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Abstract

A mixed extension of a graph G is a graph H obtained from G by replacing each
vertex of G by a clique or a coclique, whilst two vertices in H corresponding to
distinct vertices x and y of G are adjacent whenever x and y are adjacent in G. If
G is the path P3, then H has at most three adjacency eigenvalues unequal to 0 and
−1. Recently, the first author classified the graphs with the mentioned eigenvalue
property. Using this classification we investigate mixed extension of P3 on being
determined by the adjacency spectrum. We present several cospectral families, and
with the help of a computer we find all graphs on at most 25 vertices that are
cospectral with a mixed extension of P3.

Mathematics Subject Classifications: 05C50

1 Introduction

Characterizations of graphs by means of the spectrum of the adjacency matrix is a well-
studied subject. Although it is conjectured that almost all graphs are determined by
the spectrum of the adjacency matrix, there are still relatively few graphs known to
be determined by its spectrum. The reason is that in general this property is hard to
prove. Some of these proofs are based on the classification of graphs with certain spectral
properties, such as classifications in terms of the smallest eigenvalue. Recently the first
author classified the graphs with all but at most three eigenvalues equal to 0 or −1; see [5].
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Here this classification is applied to mixed extensions of the path P3 (see next section),
which have the mentioned spectral property. We give the characteristic polynomial of all
graphs in the classification, and completely determine the mixed extensions of P3 which
are determined by the spectrum on at most 25 vertices. Also we present several infinite
families of cospectral graphs with all but three eigenvalues equal to 0 or −1.

2 Mixed extensions of P3

Let G be a graph with vertex set V (G) = {1, . . . ,m} and let V1, . . . , Vm be mutually
disjoint nonempty finite sets. A graph H with vertex set V (H) = V1∪ . . .∪Vm is defined
as follows. For each i ∈ {1, . . . ,m}, all vertices of Vi are either mutually adjacent (form
a clique), or mutually nonadjacent (form a coclique). For any u ∈ Vi and v ∈ Vj (i 6= j)
{u, v} in an edge in H if and only if {i, j} is an edge in G. The graph H is called a mixed
extension of G. A mixed extension is represented by an m-tuple (t1, . . . , tm) of nonzero
integers, where ti > 0 indicates that Vi is a clique of order ti and ti < 0 means that
Vi is a coclique of order −ti. A mixed extension of G is a special case of a generalized
composition or G-join, introduced in [3] and [6], respectively. We refer to [5], [3] and [6]
for basic results on mixed extensions, and to [1] or [4] for graph spectra.

Suppose H is a mixed extension of the path P3 of type (t1, t2, t3). Then the adjacency
matrix of H admits the following structure. (As usual, J is an all-ones matrix, Jn is the
n× n all-ones matrix, and In is the identity matrix of order n.)

A =

 ε1(J|t1| − I|t1|) J O
J ε2(J|t2| − I|t2|) J
O J ε3(J|t3| − I|t3|)

 ,

where εi = 1 if ti > 1 and εi = 0 otherwise (i = 1, 2, 3).
The given partition of A is equitable, therefore A has two kinds of eigenvalues: the

ones that have eigenvectors in the span V of the characteristic vectors of the partition, and
those whose eigenvectors are orthogonal to V . The first kind coincide with the eigenvalues
of the quotient matrix

Q =

 ε1(|t1| − 1) |t2| 0
|t1| ε2(|t2| − 1) |t3|
0 |t2| ε3(|t3| − 1)

 .

The second kind of eigenvalues of H remain eigenvalues if we subtract an all-one block
from each nonzero block of A. So these eigenvalues are also eigenvalues of

B =

 −ε1I|t1| O O
O −ε2I|t2| O
O O −ε3I|t3|

 ,

which are clearly all equal to 0 or −1. So, if n = |t1| + |t2| + |t3| is the order of H, and
q(x) = x3 − bx2 − cx + d is the characteristic polynomial of Q, then the characteristic
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polynomial of A equals p(x) = q(x)(x+1)bxn−b−3. Indeed, the exponent of (x+1) equals b,
because the coefficient of xn−1 in p(x) equals trace(A) = 0. Note that d = − det(Q) > 0,
and det(Q) = 0 if and only if ε1 = ε3 = 0 that is, both end vertices of P3 are replaced by
a coclique. If this is the case then we call it an improper mixed extension of P3, because
it is in fact a mixed extension of P2. If det(Q) 6= 0, then the mixed extension is proper.

