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CONVOLUTION IDENTITIES INVOLVING THE CENTRAL BINOMIAL

COEFFICIENTS AND CATALAN NUMBERS

NECDET BATIR, HAKAN KÜÇÜK AND SEZER SORGUN∗

Abstract. We generalize some convolution identities due to Witula and Qi et al. involving the central

binomial coefficients and Catalan numbers. Our formula allows us to establish many new identities

involving these important quantities and recovers some known identities in the literature. Also, we

give new proofs of Shapiro’s Catalan convolution and a famous identity of Hajós.

1. Introduction

The central binomial coefficient Bn and Catalan number Cn are defined by

Bn =

(
2n

n

)
and Cn =

1

n+ 1

(
2n

n

)
,

respectively. These numbers appear in the series expansions of some elementary functions. For

example, we have

arcsinx =

∞∑
n=0

Bnx
2n+1

4n(2n+ 1)
, |x| < 1,

and

(arcsinx)2 =
1

2

∞∑
n=1

(2x)2n

n2Bn
, |x| < 1;

see [7].
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In the literature, there exists many series representations for some important mathematical con-

stants which involve Bn and Cn. As examples, we have

∞∑
n=0

(42n+ 5)B3
n

46n
=

16

π
.

This is due to Ramanujan; see [7, p. 188]. The representation

ζ(3) =
5

2

∞∑
n=1

(−1)n−1

n3Bn
,

which played a key role in the celebrated proof of irrationality of ζ(3) by Apéry [4]. The central bino-

mial coefficients and Catalan numbers have been investigated by many authors in a various directions.

Elezović [14] presents several asymptotic expansions for them. Qi et al. [23, Section 4.2], and Mansour

and Sun [18] obtained the following elegant integral representations, respectively.

Bn =
1

π

∫ ∞

0

dx

(x2 + 1/4)n+1
,

and Cn = (−1)n+122n+1

∫ 1

0
P2n+1(x− 1)dx,

where Pn are the classical Legendre’s polynomials. The central binomial coefficients and Catalan

numbers have important applications in combinatorial theory, graph theory, and statistics (see [1,

6, 26]). For basic properties, generalizations and modular properties of these numbers we refer to

[8, 9, 11, 17, 22, 23, 24, 27]. The work in this paper is motivated by some recent works on convolution

identities involving Bn and Cn. Witula et al. [31] proved the identity

(1.1)

n∑
k=0

BkBn−k

2k + 1
=

16n

(2n+ 1)Bn
.

Alzer and Nagy [2] studied some identities related to (1.1) and they proved the following convolution

identity :
n−1∑
k=0

(−1)kBk(Bn−k − Cn−k) = (−1)n
(
1

2
Bn+1 − 2nB[(n+1)/2]

)
,

where [.] is the greatest integer function. Qi et al. [21] provided two new proofs of identity (1.1)

along with some possibly new convolution identities for Bn and Cn. The first aim of this paper is to

generalize the identity (1.1) and to prove, for any a ∈ R, which is not zero and a negative integer,

n∑
k=0

BkBn−k

k + a
=

4nΓ(a)Γ(n+ a+ 1/2)

Γ(n+ a+ 1)Γ(a+ 1/2)
.

The particular value a = 1
2 leads to (1.1). Taking different values for a, we obtain [21, Eq. (4.1)] and

some others given in [2]. Also, we can differentiate it with respect to a, and in this way, we may derive

many new interesting identities.
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The following elegant identity has attracted the attention of many mathematicians.

(1.2)
n∑

k=0

C2kC2n−2k = 4nCn.

In 2002, Shapiro [16, p. 23] observed that it can be easily proved by the generating function method.

Andrews [3] formulated a q-analogue of (1.2), and he offered a combinatorial proof of the identity.

