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Abstract.  In this study, we have got numerical solutions of the generalized Rosenau-

KdV equation by using collocation finite element method in which septic B-splines are used as 
approximate functions. Effectivity and proficiency of the method are shown by solving the 
equation with different initial and boundary conditions. Also, to do this 2L  and L  error 

norms and two lowest invariants MI  and EI  have been computed. A linear stability analysis 

indicates that our algorithm, based on a Crank Nicolson approximation in time, is 
unconditionally stable. An error analysis of the new algorithm has been made. The obtained 
numerical solutions are compared with some earlier studies. This comparison clearly 
indicates that the obtained results are better than the earlier results. 

Keywords: Generalized Rosenau KdV equation, finite element method, collocation, 
septic B-spline, soliton.  
 
 
1. INTRODUCTION  
 
 

In this article, we will conceive the following generalized Rosenau-KdV equation 
 

   0,p
t x xxx xxxxt x

U U U U U         (0.1)                        

 
with the homogeneous boundary conditions, 
 

 

     ( , ) 0,    ( , ) 0,

( , ) 0,   ( , ) 0,

( , ) 0, ( , ) 0, 0
x x

xx xx

U a t U b t

U a t U b t

U a t U b t t

 
 
  

  (0.2) 

 
and an initial condition  
 
 ( ,0) ( ) ,U x f x a x b     (0.3) 
 
where 2p   is an integer, xxxU is the viscous term and subscripts x  and ݐ denote differentiation. The 

following usual Rosenau-KdV equation 
 
 0,t x xxx xxxxt xU U U U UU         (0.4) 
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is obtained by taking 2p   in Eq.(1.1). Up to now, many computation techniques have been 
presented on the Rosenau-KdV equation. Zuo, used the sine-cosine and the tanh methods for 
solving the Rosenau-KdV equation [1]. A conservative three-level linear finite difference 
scheme for the numerical solution of the initial-boundary value problem of Rosenau-KdV 
equation is suggested by J. Hu et al [2]. The topological soliton solution or shock wave 
solutions of this equation were analyzed by G. Ebadi et al [3]. The 1-soliton solution is got by 
the ansatz method for solitary waves and singular solitons and the soliton perturbation theory 
is performed to define the adiabatic dynamics of the perturbed soliton by Razborova et al [4]. 
B. Wongsaijai and K. Poochinapan [5] proposed a mathematical model to obtain the solution 
of the nonlinear wave by coupling the Rosenau-KdV equation. In [6,7] authors solved the 
equation with subdomain finite element method based on the sextic B-spline basis functions 
and collocation finite element method, respectively. Until now, numerical method for the 
initial-boundary value problem of the generalized Rosenau-KdV equation has not been 
studied widely. N. Atouani and K. Omrani [8] examined two conservative finite difference 
schemes for the Rosenau-KdV equation (1.4) in 2D. A. Esfahani [9] obtained the solitary 
wave solutions of the generalized Rosenau-KdV equation with sech-ansatze method and also 
gave the two invariants for the generalized Rosenau-KdVequation. An average linear finite 
difference scheme for the numerical solution of the initial-boundary value problem of 
generalized Rosenau-KdV equation was studied by M. Zheng and J. Zhou [10]. Y. Luo et al. 
[11] proposed a conservative Crank-Nicolson finite difference scheme for the initial-boundary 
value problem of the generalized Rosenau-KdV equation. The following KdV equation 
 
 0,t x xxxU aUU bU     (0.5) 

 
has a number of shortcomings [12, 13]. Such as, first one, it defines an unidirectional 
propagation of waves. Therefore, it can not describe the wave-wave and wave-wall 
interactions. Second one, since it was obtained under the assumption of weak an harmonicity, 
shape and the behavior of the high amplitude waves can not be well predicted by the KdV 
equation [14]. To cope with the shortcoming of the Eq. (1.5), the following Rosenau equation 
 

  2 0,t x xxxxt x
U U U U      (0.6) 

 
was proposed by Rosenau [15, 16]. M. A. Park examined existence and uniqueness and 
regularity of the solutions for the Rosenau equation [17]. 