Proposition 1. A proper mixed extension of the path P3 has exactly two positive eigen-
values and one eigenvalue smaller than −1.

Proof. The quotient matrix Q has at least one positive eigenvalue, and det(Q) < 0 gives
that Q (and A) has exactly two positive eigenvalues. It is well-known that a graph
with smallest adjacency eigenvalue at least −1 is the disjoint union of complete graphs.
Therefore the smallest eigenvalue of A (and Q) is less than −1.

3 Spectral characterizations

Some known results on spectral characterizations of graphs deal with special cases of
mixed extensions of P3. This includes the pineapple graphs (type (p, 1,−q), p, q > 0), and
the complete graphs from which the edges of a complete bipartite subgraph are deleted
(type (p, q, r), p, q, r > 0). The latter graphs are determined by their spectrum for all
p, q, r > 0; see [2]. For the pineapple graphs it is known for which p and q the graphs
are determined by its spectrum. For the precise conditions on p and q we refer to [8].
It follows that among the connected graphs the pineapple graph is determined by its
spectrum.

An improper mixed extension of P3 is either a complete bipartite graph Kp,q (p >
2, q > 1), or a complete split graph CSp,q (p, q > 2), which is a complete graph Kp+q from
which the edges of a complete subgraph Kq are deleted. For these classes of graphs the
spectral characterization is straightforward and known. The complete split graph CSp,q

is determined by its spectrum for all p, q > 2. The complete bipartite graph Kp,q is not
determined by its adjacency spectrum if and only if pq has a divisor r strictly between p
and q. Then Kr,pq/r extended with p + q − r − pq/r isolated vertices is cospectral with
Kp,q. From now on we restrict to proper mixed extensions of P3. We define G to be the
set of graphs with all but at most three adjacency eigenvalues equal to −1 or 0. Note
that a graph G in G remains in G if isolated vertices are added or deleted. Therefore,
for the classification, we may restrict to the set of graphs in G with no isolated vertices.
By G ′′ we denote the class of graphs in G with no isolated vertices, with two positive
eigenvalues and with one eigenvalue less than −1. By Proposition 1 we know that a
proper mixed extension of P3 is in G ′′. The characterization of graphs in G, mentioned in
the introduction, when restricted to G ′′, is given by the following two theorems.

Theorem 2. A disconnected graph H belongs to G ′′, if and only if H is one of the
following.

(i) Kp + Kq,r with p, q, r > 2,

(ii) Kp + CSq,r with p, q > 2, r > 1.
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b c d
(−p,−q, r) r − 1 pq + qr pq(r − 1)
(−p, q, r) q + r − 2 q + r + pq − 1 pq(r − 1)
(p,−q, r) p + r − 2 q(p + r) + (p− 1)(1− r) qr(p− 1) + pq(r − 1)
(p, q, r) p + q + r − 3 2q + 2r + 2p− pr − 3 qpr + pr − p− q − r + 1

(−2, q, r,−2) q + r − 1 2q + 2r 4qr
(−3, q,−2, s) q + s− 1 2s + 5q − qs 6qs

(−2,−2,−3, s) s 2s + 10 12s
(5, 2,−r, 4) 8 6r − 9 34r + 18
(4, 2,−r, 6) 9 8r − 15 40r + 25
(7, 2,−r, 3) 9 5r − 6 37r + 16
(3, 3,−r, 6) 9 9r − 15 45r + 25
(4, 3,−r, 3) 7 6r − 4 30r + 12
(7, 3,−r, 2) 9 5r + 1 37r + 9
(3, 4,−r, 4) 8 8r − 9 40r + 18
(3, 6,−r, 3) 9 9r − 6 45r + 16
(4, 6,−r, 2) 9 8r + 1 40r + 9
(5, 4,−r, 2) 8 6r + 1 34r + 8
(2, 2, 2, 7) 9 1 65
(2, 2, 6, 3) 9 9 73
(2, 2, 3, 4) 7 5 51
(2, 3, 2, 5) 8 1 68
(2, 3, 4, 3) 8 7 74
(2, 5, 2, 4) 9 1 89
(3, 2, 2, 3) 6 3 40
(2, 5, 3, 3) 9 6 94

(1, p,−q, r, 1) p + r − 1 (q + 1)(p + r)− pr pr(2q + 1)
Kp + Kq,r p− 1 qr qr(p− 1)
Kp + CSq,r p + q − 2 qr − (p− 1)(q − 1) qr(p− 1)

Table 1: Coefficients b, c, d of the characteristic polynomials of graphs in G ′′
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Theorem 3. A connected graph H belongs to G ′′ if and only if H is one of the following.