Nagy [19] also gave a combinatorial proof of it. Hajnal and Nagy [19] have presented a bijective proof

of this identity. Our second aim is to give a new and different proof of identity (1.2), based on the

Wilf–Zeilberger algorithm.

In 1983, Sved [30] possed the following identity as a problem

(1.3)

n∑
k=0

BkBn−k = 4n

and requested a combinatorial solution. In the literature, many different types of proofs of this identity

appeared [5, 10, 12, 15]. In [29] Sved recounts the story of this identity and its combinatorial proofs.

In [13] the authors gave the first bijective proof of it. Our final aim in this paper is to provide a new

proof of this identity by using the WZ-method. As it is well known the classical gamma function is

defined by Γ(x) =
∫∞
0 tx−1e−tdt (x > 0). The Legendre’s duplication formula for the gamma function

states that

(1.4) Γ

(
n+

1

2

)
=

(2n)!

22nn!

√
π, n ∈ N ∪ {0}.

The digamma function ψ is defined by the logarithmic derivative of the gamma function, that is,

ψ(x) = Γ′(x)
Γ(x) . In the literature, the function ψ′ is known to be trigamma function. For m,n ∈ N the

generalized harmonic number H
(m)
n of order m is defined by

(1.5) H(m)
n =

n∑
k=1

1

km
.

H
(m)
0 = 0 and H

(1)
n = Hn is the familiar harmonic number Hn = 1 + 1

2 + 1
3 + · · · + 1

n . The digamma

and tetragamma functions, and the harmonic numbers are related with

(1.6) ψ(n+ 1) = −γ +Hn,

and

(1.7) ψ′(1)− ψ′(n+ 1) = H(2)
n (n ∈ N),

where γ = lim
n→∞

∑n
k=1

(
1
k − logn

)
= 0.57721 · · · is the Euler-Mascheroni constant. The following

duplication formula is valid for the digamma function:

(1.8) ψ

(
n+

1

2

)
= 2ψ(2n)− ψ(n)− 2 log 2 = 2H2n −Hn − 2 log 2− γ;
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see [25]. We shall frequently use the following generalized binomial coefficient(
s

t

)
=

Γ(s+ 1)

Γ(t+ 1)Γ(s− t+ 1)
,

where t and s are real numbers which are not negative integers, and t ≤ s.

2. The Wilf-Zeilberger Method

In this section, we recall briefly the Wilf-Zeilberger method (WZ-method). A discrete function

A(n, k) is hypergeometric if both

A(n+ 1, k)

A(n, k)
and

A(n, k + 1)

A(n, k)

are rational functions in both n and k. A pair (F,G) of hypergeometric functions is said to be aWZ−
pair (Wilf-Zeilberger pair) if for n = 0, 1, 2, . . . and for all k ∈ Z, they satisfy

(2.1) F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k).

In this case, Wilf and Zeilberger [20, Chapter 7] and [30] proved that there exists a rational function

C(n, k) such that

G(n, k) = C(n, k)F (n, k).

They called C(n, k) as certificate of the pair (F,G). Summing on n ≥ 0 both sides of (2.1), one gets

∞∑
n=0

{G(n, k + 1)−G(n, k)} =
∞∑
n=0

{F (n+ 1, k)− F (n, k)}

= lim
n→∞

F (n, k)− F (0, k).(2.2)

In most applications, it is usually very easy to evaluate F (0, k) and limn→∞ F (n, k). So, taking

particular values for k in (2.2), we can obtain many identities. We can also sum both sides of (2.1)

over k’s and in this case we get

∞∑
k=0

{F (n+ 1, k)− F (, k)} =

∞∑
k=0

{G(n, k + 1)−G(n, k)}

= lim
k→∞

G(n, k)−G(n, 0).

