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Abstract A study to understand the biological effects
of samples prepared with lead and the effects of lead
were conducted on Lemna minor L. and Spirodela
polyrhiza (L.) Schleid. This study was intended to test
the hypothesis that nutrient enrichment (P, NO3

−–N
and SO4

2−) enhances the metal tolerance of floating
macrophytes. The plants were exposed to Pb concen-
trations 0, 1, 5, 10, 25, and 50mg l−1 for a period of 1, 3,
5, and 7 days. L. minor accumulated 561 mg g−1 dry
weight (dw) Pb, and S. polyrhiza accumulated
330 mg g−1 dw Pb after 7 days, whereas in the groups
enriched with nutrients, L. minor accumulated
128.7 mg g−1 Pb and S. polyrhiza accumulated
68.7 mg g−1 dw Pb after 7 days. Relative growth rates
and photosynthetic pigments (chlorophyll a, b, and
carotenoid) were measured in L. minor and S. polyrhiza
exposed to different Pb concentrations under laboratory
conditions. Relative growth rates were negatively
correlated with metal exposure, but nutrient addition
was found to suppress this effect. Photosynthetic
pigment levels were found negatively correlated with
metal exposure, and nutrient addition attenuated chlo-
rophyll decrease in response to metal exposure. Metal
and nutrient concentration in water decreased through-
out the experiments. The study concluded that nutrient
enrichment increases the tolerance of L. minor and S.

polyrhiza to metals, that L. minor and S. polyrhiza are
suitable candidates for the phytoremediation of low-
level lead pollution, and that L. minor was more
effective in extracting lead than was S. polyrhiza.

Keywords Nutrient enrichment . Spirodela
polyrhiza . Lemna minor . Lead (Pb) .

Photosynthetic pigment

1 Introduction

Organisms, populations, biocoenoses, and, ultimately,
whole ecosystems are naturally influenced by numer-
ous biotic and abiotic stress factors. With regard to
genetic and non-genetic adaptation of organisms and
communities to environmental stress, we have to
differentiate between the terms tolerance, resistance,
and sensitivity. Tolerance is the desired resistance of
an organism or community to an unfavorable abiotic
(climate, radiation, pollutants) or biotic factors (para-
sites, pathogens) where adaptive physiological
changes (e.g., enzyme induction, immune response)
can be observed. Resistance, unlike tolerance, is a
genetically derived ability to withstand stress. This
means that all tolerant organisms are resistant, but not
all resistant organisms are tolerant. However, in
ecotoxicology, the dividing line between tolerance
and resistance is not always so clear. For example, the
phenomenon of pollution-induced community toler-
ance is described as the phenomenon of community
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shifts toward more tolerant communities when con-
taminants are present. It can occur as a result of
genetic or physiological adaptation within species or
populations or through the replacement of sensitive
organisms by more resistant organisms. Sensitivity of
an organism or a community means its susceptibility
to biotic or abiotic change. Sensitivity is low if the
tolerance or resistance to an environmental stressor is
high, and sensitivity is high if the tolerance or
resistance is low (Markert et al. 2003).

Environmental exposure to toxic trace metals is
one of the critical issues in environmental and public
health. Unfortunately, traditional chemical and phys-
ical remediation techniques in vogue are limited by
the pattern of discharge. Hence, phytoremediation, a
plant-based green technology, is proposed as a viable
alternative. Its relative inexpensiveness and eco-
friendliness have made it an attractive method for
water and soil remediation (Prasad et al. 2010;
Rahman et al. 2008). It is well known that aquatic
plants accumulate metals absorbed from the environ-
ment and concentrate them into trophic chains with
cumulative effect (Outridge and Noller 1991; Tremp
and Kohler 1995). Significant lead accumulation has
been observed in other aquatic plants like Nerium
oleander (Aksoy and Öztürk 1997), Lemna minor L.
(Mohan and Hosetti 1997; Gamczarska and Ratajczak
2000), Ipomoea aquatica (Göthberg et al. 2004), and
Ceratophyllum demersum (Mishra et al. 2006).