(i) A mixed extension of P3 of type (−p,−q, r); (−p, q, r); (p,−q, r), or (p, q, r) with
p, q > 1 and r > 2,

(ii) a mixed extension of P4 of type (−2, q, r,−2); (−3, q,−2, s), or (−2,−2,−3, s) with
q, r, s > 1,

(iii) a mixed extension of P4 of type (p, q,−r, s) with r > 1 and (p, q, s) ∈
{

(5, 2, 4),
(4, 2, 6), (7, 2, 3), (3, 3, 6), (4, 3, 3), (7, 3, 2), (3, 4, 4), (3, 6, 3), (4, 6, 2), (5, 4, 2)

}
,

(iv) a mixed extension of P4 of type (p, q, r, s), with (p, q, r, s) ∈
{

(2, 2, 2, 7), (2, 2, 6, 3),
(2, 2, 3, 4), (2, 3, 2, 5), (2, 3, 4, 3), (2, 5, 2, 4), (2, 5, 3, 3), (3, 2, 2, 3)

}
,

(v) a mixed extension of P5 of type (1, p,−q, r, 1) with p, q, r > 1.

The characteristic polynomial p(x) of a graph in G ′′ with n vertices can be written as:

p(x) = (x3 − bx2 − cx + d)(x + 1)bxn−b−3, with b > 0 and d > 0

(note that the multiplicity of the eigenvalue −1 equals b, because trace(A) = 0). So the
nonzero part of the spectrum of a graph in G ′′ is determined by the coefficients b, c and
d. Table 1 gives these coefficients for each type of the above classification. If two graphs
in the classification have the same b,c and d, then the nonzero part of the spectrum is
the same. We will call such a pair pseudo-cospectral. If two pseudo-cospectral graphs
have different order, we can extend the smaller graph (or both graphs) with some isolated
vertices, so that the two graphs become cospectral. Therefore Table 1 gives all information
needed to decide which proper mixed extensions of P3 are determined by their spectrum.
Nevertheless, it is far too complicated to give a general result. Therefore we present some
special cases.

Theorem 4. [2] Suppose H is a mixed extension of P3 of order n and type (p, q, r) with
p, q, r > 1. Then H is determined by the spectrum of its adjacency matrix.

Proof. From Table 1 we see that for this case the coefficient b equals p+ q+ r−3 = n−3.
For every graph H ′ of order n′ pseudo-cospectral with H, which belongs to one of the
other types, we have b < n′− 3. So H ′ has more vertices than H, and we cannot obtain a
graph cospectral with H by adding isolated vertices to H ′. If H ′ is a mixed extension of
P3 of type (p′, q′, r′) with p′, q′, r′ > 1, and H ′ is cospectral with H, then H and H ′ have
the same coefficients b, c an d, which implies p = p′, q = q′, and r = r′.

The following results follow straightforwardly from Table 1.

Proposition 5. The following types of mixed extensions of P3 are pseudo-cospectral with
a non-isomorphic graph in G ′′.

(i) Type (p,−q, p) with Kp + CSp,2q where p > 2, q > 1,
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(ii) type (p, (p− 1)(p− 2), p) with Kp(p−1) + Kp−1,p−1, where p > 3,

(iii) type (p, q, p) with Kp + CSp+q−1,r where r = 1 + pq/(p + q − 1) is an integer, and
p > 2, q > 1.

Notice that this proposition does not give any graph which is cospectral and non-
isomorphic with a mixed extension of P3, because in all three cases the second graph has
more vertices than the first one. For the pineapple graph Kq

p , which is a mixed extension
of P3 of type (p− 1, 1,−q), we find (see [7]).

Proposition 6. The pineapple graph Kp2

2p is cospectral with the mixed extension of P3 of
type (p,−p, p) extended with p(p− 1) isolated vertices.