If G(n, 0) = 0 and limk→∞G(n, k) = 0, we get

∞∑
k=0

{F (n+ 1, k)− F (n, k)} = 0 (n = 0, 1, 2, 3, . . .),

which implies that
∑∞

k=0 F (n, k) is a constant. Let us say
∑∞

k=0 F (n, k) = C. Usually, it is very

easy to evaluate this constant by choosing a particular value for k (usually k = 0), in other cases,

we evaluate it by taking the limit as k → ∞. It is worthy to note that for a given hypergeometric

function F (n, k) the package EKHAD based on MAPLE [20, 30] allows us to find a rational function

G(n, k) (if there exists) such that (F,G) is a WZ − pair. Now let’s briefly give how to get WZ-pair

in EKHAD. Suppose F (n, k) is given summand for which one is interested in getting a recurrence for
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f(n) =
∑

k F (n, k). Then make a call for ct(F (n, k), r, k, n, N), where r is the order of the recurrence.

If the output of ct (creative telescoping algorithm) gives
[
N−1, C(n, k)

]
for r = 1, then we get G(n, k)

which is WZ-pair of F (n, k) such that G(n, k) = F (n, k)C(n, k). We also refer the interested readers

to [20] and [30] for more information about the WZ- method.

Now we are ready to present our main results.

3. Main Results

Theorem 3.1. Let a be any real number, which is not zero and a negative integer. Then we have

(3.1)

n∑
k=0

BkBn−k

k + a
=

4nΓ(a)Γ(n+ a+ 1/2)

Γ(n+ a+ 1)Γ(a+ 1/2)
.

Proof. We prove by the WZ method. Let n and k be non-negative integers with k ≤ n. Consider the

following discrete function.

F (n, k) =
(n+ 2a)Γ(k + 1/2)Γ(n− k + 1/2)Γ(n+ a+ 1)Γ(a+ 1/2)

2π(k + a)(n− k + a)Γ(a)Γ(k + 1)Γ(n− k + 1)Γ(n+ a+ 1/2)
.(3.2)

The package EKHAD [20, 30] allows us to find the rational function G, where

G(n, k) = −(3n+ 2a− 2k + 3)Γ(n− k + 3/2)Γ(n+ a+ 1)Γ(k + 1/2)Γ(a+ 1/2)

2π(n− k + a+ 1)(n+ 1)Γ(k)Γ(a)Γ(n+ a+ 3/2)Γ(n− k + 2)
(3.3)

(k ∈ Z and n ∈ N ∪ {0}), such that (F,G) is a WZ-pair. That is,

(3.4) F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k).

By replacing n by k, and k by j in (3.4), we obtain

F (k + 1, j)− F (k, j) = G(k, j + 1)−G(k, j).

Summing both sides of this equation from j = 0 to j = k + 1, we deduce

k+1∑
j=0

F (k + 1, j)−
k∑

j=0

F (k, j)− F (k, k + 1)

=

k+1∑
j=0

(G(k, j + 1)−G(k, j)) = G(k, k + 2)−G(k, 0).

Note that G(k, k + 2) = G(k, 0) = 0 and F (k, k + 1) = 0 by identities in (3.2) and (3.3), thus, we get

k+1∑
j=0

F (k + 1, j)−
k∑

j=0

F (k, j) = 0.

Summing both sides from k = 0 to k = n− 1, we conclude that

n−1∑
k=0

k+1∑
j=0

F (k + 1, j)−
k∑

j=0

F (k, j)

 = 0.
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This is a telescopic sum. We therefore have

n∑
j=0

F (n, j)− F (0, 0) = 0.

But since F (0, 0) = 1 this gives
n∑

k=0

F (n, k) = 1

or
n∑

k=0

Γ(k + 1/2)Γ(n− k + 1/2)

(k + a)(n− k + a)Γ(k + 1)Γ(n− k + 1)

=
2πΓ(a)Γ(n+ a+ 1/2)

(n+ 2a)Γ(n+ a+ 1)Γ(a+ 1/2)
.