In this study, we have constructed the septic B-spline collocation method to the 
generalized Rosenau-KdV equation. Our study is designed as follows: numerical algorithm is 
expressed in Section 2. Stability and error analysis of the scheme are considered in Section 3 
and 4. Numerical examples and results are discussed in Section 5. In the final section, a 
conclusion is given. 

 
 
2. SEPTIC B-SPLINE COLLOCATION METHOD 
 
 
 For the numerical calculation, solution domain of the problem is limited over an 
interval ܽ ൑ ݔ ൑ ܾ. The interval [ , ]a b  is divided into ܰ equal subinterval by the points mx

such that ܽ ൌ ଴ݔ ൏ ଵݔ ൏ ⋯ ൏ ேିଵݔ ൏ ேݔ ൌ ܾ and ݄ ൌ ௕ି௔

ே
ൌ ௠ାଵݔ െ  ௠. The set of septicݔ
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B-spline functions ( ) ( 3(1) 3)m x m N    form a basis over the solution region [ , ]a b . The 

numerical solution 	ܷேሺݔ,  ሻ is expressed in terms of the septic B-splines asݐ

 
3

3

( , ) ( ) ( ).
N

N m m
m

U x t x t 




    (0.7) 

 
Septic B-splines ( )m x at the knots ݔ௠ are designed over the interval [ , ]a b  by Prenter [18] 

 

 

7
4 4 3

7 7
4 3 3 2

7 7 7
4 3 2 2 1

7 7 7 7
4 3 2 1 1

7 7 7 7
7 4 3 2 1

( ) [ , ]

( ) 8( ) [ , ]

( ) 8( ) 28( ) [ , ]

( ) 8( ) 28( ) 56( ) [ , ]
1

( ) ( ) 8( ) 28( ) 56( )

m m m

m m m m

m m m m m

m m m m m m

m m m m m

x x x x

x x x x x x

x x x x x x x x

x x x x x x x x x x

x x x x x x x x x
h



  

   

    

    

   


  
    
      

        1
7 7 7

4 3 2 1 2
7 7

4 3 2 3
7

4 3 4

[ , ]

( ) 8( ) 28( ) [ , ]

( ) 8( ) [ , ]

( ) [ , ]

0 .

m m

m m m m m

m m m m

m m m

x x

x x x x x x x x

x x x x x x

x x x x

otherwise



    

   

  








     
   
 


  (0.8) 

 
 A characteristic finite interval 1[ , ]m mx x   is matched to the interval ሾ0,1ሿ by a local 

coordinate transformation defined by ݄ߦ ൌ ݔ െ ,	௠ݔ 0 ൑ ߦ ൑ 1. Hence septic B-splines (2.2) 
in terms of ߦ over ሾ0,1ሿ can be given as follows: 
 

 

2 3 4 5 6 7
3

2 3 5 6 7
2

2 3 4 5 6 7
1

4 6 7

2 3 4 5
1

1 7 21 35 35 21 7 ,

120 392 504 280 84 42 7 ,

1191 1715 315 665 315 105 105 21 ,

2416 1680 560 140 35 ,

1191 1715 315 665 315 105 1

m

m

m

m

m

       
      
       
    
     









       
      
       

    
       6 7

2 3 5 6 7
2

2 3 4 5 6 7
3

7
4

05 35 ,

120 392 504 280 84 42 21 ,

1 7 21 35 35 21 7 ,

.

m

m

m

 
      
       
 








      
       


  (0.9) 

 
 For the problem, the finite elements are identified with the interval ሾݔ௠,  ௠ାଵሿ. Usingݔ
Eq.(2.1) and Eq.(2.2), the nodal values of , , , , iv

m m m m mU U U U U    are given in terms of the 

element parameters ߜ௠ by 
 

 2

3

3 2 1 1 2 3

7
3 2 1 1 2 3

42
3 2 1 1 2 3

210
3 2 1

( , ) 120 1191 2416 1191 120 ,

( 56 245 245 56 ),

( 24 15 80 15 24 ),

( 8 19 19

N m m m m m m m m m

m m m m m m mh

m m m m m m m mh

m m m mh

U x t U

U

U

U

      
     
      

   

     


     


     


  

       
      
      

    

4

1 2 3

840
3 1 1 3

8 ),

( 9 16 9 )

m m m

iv
m m m m m mh

U

 

    
  

   

 

    