See [8] for more examples of graphs non-isomorphic but cospectral with Kq
p . As re-

marked before, there exists no connected example. However, there do exist connected
non-isomorphic cospectral mixed extensions of P3.

Proposition 7. The mixed extensions of P3 of types (p,−q, q(2q − p − 1)/(q − p)) and
(−q, 2q−1, p(2q−p−1)/(q−p)) are cospectral whenever q(2q−p−1)/(q−p) is a positive
integer, and p, q > 1.

Note that there are infinitely many values of p and q for which the above fraction is
integral. For example if p = 1 or p = q − 1.

4 Enumeration

Using Table 1, we generated by computer (using Maple) a list of all non-isomorphic
graphs in G ′′ on at most 25 vertices. The list contains almost 10000 graphs. We ordered
the graphs lexicographically with respect to the coefficients b, c, d. Then the pseudo-
cospectral graphs in G ′′ become consecutive items in the table with the same b, c, d. Since
the list is very long we only consider the mixed extensions of P3 that have at least one
non-isomorphic pseudo-cospectral mate in the list. By use of the shortened list we found
the pseudo-cospectral examples of Propositions 5 and 7. Next we deleted the cases given
in Proposition 5, 6 and 7 from the list. The final list is given in Table 2. Thus this table
together with Propositions 5 to 7 give all mixed extensions of P3 of order n 6 25 for
which there exist at least one pseudo-cospectral graph in G ′′ of order at most 25. Since
Proposition 5 gives no graphs cospectral with a mixed extension of P3, we can conclude
the following:

Theorem 8. Suppose H is a proper mixed extension of P3 of order n 6 25. Then H
is determined by the spectrum of the adjacency matrix if and only if H is not one of the
graphs given in Propositions 6 or 7, and every graph in Table 2 pseudo-cospectral with H
has more vertices than H.
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Table 2: Graphs in G ′′ of order n 6 25 pseudo-cospectral with a mixed extension of P3

b c d Type p q r s n
2 10 14 (−p, q, r) 7 1 3 11
2 10 14 (1, p,−q, r, 1) 1 3 2 8
3 8 12 (−p, q, r) 4 1 4 9
3 8 12 (−p, q, r,−s) 2 1 3 2 8
3 9 15 (−p, q, r) 5 1 4 10
3 9 15 (1, p,−q, r, 1) 1 2 3 8
3 10 12 (−p, q, r) 3 2 3 8
3 10 12 Kp+ CSq, r 2 3 4 9
3 14 18 (−p,−q, r) 3 2 4 9
3 14 18 (−p, q,−r, s) 3 3 2 1 9
3 16 24 (−p,−q, r) 4 2 4 10
3 16 24 (−p, q, r) 6 2 3 11
3 16 36 (−p, q, r) 12 1 4 17
3 16 36 (−p,−q,−r, s) 2 2 3 3 10
3 16 36 (1, p,−q, r, 1) 2 4 2 10
3 16 36 Kp + CSq,r 3 2 9 14
3 18 28 (−p, q, r) 7 2 3 12
3 18 28 (p,−q, r) 2 4 3 9
3 28 60 (−p,−q, r) 10 2 4 16
3 28 60 (1, p,−q, r, 1) 2 7 2 13
3 28 60 Kp + CSq,r 3 2 15 20
3 40 72 (−p,−q, r) 6 4 4 14
3 40 72 (−p, q, r) 18 2 3 23
3 52 108 (−p,−q, r) 9 4 4 17
3 52 108 (1, p,−q, r, 1) 2 13 2 19
4 9 12 (−p, q, r) 2 2 4 8
4 9 12 Kp + CSq,r 2 4 3 9
4 15 30 (−p, q, r) 5 2 4 11
4 15 30 (p,−q, r) 2 3 4 9
4 21 24 (−p,−q, r) 2 3 5 10
4 21 24 Kp + CSq,r 2 4 6 12
4 23 54 (−p, q, r) 9 2 4 15
4 23 54 Kp + CSq,r 3 3 9 15
4 39 102 (−p, q, r) 17 2 4 23
4 39 102 (1, p,−q, r, 1) 2 8 3 15
5 14 40 (−p, q, r) 8 1 6 15
5 14 40 Kp + CSq,r 3 4 5 12
5 16 20 (−p,−q, r) 2 2 6 10
5 16 20 Kp + CSq,r 2 5 4 11
5 18 48 (−p, q, r) 6 2 5 13
5 18 48 Kp + CSq,r 3 4 6 13
5 24 90 (−p, q, r) 18 1 6 25
5 24 90 Kp + CSq,r 4 3 10 17
5 28 88 (−p, q, r) 11 2 5 18
5 28 88 (1, p,−q, r, 1) 2 5 4 13
5 30 72 (−p, q, r) 8 3 4 15
5 30 72 Kp + CSq,r 3 4 9 16
5 36 90 (−p,−q, r) 6 3 6 15
5 36 90 (−p, q, r) 10 3 4 17
5 36 120 (−p,−q, r) 12 2 6 20
5 36 120 (−p, q, r) 15 2 5 22