The use of aquatic macrophytes, such as water
hyacinth, duckweed, and water lettuce in wastewater
treatment, has attracted global attention in recent years
(Reed et al. 1995; Gijzen and Khonker, 1997; Van der
Steen et al. 1999; Vermaat and Hanif 1998) as these
plants can be grown on the surface of stabilization
ponds and could contribute to nutrient recovery from
wastewater. Duckweed is a floating aquatic macro-
phyte belonging to the botanical family Lemnaceae
and can be found worldwide on the surface of nutrient-
rich fresh and brackish waters (Zimmo 2003).

Lee and Wang (2001) reported that an increase in
nitrate concentration resulted in a significant increase
in cadmium accumulation in Ulva fastica. According
to Hadad et al. (2007), nutrient enrichment either
attenuated (chromium and zinc) or suppressed (nickel)
root biomass decrease in response to metal exposure in
Salvinia herzogii. Appenroth et al. (2008) reported that
sulfates reduce chromate toxicity in duckweeds.
Although studies have been conducted on heavy metal

accumulation in Spirodela polyrhiza and L. minor
(Rahman et al. 2008; Appenroth et al. 2003; Appenroth
et al. 2001), the effect of nutrient addition on these
species metal tolerance is not known.

The aim of this paper was to investigate whether
nutrient enrichment enhance the metal tolerance of
floating macrophytes and whether such nutrient
enrichment enable the growth of floating vegetation
in constructed wetlands at metal concentrations that
would otherwise inhibit plant viability.

2 Materials and Methods

2.1 Plant Material and Treatment Conditions

Plants of species L. minor and S. polyrhiza were
obtained from Soysalli-Kayseri (38°23′500″′ N, 035°
21′919″ E, 1,075 m), Turkey. The chemical composition
of the pond water was (mean ± SD): pH 6.4±0.1;
conductivity=92±8 µS cm−1; NH4

+–N=0.021±
0.01 mg l−1; NO3

−–N=0.02±0.001 mg l−1, NO2
−–N=

0.002±0.001 mg l−1 SO4
2−=0.2±0.03 mg l−1. Before

metal treatment, plants were acclimatized for 5 days
under laboratory conditions (23°C and 14-h photoperiod,
350 µmol m2 s−1). In this study, lead chloride (PbCl2)
was used without further purification for experimental
treatments. Plants were treated with different concen-
trations of Pb (0, 5, 10, 25, and 50 mg l−1) and
maintained in double deionized water in 500-ml conical
flasks under the aforementioned conditions for periods
of 1, 3, 5, and 7 days. Plant growth rates in response to
metal exposures were compared with exposures
enriched with 5 mg l−1 P (KH2PO4), 5 mg l−1 NO3

−–
N (KNO3), and SO4

2− (K2SO4; Hadad et al. 2007).
Flasks without metals grown alongside each set of
experimental groups served as controls. After harvest-
ing, plants were washed with double deionized water.
Plants were placed on blotting paper and allowed to
drain for 5 min before weighing. Water samples were
filtered through for nutrient determinations. Nitrate,
phosphate, and sulfate were determined by Hach Lange
DR 2800 spectroscopy. All treatments were carried out
in triplicate.

L. minor and S. polyrhiza relative growth rates
were calculated in each group according to Hunt’s
equation:

R ¼ lnW2 � lnW1=T2 � T1
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where R is the relative growth rate (g−1 day−1), W1 and
W2 are the initial and final fresh weights, respectively,
and (T2 − T1) is the experimental period (Hunt 1978).

2.2 Lead Quantification

Harvested plants were washed thoroughly with
double deionized water, blotted, and oven-dried at
80°C. Each sample was then digested with 10 ml pure
HNO3 using a CEM-MARS 5 (CEM Corporation
Matthews, NC, USA) microwave digestion system
(maximum power, 1,200 W; power, 100%; ramp,
20:00 min; pressure, 180 psi; temperature, 210°C; and
hold time, 10:00 min). After digestion, the volume of
each sample was adjusted to 25 ml using double
deionized water. Determinations of Pb concentrations
in plant and water samples were carried out by
inductively coupled plasma optical emission spectros-
copy (Varian-Liberty II, ICP-OES; Duman et al.
2009). Peach leaves (NIST, SRM-1547) were used

as reference material; also, all analytical procedures
were performed for reference material. Recoveries of
lead from NIST, SRM-1547 (0.81±0.01 µg l−1) and
certified value of lead of NIST, SRM 1547 (0.89±
0.02 µg l−1) analyses were determined by ICP-OES.
Pb concentrations were below the detection limits of
the method (Pb<0.2 µg l−1).