  (0.10) 

 
and the variation of ܷ over the element ሾݔ௠,  ௠ାଵሿ is given by [19]ݔ
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3

3

.
N

m m
m

U  




    (0.11) 

 
 When we identify the collocation points with the knots and use Eqs.(2.4) to evaluate 
ܷ௠, its space derivatives and substitute into Eq.(1.1); this leads to a set of ordinary differential 
equations of the form 
 

 3

4

3 2 1 1 2 3

7
3 2 1 1 2 3

210
3 2 1 1 2 3

840
3 1 1 3

7
3

120 1191 2416 1191 120

( 56 245 245 56 )

( 8 19 19 8 )

( 9 16 9 )

(

m m m m m m m

m m m m m mh

m m m m m mh

m m m m mh

m mhp Z







      
     
     

    



     

     

     

   



     
      
      

    

 

      

    

2 1 1 2 356 245 245 56 ) 0,m m m m m             

  (0.12) 

 
where 1

3 2 1 1 2 3( 120 1191 2416 1191 120 ) .p
m m m m m m m mZ        

             

 If ߜ௜ and its time derivatives i  in Eq.(2.6) are decoupled by the Crank-Nicolson 

formula 

 
1

,
2

n n
i i

i

 
 

   (0.13) 

 
and usual finite difference aproximation 
 

 
1n n

i i
i t

 
 




   (0.14) 

 
we derive a repetition relationship between two time levels n  and 1n   relating two unknown 
parameters 1n

i
 , n

i  for 3, 2,..., 2, 3i m m m m       

 
1 1 1 1 1 1 1

1 3 2 2 3 1 4 5 1 6 2 7 3

7 3 6 2 5 1 4 3 1 2 2 1 3,

n n n n n n n
m m m m m m m

n n n n n n n
m m m m m m m

             
             

      
     

     

     
      

  (0.15) 

 where 

 

3

1

2

3

4

5

6

7
1057

2

[1 ( ) ],

[120 56 ( ) 8 ],

[1191 245 ( ) 19 9 ],

[2416 16 ],

[1191 245 ( ) 19 9 ],

[120 56 ( ) 8 ],

[1 ( ) ],

0,1, ,    ,       ,      

m

m

m

m

m

m

h h

E pZ M K

E pZ M

E pZ M K

K

E pZ M K

E pZ M

E pZ M K

m N E t M t

 
 
 

 
 
 

    
   
    
 
    
   
    
     4

840,    .
h

K t 

  (0.16) 

 
 The system (2.9) involves of ( 1)N   linear equations containing ( 7)N  coefficients

3 2 1 1 2 3( , , , , , , )T
N N N           . We need six additional restraints to obtain a unique solution 

for this system. These are obtained from the boundary conditions (1.2) and can be used to 
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remove 3 2 1, ,      and 1 2 3, ,N N N      from the system (2.9) which occures a matrix 

equation for the 1N   unknowns 0 1( , , , )n T
Nd      of the form  

 
 .A Bn 1 nd d   (0.17) 
 
 This matrix equation is solved by using the septa-diagonal algorithm. Two or three 
inner iterations are implemented to the term  11

2 ( )n n n n        at each time step to 

overcome the non-linearity caused by mZ . Before the beginning of the solution procedure, 

initial parameters 0d  established by using the initial condition and following derivatives at 
the boundaries; 

( ,0) ( ,0); 0,1,2,...,

( ) ( ,0) 0, ( ) ( ,0) 0,

( ) ( ,0) 0, ( ) ( ,0) 0,

( ) ( ,0) 0, ( ) ( ,0) 0.

N m

N x N x

N xx N xx

N xxx N xxx

U x U x m N

U a U b

U a U b

U a U b

 
 
 
 

 

 
So we obtain the following matrix form for the initial vector 0;d  0 ,Wd b  where 
 
 

82731 210568.5 104796 10063.5
81 81 81 81

9600 96597 195768 96474
81 81 81 81

96474 195768 96597 9600
81 81 81 81

10063.5 104796 210568.5 82731
81 81 81 81

1536 2712 768 24

1

120 1

1 120 1191 2416 1191 120 1

1 120

1

24 768 2712 1536

W

 
 











 















 
 

 

and 
0

0 1 2 2 1( , , ,..., , , )T
N N Nd        , 0 1[ ( ,0), ( ,0),..., ( ,0)]T

Nb U x U x U x . 
 