b c d Type p q r s n
5 42 144 (−p, q, r) 18 2 5 25
5 42 144 Kp + CSq,r 4 3 16 23
5 57 153 (−p, q, r) 17 3 4 24
5 57 153 (p,−q, r) 3 9 4 16
5 70 200 (−p,−q, r) 8 5 6 19
5 70 200 (1, p,−q, r, 1) 2 12 4 20
6 17 50 (−p, q, r) 5 2 6 13
6 17 50 Kp + CSq,r 3 5 5 13
6 19 48 (−p, q, r) 4 3 5 12
6 19 48 (p,−q, r) 2 3 6 11
6 19 60 (−p, q, r) 6 2 6 14
6 19 60 (−p, q,−r, s) 3 5 2 2 12
6 22 60 (−p, q, r) 5 3 5 13
6 22 60 Kp + CSq,r 3 5 6 14
6 25 90 (−p, q, r) 9 2 6 17
6 25 90 (1, p,−q, r, 1) 2 4 5 13
6 28 84 (−p,−q, r) 7 2 7 16
6 28 84 (−p, q, r) 7 3 5 15
6 31 120 (p,−q, r) 4 5 4 13
6 31 120 (−p, q, r) 12 2 6 20
6 40 132 (−p, q, r) 11 3 5 19
6 40 132 (p,−q, r) 3 6 5 14
6 44 180 (−p,−q, r) 15 2 7 24
6 44 180 (1, p,−q, r, 1) 3 7 4 16
6 50 90 (−p,−q, r) 3 5 7 15
6 50 90 (1, p,−q, r, 1) 1 7 6 16
6 51 180 (−p,−q, r) 10 3 7 20
6 51 180 Kp + CSq,r 4 4 15 23
6 55 192 (−p, q, r) 16 3 5 24
6 55 192 (p,−q, r) 4 8 4 16
7 16 48 (−p, q, r) 4 2 7 13
7 16 48 (−p, q, r,−s) 2 2 6 2 12
7 20 60 (−p, q, r) 4 3 6 13
7 20 60 Kp + CSq,r 3 6 5 14
7 20 84 (−p, q, r) 12 1 8 21
7 20 84 (1, p,−q, r, 1) 2 3 6 13
7 23 105 (−p, q, r) 15 1 8 24
7 23 105 Kp + CSq,r 4 5 7 16
7 26 108 (−p, q, r) 9 2 7 18
7 26 108 (p,−q, r) 3 4 6 13
7 28 120 (−p, q, r) 10 2 7 19
7 28 120 Kp + CSq,r 4 5 8 17
7 30 42 (−p,−q, r) 2 3 8 13
7 30 42 (−p, q,−r, s) 3 7 2 1 13
7 33 63 (−p,−q, r) 3 3 8 14
7 33 63 (1, p,−q, r, 1) 1 4 7 14
7 35 135 (−p, q, r) 9 3 6 18
7 35 135 (p,−q, r) 3 5 6 14
7 38 150 (−p, q, r) 10 3 6 19
7 38 150 Kp + CSq,r 4 5 10 19
7 64 224 (−p,−q, r) 8 4 8 20
7 64 224 (−p, q, r) 14 4 5 23