The bioconcentration factor (BCF) was calculated
as follows (Rahmani and Stenberg 1999):

BCF ¼ Pb in plant biomass mg kg�1
� �

=Pb in solution mg l�1
� �

2.3 Plant Growth Parameters

Plant biomass was measured on the basis of fresh
weight. Photosynthetic pigments of treated and
untreated plants (100 mg) were extracted in 80%
chilled acetone in the dark. After centrifugation at
10,000×g for 10 min, absorbance of the supernatant
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Fig. 1 Accumulation ofPb (a), Pb + nutrients by L. minor (b),
and Pb and (d)Pb + nutrients by S. polyrhiza (c) exposed to
different concentrations over various periods of time. All values

are means of triplicates ± SD. ANOVA significance was set at
p≤0.01. Different letters indicate significantly different values
at a particular time point (DMRT, p≤0.05)
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was taken at 450, 645, and 663 nm. The content of
chlorophylls and carotenoids were estimated as
previously described (Witham et al. 1971).

2.4 Statistical Analysis

Two-way analysis (ANOVA) was done with all the
data to confirm the variability of data and validity of
results, and Duncan’s multiple range test (DMRT)
was performed to determine the significant difference
between treatments. Statistical Package for the Social
Sciences statistical program was used for statistical
analysis (Kinnear and Gray 1994).

3 Results and Discussion

3.1 Accumulation of Lead and its Effect on Growth
of Plants

Pb bioaccumulation was measured in Lemna fronds.
The highest Pb accumulation was seen at a dose of
50 mg l−1. The percent of the total Pb accumulated
(561 mg g−1) on day 7 at 50 mg l−1 was 13.5% on
day 1, 36.1% on day 3, and 58.2% on day 5 (Fig. 1a).
In the groups enriched with nutrients, Pb accumula-
tion at 50 mg l−1 was 27.5% on day 1, 49.8% on
day 3, and 66.8% on day 5 of the total Pb
accumulated (128.7 mg g−1) on day 7 (Fig. 1b).
Bioaccumulation of Pb was measured in Spirodela
fronds. The plants were found to accumulate high
amounts of Pb in a concentration- and time-dependent
manner. The highest Pb accumulation was observed at
a dose of 50 mg l−1. The total percentage of Pb
accumulated (330 mg g−1) on day 7 at 10 mg l−1 was
4.9% on day 1, 16% on day 3, and 67.8% on day 5
(Fig. 1c). In the groups enriched with nutrients, Pb
accumulation at 50 mg l−1 was 22.4% on day 1, 35%
on day 3, and 52.4% on day 5 of the total Pb
accumulated (68.7 mg g−1) on day 7 (Fig. 1d). Metal
concentrations in plants increased with metal concen-
tration as well as over time. In the present study, high
accumulation of Pb was observed in L. minor and S.
polyrhiza over a 7-day period, and L. minor was more
effective in accumulating Pb than S. polyrhiza. Over a
period, nutrient enrichment reduced the accumulation
of Pb in growing plants.

Relative growth rates of L. minor decreased in the
presence of Pb in a concentration-dependent manner

(Fig. 2a). However, the treatments enriched with
nutrients did not show a similar correlation (R=
0.980). Relative growth rates of S. polyrhiza declined
with Pb in a concentration-dependent manner
(Fig. 2b), but the treatments enriched with nutrients
did not show similar correlation (R=0.950). There-
fore, nutrient addition prevented the decline in
relative growth rates in response to metal exposure
(Fig. 2a, b).