From this identity, by (1.4), we arrive at

(3.5)

n∑
k=0

BkBn−k

(k + a)(n− k + a)
=

22n+1Γ(a)Γ(n+ a+ 1/2)

(n+ 2a)Γ(n+ a+ 1)Γ(a+ 1/2)
.

Since
1

(k + a)(n− k + a)
=

1

n+ 2a

(
1

k + a
+

1

n− k + a

)
,

we deduce from (3.5)

n∑
k=0

BkBn−k

(k + a)(n− k + a)
=

1

n+ 2a

n∑
k=0

BkBn−k

k + a
+

1

n+ 2a

n∑
k=0

BkBn−k

n− k + a

=
2

n+ 2a

n∑
k=0

BkBn−k

k + a
.(3.6)

From (3.5) and (3.6) we arrive at

n∑
k=0

BkBn−k

k + a
=

4nΓ(a)Γ(n+ a+ 1/2)

Γ(n+ a+ 1)Γ(a+ 1/2)
,

which is the desired result. □

Differentiating both sides of (3.1) with respect to a, we have the following corollary.

Corollary 3.2. For n = 0, 1, 2, . . . we have

n∑
k=0

BkBn−k

(k + a)2
= − 4nΓ(a)Γ(n+ a+ 1/2)

Γ(n+ a+ 1)Γ(a+ 1/2)

× (ψ(a) + ψ(n+ a+ 1/2)− ψ(n+ a+ 1)− ψ(a+ 1/2)) ,(3.7)

where ψ is the digamma function.

We present now a new proof of the elegant convolution formula (given in (1.2)) of Shapiro.
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Theorem 3.3. Let n be a non-negative integer. Then

(3.8)

n∑
k=0

C2kC2n−2k = 4nCn.

Proof. Let n and k be non-negative integers with k ≤ n, and

A(n, k) =
Γ(2k + 1/2)Γ(2n− 2k + 1/2)Γ(n+ 2)√
πΓ(2k + 2)Γ(2n− 2k + 2)Γ(n+ 1/2)

.

Then the Mapple package EKHAD [20, 30] allows to find its WZ-pair

B(n, k) =
(2k − 3n− 4)Γ(n+ 1)Γ(2n− 2k + 5/2)Γ(2k + 1/2)

4
√
πΓ(2k)Γ(n+ 5/2)Γ(2n− 2k + 4)

such that

(3.9) A(n+ 1, k)−A(n, k) = B(n, k + 1)−B(n, k), (k = 0, 1, 2, . . . (k ≤ n)).

By replacing n by k, and k by j in (3.9) we get

(3.10) A(k + 1, j)−A(k, j) = B(k, j + 1)−B(k, j).

Summing both sides of (3.10) from j = 0 to j = k + 1, we get

k+1∑
j=0

A(k + 1, j)−
k+1∑
j=0

A(k, j) =
k+1∑
j=0

(B(k, j + 1)−B(k, j)).

The right-hand side is a telescoping sum, therefore this can be rewritten as follows:

k+1∑
j=0

A(k + 1, j)−
k∑

j=0

A(k, j)−A(k, k + 1) = B(k, k + 2)−B(k, 0).

But since A(k, k + 1) = 0, B(k, k + 2) = 0, and B(k, 0) = 0, it follows that

k+1∑
j=0

A(k + 1, j)−
k∑

j=0

A(k, j) = 0.

Summing both sides from k = 0 to k = n− 1 yields

n−1∑
k=0

( k+1∑
j=0

A(k + 1, j)−
k∑

j=0

A(k, j)

)
= 0,

which is a telescoping sum again. We therefore have

n∑
j=0

A(n, j)−A(0, 0) = 0,

But since A(0, 0) = 1, this leads to
n∑

k=0

A(n, k) = 1.