 
3. STABILITY ANALYSIS 
 
 
 To examine stability of the scheme (2.9)  it is suitable to use Von-Neumann theory. 

Presuming that the quantity pU  in the nonlinear term p
xU U  is locally constant. Substituting 

the Fourier mode  
n n i mh
m e    1i     into the form of  (2.9)  we get, 

 
1 ( 3) ( 2) ( 1) ( 1) ( 2) ( 3)

1 2 3 4 5 6 7

( 3) ( 2) ( 1) ( 1) ( 2) ( 3)
7 6 5 4 3 2 1

( )

( )

n i m i m i m im i m i m i m

n i m i m i m im i m i m i m

e e e e e e e

e e e e e e e

      

      

       

       

      

     

     

      
  (0.18) 
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where σ is mode number h is the element size, h   
 

3 4

1 1 2 3 2 1 2

3 1 2 3 4 3

5 1 2 3 6 1 2

2107 840
7 1 2 3 1 2 22 2

1 , 120 56 8 ,

1191 245 19 9 , 2416 16 ,

1191 245 19 9 , 120 56 8 ,

1 , 0,1, , , ( ), , .tt
mh h h

m N Z  

      
     
      

       

      

     
      

        

 

 If we simplify the Eq. (2.12), 
 

A iB

A iB
 


  
 
is obtained where 
 

3 3 3

1 2 1 2 1 2

(2382 18 )cos( ) 240cos(2 ) (2 2 )cos(3 ) (2416 16 ),

(490 2 )sin( ) (112 16 )sin(2 ) (490 38 )sin(3 )

A

B

     
        

      
     

 

1 2 3( )   ,       ,       ,    0,1, , 1.mE pZ M K m N          

 
The modulus of | |  is 1, so the linearized scheme is unconditionally stable. 
 
 
4. ERROR ANALYSIS 
 
 
  In this study, we choose septic B-spline collocation algorithm to obtain the numerical 
solution of the generalized Rosenau-KdV equation. Since it provides perfect convergence 
pointwise and does not contain an integral expression, we use the collocation algorithm. Let 

( )rH   be the space of r  times differentiable functions and .
r
be the standard ( )rH   norm. 

hv  is an approximation to a function ( ) ( )rv x H   in  , h  is the element size and i i  
where 1[ , ]i i ix x   , 1i ix x h   . We notice [21, 22] that 

1

1
( ) ( ) where 1k

h k
v x v x Ch v k r


     and hv  represents interpolation by piecewise-

polynomials of degree r  ( )i i   [7]. The error is conserved with the Galerkin finite 

element method equally [20] if hw  is an appropriate B-splines identified with a polynomial of 

degree less or equal k  then 1

1
( ) ( ) , where 1 ,l

h l
w x w x C x w l k


     for any ( )kw H 

. For our work we choose septic B-splines for space integration. So these inequalities offer 
8( )hO  precision for the spatial approximation in 2 ( )L   norm. Hence for time variable, 

Crank-Nicolson formula is used which is of 2( )tO  accurate in 2 ([0 ])L T  norm for some 

0T  ; followed by a forward difference algorithm which is accurate of ( )tO  accurate in 

2 ([0 ])L T  norm for some 0T   [22]. Therefore we get the limit of error as 
8 2 8

1 2 3 1 2( , ) ( , ) ,hu x t u x t C h C t C t C h C t          for a proper  1 0C   and 2 0C   [7]. 
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5.  NUMERICAL SIMULATIONS 
 
 
 There are two conserved quantities for the generalized Rosenau-KdV equation. These 
are given by 

2 2

( , ) ,

[ ( , ) ( , )]

b
M a

b
E xxa

I U x t dx

I U x t U x t dx

 

 

 

 
which correspond to the momentum and energy of the shallow water waves, respectively [9]. 
To see how precise the numerical algorithm estimates the position and amplitude of the 
solution as the simulation progresses, we use the following error norms: 
 

 
2

2 2
0

N
exact exact

N j N j
J

L U U h U U


    

and the error norm 

 max .exact exact
N j N jj

L U U U U 
    

 
 To show the efficiency of the method, we have focused on searching solitary wave 
solutions of the Eq. (1.1). 
 
