. At time t ¼ 16, the interaction is

completed and the greater soliton has separated

completely.

5.3 Interaction of Three Solitary Waves

As a last problem, we study the behavior of the interaction

of three solitary waves having different amplitudes and

traveling in the same direction. Therefore, we consider

Eq. (1) with initial condition given by the linear sum of

three well-separated solitary waves of different amplitudes:

Uðx; 0Þ ¼
X3

i¼1

ai sech bi x� xið Þ½ �; ð39Þ

bFig. 5 Interaction of two solitary waves with e ¼ 3; l ¼ 1; h ¼ 0:1,
Dt ¼ 0:01; c1 ¼ 2; c2 ¼ 1; x1 ¼ 15, x2 ¼ 25 and 0� x� 80 at t ¼
0; 4; 6; 7; 8; 12; 16 and 20

Table 4 Comparison of

invariants for the interaction of

three solitary waves with e ¼ 3;
l ¼ 1; h ¼ 0:1, Dt ¼ 0:01; c1 ¼
2; c2 ¼ 1; c3 ¼ 0:5; x1 ¼ 15;
x2 ¼ 25 and x3 ¼ 35, 0� x� 80

t 1 5 10 15 20

I1 Present (Biswas and Raslan 2011) 13.328677 13.328677 13.328677 13.328677 13.328677

13.329060 13.330630 13.338780 13.332640 13.332060

I2 Present (Biswas and Raslan 2011) 12.519943 12.519943 12.519943 12.519943 12.519943

12.520280 12.526260 12.540860 12.526660 12.524900

I3 Present (Biswas and Raslan 2011) 11.321178 13.483073 12.415348 12.413743 11.499146

11.249790 11.261270 11.288040 11.259970 11.256730

Fig. 6 Interaction of three solitary waves with e ¼ 3; l ¼ 1; h ¼ 0:1,
Dt ¼ 0:01; c1 ¼ 2; c2 ¼ 1; c3 ¼ 0:5; x1 ¼ 15; x2 ¼ 25 and x3 ¼ 35

and 0� x� 80 at t ¼ 0; 1; 2; . . .; 20
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where ai ¼
ffiffiffiffiffi
6ci
e

q
, bi ¼

ffiffiffi
ci
l

q
, ci, and xi are arbitrary con-

stants for i ¼ 1; 2; 3.

For the computational work, parameters e ¼ 3; l ¼ 1;

h ¼ 0:1, Dt ¼ 0:01; c1 ¼ 2; c2 ¼ 1; c3 ¼ 0:5; x1 ¼ 15;

x2 ¼ 25, and x3 ¼ 35 are taken over the interval

0� x� 80: Simulations are done up to time t ¼ 20:

Table 4 displays a comparison of the values of the

invariants obtained by the present method with those

obtained in Biswas and Raslan (2011). It is seen from

the table that the obtained values of the invariants

remain almost constant during the computer run. Fig-

ure 6 shows the interaction of these solitary waves at

t ¼ 0; 1; 2; . . .; 20. As it is seen from Fig. 7, interaction

started about time t ¼ 6; overlapping processes occured

bFig. 7 Interaction of three solitary waves with e ¼ 3; l ¼ 1; h ¼ 0:1,
Dt ¼ 0:01; c1 ¼ 2; c2 ¼ 1; c3 ¼ 0:5; x1 ¼ 15; x2 ¼ 25, x3 ¼ 35 and

0� x� 80 at t ¼ 0; 6; 7; 8; 10; 12; 16 and 20

Table 5 Invariants for

Gaussian initial condition with

l ¼ 0:1 and l ¼ 0:04; h ¼ 0:1,
Dt ¼ 0:01 and �50� x� 50 at

0� t� 10

t l ¼ 0:1 l ¼ 0:04

I1 I2 I3 I1 I2 I3

0 1.772454 1.253314 0.2453184 1.772454 1.253314 0.1859635

2 1.772454 1.253314 0.2455421 1.772454 1.253314 0.1829387

4 1.772454 1.253314 0.2098375 1.772454 1.253314 0.1900922

6 1.772454 1.253314 0.2065022 1.772454 1.253314 0.2083623

8 1.772454 1.253314 0.2010116 1.772454 1.253314 0.2204479

10 1.772454 1.253314 0.1748934 1.772454 1.253314 0.2350400

Fig. 8 Gaussian initial condition with e ¼ 3; l ¼ 0:1; h ¼ 0:1, Dt ¼ 0:01 and �50� x� 50 at 0� t� 10
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between time t ¼ 6 and t ¼ 20 and waves started to

resume their original shapes after the time t ¼ 20:

6 Evolution of Solitons

Evolution of a train of solitons of the mKdV equation has

been studied using the Gaussian initial condition

Uðx; 0Þ ¼ exp �x2

 �

; ð40Þ

for various values of l. In this case, the behavior of the

solution depends on the values of l. Therefore, the values

of l ¼ 0:1 and l ¼ 0:04 are chosen at the region of the

�50� x� 50. The numerical computations are done up to

t ¼ 10. The values of the three invariants of motion for

different l are presented in Table 5. In addition, Figs. 8 and

9 illustrate the development of the Gaussian initial condi-

tion into solitary waves.

7 Conclusion

In this paper, a lumped Galerkin method based on cubic

B-splines has been successfully applied to the mKdV

equation to examine the motion of a single solitary wave,

whose analytical solution is known, and extended the

scheme to the study of two and three solitary waves, whose

the analytical solution is unknown during the interaction.

We have calculated the error norms L2 and L1 and the

conserved quantities to show how good and accurate the

numerical solutions of the test problems. It has been

observed that the error norms are satisfactorily small and

the invariants are well conserved. The method successfully

models the motion and interaction of the solitary waves and

evolution of solitons. The obtained results indicate that the

present method is more accurate than some earlier results

found in the literature. As a result, we can say that lumped

Galerkin method is more practical, accurate, and produc-

tive numerical approximation technique for mKdV

Fig. 9 Gaussian initial condition with e ¼ 3; l ¼ 0:04; h ¼ 0:1, Dt ¼ 0:01 and �50� x� 50 at 0� t� 10
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equation and it can be reliably used to solve the similar

type nonlinear problems.
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