If we use (1.4), after some simple computations, we see that this is equivalent to (3.8). □
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Theorem 3.4. Let n be a non-negative integer. Then

(3.11)
n∑

k=0

BkBn−k = 4n

Proof. We define the discrete function

P (n, k) =
1

π

Γ(n− k + 1/2)Γ(k + 1/2)

Γ(k + 1)Γ(n− k + 1)
.

The package EKHAD [20, 30] allows us to find

Q(n, k) =
1

2π

(2n− 2k + 1)Γ(n− k + 1/2)Γ(k + 1/2)

4n(n+ 1)Γ(k + 1)Γ(n− k + 2)
,

such that

(n+ 1)(P (n, k)− P (n+ 1, k)) = Q(n, k + 1)−Q(n, k).

The replacement n→ k and k → j leads to

P (k, j)− P (k + 1, j)s =
1

k + 1
(Q(k, j + 1)−Q(k, j)).

We now sum both sides from j = 0 to j = k + 1 and we get

k+1∑
j=0

(P (k, j)− P (k + 1, j)) =
1

k + 1

k+1∑
j=0

(Q(k, j + 1)−Q(k, j))

=
Q(k, k + 2)−Q(k, 0)

k + 1
.

Since Q(k, k + 2) = 0 and Q(k, 0) = 0 we have

k+1∑
j=0

P (k, j)−
k+1∑
j=0

P (k + 1, j) = 0

or
k+1∑
j=0

P (k + 1, j)−
k∑

j=0

P (k, j)− P (k, k + 1) = 0.

But since P (k, k + 1) = 0, this becomes

k+1∑
j=0

P (k + 1, j)−
k∑

j=0

P (k, j) = 0.

Summing both sides of this equation from k = 0 to k = n− 1 one gets

n−1∑
k=0

k+1∑
j=0

P (k + 1, j)−
k∑

j=0

P (k, j)

 = 0,

which is a telescopic sum, and therefore we get

(3.12)

n∑
k=0

P (n, k) = P (0, 0) = 1.
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Using (1.4), we can rewrite P as follows

P (n, k) =
1

4n

(
2k

k

)(
2n− 2k

n− k

)
,

which, by (3.12), leads to (3.11). □

In the last section we present some applications of our main results.

4. Applications

This section is devoted to the applications of our main results. Taking particular values for a in

(3.1) we may obtain many convolution identities for Bn and Cn. Our first identity recovers (1.1).

Identity 4.1. Let n be a non-negative integer. Then

n∑
k=0

BkBn−k

2k + 1
=

16n

(2n+ 1)Bn
.

Proof. The proof follows from Theorem 3.1 with a = 1/2 by (1.4). □

Identity 4.2. Letting a = 1 in Theorem 3.1 we get

n∑
k=0

CkBn−k =
1

2
Bn+1.

Identity 4.3. For n = 0, 1, 2, . . . we have

n∑
k=0

CkCn−k = Cn+1.

Proof. Since
1

(k + 1)(n− k + 1)
=

1

n+ 2

(
1

k + 1
+

1

n− k + 1

)
,

we get

n∑
k=0

CkCn−k =

n∑
k=0

BkBn−k

(k + 1)(n− k + 1)

=
1

n+ 2

(
n∑

k=0

BkBn−k

k + 1
+

n∑
k=0

BkBn−k

n− k + 1

)

=
2

n+ 2

n∑
k=0

BkBn−k

k + 1
,

from which the proof follows by (3.1) with a = 1. □

Identity 4.4. For n = 1, 2, . . . we have

n∑
k=1

BkBn−k

k
= 2(H2n −Hn)Bn,

where Hn are the usual harmonic numbers.
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Proof. Taking the first term of the left-hand side of (3.1) to the right and then letting a → 0, the

conclusion follows by L’ Hospital rule, the duplication formula (1.4) and (1.6). □

Identity 4.5. Let n be a non-negative integer. Then

n∑
k=1

BkBn−k

k2
= Bn

(
2H

(2)
2n −H(2)

n − 2(Hn −H2n)
2
)
,

where H
(2)
n are the generalized harmonic numbers as defined by (1.5).