5.1. THE SOLITON SOLUTIONS OF SINGLE WAVE 
 
 In this section, different numerical examples will be given to illustrate the efficiency 
and accuracy of the method. For the numerical simulations of the movement of single solitary 
wave, three sets of parameters have been used and discussed. 
 
5.1.1. CASE 1. 
 
 For the first case, we have used the parameters 2, 1, 1, 1p        over the 
interval [ 60,90].  For this set the exact solution of the equation is given as [7] 
 

435 35 1 1 1
( , ) ( 313)sech [ 26 2 313( ( 313) )],

24 312 24 2 26
U x t x t        

 
with the boundary conditions  0U   as x   and the initial condition 
 

435 35 1
( ,0) ( 313)sech [ 26 2 313 ].

24 312 24
U x x      

 
 The computations are done until time 40t   to find the error norms 2L , L  and 

invariants MI , EI . The amplitude and velocity of solitary wave are obtained as 0.526057 , 

1.180454v   respectively. The calculated quantities of the invariants and errors are presented 
in Table (1). The percentage of the relative error of the preserved quantities MI  and EI  are 

computed according to the preserved quantities at 0t  . The percentage of relative changes of 
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MI  and EI  are found to be 79.4 10 %  and 91.5 10 %  for 0.1h t   ; 61.1 10 %  and 0 

for 0.125h t   ; 75.5 10 %  and 71 10 %  for 0.025,h t    respectively. It is clearly 
seen that the invariants remain almost stable during the computer programme run. We can 
easily see from Table (1) that the invariant MI  changes from its initial value by less than 

91 10  whereas the changes of invariant EI  approach to zero throughout for different values 

of  h  and t . Also, we have found out error norms 2L  and L  are obtained adequately small 

during the computer run. So, we can say our method is reasonable conservative. In Table 2, 
we compare the values of the error norms obtained by the current method with methods 
obtained by J. Hu et al. [2] and T. Ak et al. [6]. In this table, we alleged that the error norms 
obtained by our method are much better or found in good agreement with the others. 
Simulations of single soliton time up to 40t   are given in Figure (1). We observed from the 
Figure (1), single soliton travels to the right at a constant speed and preserves its amplitude 
and shape with increasing time unsurprisingly. The amplitude is 0.526057  at 0t   and 
located at 0.125x   , while it is 0.526146  at 40t   and located at 47.250x  . The absolute 
difference in amplitudes at times 0t   and 40t   is 58.9 10  so that there is a little change 
between amplitudes. Error values between analytical and numerical solutions are 
demonstrated in Table 2. 

 
Table 1. The invariants and the error norms for single solitary wave with 2, 1, 1, 1p       . 

0.1h t    
MI  EI  4

2 10L   410L 
   

t 
0  5.4981750556 1.9897841614 0 0 

10  5.4981750556 1.9897841614 3.56724 1.41640 

20  5.4981750556 1.9897841614 6.46705 2.44374 

30  5.4981750572 1.9897841614 9.02514 3.26169 

40  5.4981750037 1.9897841614 11.62488 4.11491 

0.125h t    
MI  EI  4

2 10L   410L 
   

t 
0  5.4981740747 1.9897835319 0 0 

10  5.4981740747 1.9897835319 5.60011 2.20715 

20  5.4981740746 1.9897835319 10.26734 3.86253 

30  5.4981740787 1.9897835319 14.22670 5.19178 

40  5.4981740130 1.9897835319 17.73066 6.33780 

0.025h t    
MI  EI  4

2 10L   410L 
   

t 
0  5.4981698357 1.9897809062 0 0 

10  5.4981698363 1.9897809076 0.35170 0.14206 

20  5.4981698379 1.9897809079 0.91672 0.32589 

30  5.4981698426 1.9897809085 1.04343 0.46813 

40  5.4981698357 1.9897809062 1.18321 0.48477 
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Table 2. Comparison of error norms with 2, 1, 1, 1p       and different values of h  and t  at 

time 40t  . 