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b c d Type p q r s n
7 68 240 (−p, q, r) 15 4 5 24
7 68 240 Kp + CSq,r 4 5 16 25
7 78 210 (−p,−q, r) 5 6 8 19
7 78 210 (−p, q, r) 14 5 4 23
8 8 64 (p,−q, r) 3 2 7 12
8 8 64 (Kp+Kq, r) 9 2 4 15
8 13 32 (−p, q, r) 4 1 9 14
8 13 32 (p, q, r) 2 6 3 11
8 16 56 (−p, q, r) 7 1 9 17
8 16 56 Kp + CSq,r 3 7 4 14
8 18 72 (−p, q, r) 9 1 9 19
8 18 72 (−p, q, r,−s) 2 3 6 2 13
8 19 40 (−p, q, r) 2 5 5 12
8 19 40 (1, p,−q, r, 1) 1 2 8 13
8 27 126 (−p, q, r) 9 2 8 19
8 27 126 Kp + CSq,r 4 6 7 17
8 33 144 (−p, q, r) 8 3 7 18
8 33 144 Kp + CSq,r 4 6 8 18
8 38 160 (−p,−q, r) 10 2 9 21
8 38 160 (p,−q, r) 3 5 7 15
8 45 180 (−p, q, r) 9 4 6 19
8 45 180 Kp + CSq,r 4 6 10 20
8 51 126 (−p, q, r) 7 6 4 17
8 51 126 Kp + CSq,r 3 7 9 19
8 54 270 (−p, q, r) 15 3 7 25
8 54 270 (1, p,−q, r, 1) 3 7 6 18
8 57 240 (−p,−q, r) 10 3 9 22
8 57 240 (−p, q, r) 12 4 6 22
8 68 256 (−p,−q, r) 8 4 9 21
8 68 256 (p,−q, r) 3 8 7 18
8 128 448 (−p,−q, r) 7 8 9 24
8 128 448 (p,−q, r) 3 14 7 24
9 3 61 (p, q, r) 3 3 6 12
9 3 61 (p, q,−r, s) 3 6 1 3 13
9 4 90 (p,−q, r) 4 2 7 13
9 4 90 (p, q,−r, s) 7 2 2 3 14
9 9 49 (p, q, r) 2 4 6 12
9 9 49 (p, q,−r, s) 4 6 1 2 13
9 15 135 (p,−q, r) 4 3 7 14
9 15 135 (Kp+Kq, r) 10 3 5 18
9 18 64 (−p, q, r) 4 2 9 15
9 18 64 Kp + CSq,r 3 8 4 15
9 24 112 (−p, q, r) 7 2 9 18
9 24 112 (1, p,−q, r, 1) 2 3 8 15
9 24 126 (−p, q, r) 14 1 10 25
9 24 126 Kp + CSq,r 4 7 6 17
9 28 72 (−p, q, r) 3 6 5 14
9 28 72 (−p,−q, r) 4 2 10 16
9 31 63 (−p, q, r) 3 7 4 14
9 31 63 (1, p,−q, r, 1) 1 3 9 15
9 31 147 (−p, q, r) 7 3 8 18
9 31 147 Kp + CSq,r 4 7 7 18