Proof. Taking the first term of the sum (3.7) to the right, and then simplifying the result, and finally

letting a→ 0, we get

n∑
k=1

BkBn−k

k2
= − lim

a→0

4nΓ(a+ 1)Γ(n+ a+ 1/2)G(a)− Γ(n+ a+ 1)Γ(a+ 1/2)Bn

Γ(n+ a+ 1)Γ(a+ 1/2)a2
.

Here

G(a) = aψ(a+ 1)− 1 + aψ(n+ a+ 1/2)− aψ(n+ a+ 1)− aψ(a+ 1/2).

Using L’Hospital rule, and taking into account the duplication formula (1.4), and the formulas (1.6),

(1.7) and (1.8), we can easily evaluate this limit and we see that it is equal to the right-hand side of

the statement of Identity4.5. But since it requires lengthy calculations we omit the details. □

Identity 4.6. Let n be a non-negative integer. Then

n∑
k=1

CkCn−k

k2
= Cn

[
2H

(2)
2n −H(2)

n − 2(Hn −H2n)
2 − 2n(H2n −Hn)

n+ 1

+
n3 + 2n2 + 3n

(n+ 2)(n+ 1)2

]
Proof. We have

n∑
k=1

CkCn−k

k2
=

n∑
k=1

BkBn−k

k2(k + 1)(n− k + 1)
.

By partial fraction decomposition we have

1

k2(k + 1)(n− k + 1)
=

1

k2(n+ 1)
− n

k(n+ 1)2
+

1

(k + 1)(n+ 2)

+
1

(n+ 1)2(n+ 2)(n− k + 1)
.

Summing both sides of this equation from k = 1 to k = n, after some manipulations we get

n∑
k=1

CkCn−k

k2
=

1

n+ 1

n∑
k=1

BkBn−k

k2
+

n2 + 2n+ 2

(n+ 1)2(n+ 2)

n∑
k=0

BkBn−k

k + 1

− n

(n+ 1)2

n∑
k=1

BkBn−k

k
− (n2 + n+ 1)Bn

(n+ 1)3
.
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By Identity 4.1, Identity 4.2 and setting a = 1 in Theorem 3.1, after some simplifications, we get

n∑
k=1

CkCn−k

k2
= Cn

[
2H

(2)
2n −H(2)

n − 2(Hn −H2n)
2 +

n3 + 2n2 + 3n

(n+ 2)(n+ 1)2

− 2n(H2n −Hn)

n+ 1

]
.

□

Identity 4.7. Let n be a non-negative integer. If we substitute a = 1/2 in Corollary 3.2 and use (1.4)

and (1.8), we get

(4.1)

n∑
k=0

BkBn−k

(2k + 1)2
=

16n(H2n+1 −Hn)

(2n+ 1)Bn
.

Identity 4.8. For m = 0, 1, 2, . . . and any integer n with n > m we have

n∑
k=0

BkBn−k

2k − 2m− 1
= 0.

Proof. If we substitute a = −m− 1
2 (m ∈ N) in (3.1) the proof follows. □

Identity 4.9. Let n be a non-negative integer. If we substitute a = m ∈ N in Theorem 3.1, we get

(4.2)

n∑
k=0

BkBn−k

(k +m)2
=

2
(
2m+2n
m+n

)
m
(
2m
m

) (
Hm+n +H2m −Hm −H2m+2n +

1

2m

)
.

Identity 4.10. For n = 0, 1, 2, . . . we have

n∑
k=0

CkCn−k

k + a
=

(n+ 2a)(2n+ 1)Cn

(n+ 2)(n+ a+ 1)(a− 1)

− 4nΓ(a)Γ(n+ a+ 1/2)

(a− 1)Γ(n+ a+ 2)Γ(a+ 1/2)
.