0.1h t    3
2 10L   310L 

   

t Present [2] [6] Present [2] [6] 
0  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

10  0.356723 1.641934 0.356724 0.141640 0.631419 0.141639 

20  0.646705 3.045414 0.646705 0.244374 1.131442 0.244374 

30  0.902514 4.241827 0.902514 0.326169 1.533771 0.326169 

40  1.162488 5.297873 1.162489 0.411491 1.878952 0.411492 

0.125h t    4
2 10L   410L 

   

t Present [2] [6] Present [2] [6] 
0  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

10  5.60011 4.113510 0.854386 2.20715 1.582641 0.343706 

20  10.26734 7.631169 1.779040 3.86253 2.835874 0.627075 

30  14.22670 10.62971 2.810186 5.19178 3.843906 0.975412 

40  17.73066 13.27645 3.783328 6.33780 4.709118 1.293116 

0.025h t    4
2 10L   510L 

   

t Present [2] [6] Present [2] [6] 
0  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

10  0.357059 1.028173 0.351702 1.421479 3.965867 1.420544 

20  0.925408 1.905450 0.916735 3.264848 7.097948 3.258903 

30  1.057023 2.650990 1.043479 4.742297 9.610332 4.681364 

40  1.183710 3.306738 1.183139 4.846861 11.76011 4.847163 

 
Figure 1. Motion of single solitary wave for 2, 1, 1, 1, 0.125p h t         over the interval 

[-60; 90] at specified times. 
 

 
       Figure 2. Absolute error for 2, 1, 1, 1, 0.125p h t         at 40t  . 
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5.1.2. CASE 2 
 
 For the second case, we have chosen the parameters  3, 1, 1, 1p        over the 
interval  [ 60,90].  For this set the exact solution of the equation can be found as [4, 9] 
 

21 1 5 41 1
( , ) 15 3 41 sech [ (5 41)] .

4 4 2 10
U x t x t

 
      

 
 We examine the equation with the boundary conditions 0U   as x   and the 
initial condition 

21 1 5 41
( ,0) 15 3 41 sech .

4 4 2
U x x

 
  

 
 

 For these parameters amplitude and velocity of solitary wave are found as 0.512568, 
1.140312,v   respectively. The computations are done until time 40.t   The obtained results 

are listed in Table (3). The percentage of the relative error of the preserved quantities MI  and 

EI  are computed with respect to the preserved quantities at 0t  . The percentage of relative 

changes of MI  and EI  are found to be 89.6 10 %  and 83.5 10 %  when 0.25h t   ; 
82.8 10 %  and 98.8 10 %  when 0.125h t   ; 96.0 10 %  and 92.2 10 %  when 
0.0625,h t   respectively. Table (3) shows that invariants are almost constant as the time 

increases. It is noticeably seen from the table that the invariants MI  and EI  change from their 

initial value by less than 81 10  for different values of h  and t . Also, we have found out 

error norms 2L  and L  are obtained sufficiently small during the computer run. Therefore our 

method is sensibly conservative. We compare the values of the error norms obtained by the 
current method with methods obtained by M. Zheng et al. [10] and Y. Luo et al. [11] in Table 
(4). This table clearly shows that the error norms obtained by our method are much better than 
the others. In Table (5) we compare values of the EI  with results from obtained by [11]. From 

this table, we can conclude that the values of the invariants are to be close to each other. For 
visual representation, the simulations of single soliton for values of  0.125h t    at times 

0,20t   and 40 are illustrated in Figure (3). It is understood from this figure that the 
numerical scheme performs the motion of propagation of a single solitary wave, which moves 
to the right at nearly unchanged speed and conserves its amplitude and shape with increasing 
time. The amplitude is  0.512568 at 0t   and located at 0.125x   , while it is 0.512741 at 

40t   and located at 45.625x  . The absolute difference in amplitudes at times 0t   and 
40t   is 41.7 10  so there is a little change between amplitudes. Error distribution at time 
40t   is depicted graphically in Figure (4). As it is seen, the maximum errors occur around 

the central position of the solitary wave. 
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Table 3. The invariants and the error norms for single solitary wave with 3, 1, 1, 1p       . 