b c d Type p q r s n
9 34 96 (−p, q, r) 4 6 5 15
9 34 96 Kp + CSq,r 3 8 6 17
9 34 144 (−p, q, r) 6 4 7 17
9 34 144 (1, p,−q, r, 1) 2 4 8 16
9 38 168 (−p, q, r) 7 4 7 18
9 38 168 Kp + CSq,r 4 7 8 19
9 49 273 (−p, q, r) 13 3 8 24
9 49 273 (1, p,−q, r, 1) 3 6 7 18
9 64 216 (−p,−q, r) 6 4 10 20
9 64 216 (−p, q, r) 9 6 5 20
9 94 336 (−p, q, r) 14 6 5 25
9 94 336 (1, p,−q, r, 1) 2 10 8 22

10 20 72 (−p, q, r) 3 3 9 15
10 20 72 Kp + CSq,r 3 9 4 16
10 27 144 (−p, q, r) 8 2 10 20
10 27 144 Kp + CSq,r 4 8 6 18
10 29 90 (−p, q, r) 3 6 6 15
10 29 90 Kp + CSq,r 3 9 5 17
10 32 168 (−p, q, r) 7 3 9 19
10 32 168 (p,−q, r) 3 4 9 16
10 35 168 (−p, q, r) 6 4 8 18
10 35 168 Kp + CSq,r 4 8 7 19
10 59 240 (−p, q, r) 8 6 6 20
10 59 240 Kp + CSq,r 4 8 10 22
10 63 364 (−p, q, r) 13 4 8 25
10 63 364 (p,−q, r) 4 7 8 19
10 66 330 (−p,−q, r) 11 3 11 25
10 66 330 (−p, q, r) 11 5 7 23
11 -12 108 (1, p,−q, r, 1) 6 1 6 15
11 -12 108 Kp + CSq,r 7 6 3 16
11 24 108 (−p, q, r) 4 3 10 17
11 24 108 (−p, q, r,−s) 2 3 9 2 16
11 30 162 (−p, q, r) 6 3 10 19
11 30 162 Kp + CSq,r 4 9 6 19
11 45 297 (−p, q, r) 11 3 10 24
11 45 297 (1, p,−q, r, 1) 3 5 9 19
11 48 216 (−p, q, r) 6 6 7 19
11 48 216 Kp + CSq,r 4 9 8 21
11 52 320 (−p, q, r) 10 4 9 23
11 52 320 Kp + CSq,r 5 8 10 23
12 1 132 (p,−q, r) 4 2 10 16
12 1 132 Kp + CSq,r 12 2 6 20
12 19 66 (−p, q, r) 3 2 12 17
12 19 66 (p, q, r) 2 9 4 15
12 33 180 (−p, q, r) 5 4 10 19
12 33 180 Kp + CSq,r 4 10 6 20
12 43 210 (−p, q, r) 5 6 8 19
12 43 210 Kp + CSq,r 4 10 7 21
12 49 324 (−p, q, r) 9 4 10 23
12 49 324 Kp + CSq,r 5 9 9 23
12 57 396 (−p, q, r) 11 4 10 25
12 57 396 (p,−q, r) 4 6 10 20
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b c d Type p q r s n
12 58 360 (−p, q, r) 9 5 9 23
12 58 360 Kp + CSq,r 5 9 10 24
13 -7 165 (p, q, r) 6 4 6 16
13 -7 165 Kp + CSq,r 12 3 5 20
13 26 96 (−p, q, r) 2 6 9 17
13 26 96 Kp + CSq,r 3 12 4 19
13 54 360 (−p, q, r) 8 5 10 23
13 54 360 Kp + CSq,r 5 10 9 24
14 -17 176 (p, q, r) 6 3 8 17
14 -17 176 Kp + CSq,r 12 4 4 20
14 39 216 (−p, q, r) 4 6 10 20
14 39 216 Kp + CSq,r 4 12 6 22
15 32 192 (−p, q, r) 4 4 13 21
15 32 192 (−p, q, r,−s) 2 4 12 2 20
15 52 252 (−p, q, r) 4 9 8 21
15 52 252 (1, p,−q, r, 1) 2 4 14 22
16 -37 198 (p, q, r) 8 2 9 19
16 -37 198 Kp + CSq,r 12 6 3 21
16 -28 288 (p,−q, r) 9 2 9 20
16 -28 288 Kp + CSq,r 9 9 4 22

b c d Type p q r s n
16 -19 252 (p,−q, r) 6 2 12 20
16 -19 252 (p, q, r) 6 4 9 19
16 -10 252 (p, q, r) 5 5 9 19
16 -10 252 Kp + CSq,r 15 3 6 24
16 31 210 (−p, q, r) 7 2 16 25
16 31 210 Kp + CSq,r 4 14 5 23
16 38 210 (−p, q, r) 3 7 11 21
16 38 210 (1, p,−q, r, 1) 2 3 15 22
16 72 330 (−p, q, r) 5 11 7 23
16 72 330 (1, p,−q, r, 1) 2 5 15 24
17 33 225 (−p, q, r) 5 3 16 24
17 33 225 Kp + CSq,r 4 15 5 24
17 36 270 (−p, q, r) 6 3 16 25
17 36 270 (−p, q,−r, s) 3 15 2 3 23
18 -17 420 (−p, q,−r, s) 3 5 2 14 24
18 -17 420 Kp + CSq,r 8 12 5 25
18 35 240 (−p, q, r) 4 4 16 24
18 35 240 Kp + CSq,r 4 16 5 25
19 40 300 (−p, q, r) 4 5 16 25
19 40 300 (−p, q, r,−s) 2 5 15 2 24
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