Proof. By partial fraction decomposition we get

n∑
k=0

CkCn−k

k + a
=

n∑
k=0

BkBn−k

(k + a)(k + 1)(n− k + 1)

=
1

n+ 2

(
1

a− 1

n∑
k=0

BkBn−k

k + 1
− 1

a− 1

n∑
k=0

BkBn−k

n− k + 1

+
1

n+ a+ 1

n∑
k=0

BkBn−k

k + a
+

1

n+ a+ 1

n∑
k=0

BkBn−k

n− k + 1

)
.(4.3)

Clearly we have
n∑

k=0

BkBn−k

n− k + 1
=

n∑
k=0

BkBn−k

k + 1
.
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Using this in (4.3), we get

n∑
k=0

CkCn−k

k + a
=

1

(n+ 2)(n+ a+ 1)(a− 1)

×
(
(n+ 2a)

n∑
k=0

BkBn−k

k + 1
− (n+ 2)

n∑
k=0

BkBn−k

k + a

)
.

Now the conclusion follows from Theorem 3.1. □

Identity 4.11. For n = 0, 1, 2, . . . we have
n∑

k=0

BkCn−k

k + a
=

1

n+ a+ 1

(
4nΓ(a)Γ(n+ a+ 1/2)

Γ(n+ a+ 1)Γ(a+ 1/2)
+

1

2
Bn+1

)
.

Proof. Note that

BkCn−k

k + a
=

BkBn−k

(k + a)(n− k + 1)
=

1

n+ a+ 1

(
BkBn−k

k + a
+

BkBn−k

n− k + 1

)
.

Hence, summing both sides one gets

n∑
k=0

BkCn−k

k + a
=

1

n+ a+ 1

(
n∑

k=0

BkBn−k

k + a
+

n∑
k=0

BkBn−k

n− k + 1

)

=
1

n+ a+ 1

(
n∑

k=0

BkBn−k

k + a
+

n∑
k=0

BkBn−k

k + 1

)
.

The proof now follows from Theorem 3.1. □

Identity 4.12. Let n be a non-negative integer. Then we have
n∑

k=0

Bk(Bn−k − Cn−k)

n− k + 2
=

nBn+1

6(n+ 2)
.

Proof. The following rearrangement is valid

(4.4)

n∑
k=0

Bk(Bn−k − Cn−k)

n− k + 2
=

n∑
k=0

BkBn−k

k + 2
−

n∑
k=0

Bn−kCk

k + 2
.

From the definitions and partial fraction decomposition we find
n∑

k=0

Bn−kCk

k + 2
=

n∑
k=0

BkBn−k

(k + 2)(k + 1)
=

n∑
k=0

BkBn−k

k + 1
−

n∑
k=0

BkBn−k

k + 2
.

Thus, using (4.4), we obtain

(4.5)
n∑

k=0

Bk(Bn−k − Cn−k)

n− k + 2
= 2

n∑
k=0

BkBn−k

k + 2
−

n∑
k=0

BkBn−k

k + 1
.

From Theorem 3.1 with a = 2 we get
n∑

k=0

BkBn−k

k + 2
=

2n+ 3

6(n+ 2)
Bn+1.

Substituting this in (4.5), and using Theorem 3.1 for a = 1, the conclusion follows immediately. □
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Remark 4.13. Identity 4.12 recovers in [2, Theorem 4].

Identity 4.14. Let n be a non-negative integer. Letting a = 1 in Identity 4.11 we get

n∑
k=0

BkCn−k

k + 1
=
Bn+1

n+ 2
.

Remark 4.15. Using our results given here it is possible to evaluate all the following sums:

n∑
k=1

BkBn−k

km
,

n∑
k=0

BkBn−k

(k + a)m
,

n∑
k=1

CkCn−k

(k + a)m
, and

n∑
k=1

CkCn−k

km

but when m is large lengthy computations are required.
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