0.1h t    
MI  EI  3

2 10L   310L 
   

t     
0  4.8989798241 1.6825480773 0 0 

10  4.8989798239 1.6825480773 2.880540 1.166531 

20  4.8989798231 1.6825480773 5.325785 2.035358 

30  4.8989798678 1.6825480773 7.552481 2.800947 

40  4.8989785482 1.6825480773 9.670753 3.516945 

0.125h t        
t     
0  4.8989798241 1.6825480772 0 0 

10  4.8989798239 1.6825480772 0.721967 0.292411 

20  4.8989798235 1.6825480772 1.335453 0.510960 

30  4.8989798344 1.6825480772 1.894530 0.702865 

40  4.8989794651 1.6825480772 2.426625 0.883243 

0.025h t        
t     
0  4.8989798241 1.6825480772 0 0 

10  4.8989798238 1.6825480771 0.180543 0.073127 

20  4.8989798236 1.6825480772 0.333994 0.127801 

30  4.8989798359 1.6825480773 0.473859 0.175815 

40  4.8989796887 1.6825480774 0.606988 0.221008 

 
 
 
 
Table 4. Comparison of error norms with 3, 1, 1, 1p       and different values of h  and t at 

time 40t  . 
 310L 

   

 Present [10] [11] 
0.25h t    3.51694 13.4986 7.53941 

0.125h t    0.88324 3.42489 1.89987 

0.0625h t    0.22100 0.85957 0.47587 
 
 

 
 
 

Table 5. Comparison of EI with 3, 1, 1, 1p       and different values of h  and t . 

0.25h t    
EI  EI  

t Present [11] 
0  1.6825480773 1.68252899330 

10  1.6825480773 1.68252899329 

20  1.6825480773 1.68252899328 

30  1.6825480773 1.68252899327 

40  1.6825480773 1.68252899325 
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Table 5. (continued) 
0.125h t      

t Present [11] 
0  1.6825480772 1.68254308255 

10  1.6825480773 1.68254308255 

20  1.6825480772 1.68254308255 

30  1.6825480772 1.68254308255 

40  1.6825480772 1.68254308254 

0.0625h t      
t Present [11] 
0  1.6825480772 1.68254661109 

10  1.6825480771 1.68254661108 

20  1.6825480772 1.68254661095 

30  1.6825480773 1.68254661102 

40  1.6825480774 1.68254661095 
 

 
 

 
Figure 3. Motion of single solitary wave for 3, 1, 1, 1, 0.125p h t          over the interval 

[-60; 90] at specified times. 
 

 
Figure 4. Absolute error for 3, 1, 1, 1, 0.125p h t         at 40t  . 

 
5.1.3. CASE 3 
 
 For the third case, we have taken the parameters 5, 1, 1, 1p        over the 
interval [ 60,90].  For this set the exact solution of the equation can be obtained as [4, 9] 
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4
4 1 1

( , ) ( 5 34) sech 5 34[ (5 34)] .
15 3 10

U x t x t        

 
 We search the equation with the boundary conditions 0U   as x   and the 
initial condition 

4
4 1

( ,0) ( 5 34) sech 5 34 .
15 3

U x x      

 For these parameters, the solitary wave has an amplitude 0.686098 and the run of the 
algorithm is activated to time 40t   to get the invariants and error norms at various times. 
The velocity of the solitary wave is 1.083095v  . The obtained results are reported in Table 
(6). The percentage of the relative error of the preserved quantities MI  and EI  are calculated 

with respect to the preserved quantities at  0t  . The percentage of relative changes of  MI  

and EI  are found to be 41.4 10 %   and 81.2 10 %  for 0.25h t   ; 58.6 10 %  and 
105.0 10 %  for 0.125h t   ; 57.0 10 %  and 92.8 10 %  for 0.0625,h t    

respectively. Table (6) indicates that invariants are nearly constant as the time progresses. As 
one can see straightforwardly from the table that the invariants MI  and EI  change from their 

initial value by less than 91.0 10  for different values of  h  and t . Also, we have found out 
error norms 2L  and L  are obtained sufficiently small during the computer run. Thus, we can 

say our method is marginally conservative. For comparison purpose, the values of the L     

error norms are presented in comparison with M. Zheng et al. [10] and Y. Luo et al. [11] in 
Table (7). It is obviously seen from this table, the error norms obtained by our method are 
much better than the others again. The numerically computed results of the EI  are compared 

with [11] in Table (8). Results show that the values of  the invariant are to be very close to 
each other. The behaviours of solutions for values of  0.125h t    at times 0,20t   and 
40  are depicted in Figure (5). Figure (5) shows that the suggested method execute the motion 
of propagation of a solitary wave satisfactorily, which moves to the right at a constant speed 
and nearly preserves its amplitude and shape with increasing time. The amplitude is 0.686098 
at 0t   and located at 0x  , while it is 0.685675 at 40t   and located at 43.250x  . The 
absolute difference in amplitudes at times 0t   and 40t   is 44.2 10  so there is a little 
change between amplitudes. The error graph at 40t   is shown in Figure (6). It is seen that 
the maximum errors are about the tip of the solitary waves and between 31.5 10   and 

31.5 10 .  
 Table 6. The invariants and the error norms for single solitary wave with 5, 1, 1, 1p       . 

0.25h t    
MI  EI  3

2 10L   310L 
   

t     
0  7.0936435935 3.1107124064 0 0 

10  7.0936434216 3.1107124063 4.153031 1.693890 

20  7.0936429528 3.1107124062 8.102177 3.110721 

30  7.0936419009 3.1107124061 12.123006 4.503564 

40  7.0936330521 3.1107124060 16.299008 5.925606 

0.125h t        
t     
0  7.0936435925 3.1107124063 0 0 

10  7.0936434493 3.1107124063 1.042200 0.425642 
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20  7.0936431881 3.1107124063 2.035122 0.781637 

30  7.0936426572 3.1107124063 3.047657 1.132638 

40  7.0936374525 3.1107124064 4.100587 1.493427 
Table 6. (continued) 

0.0625h t        
t     
0  7.0936435920 3.1107124063 0 0 

10  7.0936434618 3.1107124063 0.260777 0.106504 

20  7.0936432752 3.1107124063 0.509351 0.195642 

30  7.0936429006 3.1107124062 0.762935 0.283659 

40  7.0936386078 3.1107124063 0.102671 0.373985 

 
 
Table 7. Comparison of error norms with 5, 1, 1, 1p       and different values of h  and ∆t at 

time 40t  . 
 310L 

   

 Present [10] [11] 
0.25h t    5.92560 17.9985 12.0204 

0.125h t    1.49342 4.56804 3.03743 

0.0625h t    0.37398 1.14689 0.76141 
 

 
 

Table 8. Comparison of EI  with 5, 1, 1, 1p       and different values of h  and ∆t. 

0.25h t    
EI  EI  

t Present [11] 
0  3.1107124064 3.11067490241 

10  3.1107124063 3.11067490241 

20  3.1107124062 3.11067490240 

30  3.1107124061 3.11067490240 

40  3.1107124060 3.11067490240 

0.125h t      
t Present [11] 
0  3.1107124063 3.11070293879 

10  3.1107124063 3.11070293879 

20  3.1107124063 3.11070293879 

30  3.1107124063 3.11070293879 

40  3.1107124064 3.11070293879 

0.0625h t      
t Present [11] 
0  3.1107124063 3.110702996431 

10  3.1107124063 3.110702996430 

20  3.1107124063 3.110702996426 

30  3.1107124062 3.110702996417 

40  3.1107124063 3.110702996435 
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Figure 5. Motion of single solitary wave for 5, 1, 1, 1, 0.125p h t          over the interval 

[-60; 90] at specified times. 
 

 
Figure 6. Absolute error for 5, 1, 1, 1, 0.125p h t         at 40t  . 

 
 
CONCLUSION 
 
 
 In this paper, we have successfully implemented septic B-spline collocation finite 
element method for the numerical solutions of the nonlinear generalized Rosenau-KdV 
equation. For single solitary wave, to prove the performance of the numerical algorithm, the 
error norms 2L , L  and the invariants MI  and EI  have been calculated. These calculations 

shows that our error norms are sufficiently small and they are smaller than or too close to the 
ones in existing numerical results. The changes of the invariants are adequately small and the 
quantities of the invariants are consistent with those of [2, 6, 11]. Also, stability analysis has 
been done and the linearized scheme has been found to be unconditonally stable. The obtained 
results show that the collocation method using septic B-spline shape functions is a remarkably 
successful numerical technique for solving the generalized Rosenau-KdV equation and can 
also be efficiently applied to a broad class of physically important non-linear partial 
differential equations. 
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