Growth rates of L. minor and S. polyrhiza declined
with increasing Pb concentrations. However, nutrient
enrichment led to increased growth rates at Pb
concentrations that impaired growth in the non-
enriched groups.
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Appenroth et al. (2008) investigated the modifica-
tion of chromate toxicity by sulfate in duckweeds. The
authors explained that sulfate influences the toxicity of
chromate mainly by chromate uptake, with negligible
impact on other physiological processes. Rahman et al.
(2008) reported on the uptake of arsenate in S.
polyrhiza and its interactions with PO4

3− and Fe ions.
Their study found that arsenate uptake in S. polyrhiza
occurred through the phosphate uptake pathway and
by physicochemical adsorption on Fe plaques of plant

surfaces as well. In line with our results, Hadad et al.
(2007) found that nutrient enrichment enabled growth
of Salvinia hergozii at Zn and Ni exposures that
impaired growth in plants without nutrient addition.
Göthberg et al. (2004) found high metal concentrations
in I. aquatica cultivated for human consumption in
freshwater courses near Bangkok that were receiving
variable amounts of cultural nutrient loads. The authors
proposed fertilization as a means to attenuate metal
accumulation. Their experimental work agreed with
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Fig. 3 Effect of different concentrations of Pb and nutrients on
chlorophyll a (a, b), chlorophyll b (c, d), and carotenoid (e, f)
contents of L. minor. All values are means of triplicates ± SD.

ANOVA significance was set at p≤0.01. Different letters
indicate significantly different values at a particular time point
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our findings and showed that nutrient enrichment led
to increased I. aquatica tolerance to cadmium, lead,
and mercury. Decrease in lead and mercury accumu-
lation was observed with increasing concentrations of
nutrients, as was observed for lead in the present study.

3.2 Effect of Metals on Photosynthetic Pigments

Chlorophyll concentration in L. minor was nega-
tively correlated with Pb exposures (Fig. 3). Nutrient
enrichment attenuated the observed decrease in

chlorophyll concentration by Pb exposures. Levels
of chl a decreased in a Pb concentration-dependent
and time-dependent manner, with a minimum value
of 0.386 mg g−1 in the 50-mg l−1 Pb group (Fig. 3a).
In the nutrient-enriched, 50-mg l−1 Pb group, chl a
levels were reduced to a minimum value of
0.565 mg g−1 fresh weight on day 7 (Fig. 3b). The
value of chl b content was 0.190 mg g−1 at the
highest concentration of Pb by day 7 (Fig. 3c), while
in the nutrient-enriched groups, chl b reached a
minimum value of 0.405 mg g−1 fresh weight on
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day 7 with 50 mg l−1 Pb (Fig. 3d). Carotenoid
content decreased at all Pb concentrations, with the
minimum value difference being 0.407 mg g−1 in the
50 mg l−1 group on day 7 (Fig. 3e). In 50 mg l−1 Pb-
treated groups with nutrient enrichment, however,
carotenoid levels on day 7 were 0.561 mg g−1

(Fig. 3f).
Chlorophyll concentration in S. polyrhiza was

negatively correlated with Pb exposures (Figs. 3 and
4). Nutrient enrichment attenuated the observed
reduction in chlorophyll concentration caused by Pb
exposures. When Spirodela fronds were exposed to
Pb concentrations of 5 mg l−1 or higher, a dose-
dependent decrease of chlorophyll pigments was also
observed, with a minimum chl a value of
0.414 mg g−1 fresh weight on day 7 at 50 mg l−1

compared to 1.601 mg g−1 in controls (Fig. 4a). On

day 7, the 50-mg l−1 Pb-treated groups with nutrient
enrichment of chl a reached a minimum value of
0.645 mg g−1 fresh weight (Fig. 4b). For Pb
concentrations exceeding 5 mg l−1, the decrease in
content of chl b was gradual and more inhibited than
that of chl a. At 50 mg l−1 Pb concentration, the
amount of chl b reached a minimum value of
0.183 mg g−1 fresh weight on day 7 (Fig. 4c), whereas
in the nutrient-enriched groups, chl b reached a
minimum value of 0.385 mg g−1 fresh weight on
day 7 (Fig. 4d). As with chlorophylls, carotenoid
levels also declined gradually at concentrations up to
5 mg l−1 Pb until day 3, and by day 7, carotenoid
content was significantly lower than controls at all
concentrations; the minimum value of 0.424 mg g−1

was attained in the 50-mg l−1 Pb group (Fig. 4e). In
nutrient-enriched groups exposed to 50 mg l−1 Pb, the
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minimum value of carotenoid was 0.559 mg g−1 fresh
weight on day 7 (Fig. 4f).

Chlorophyll concentrations in L. minor and S.
polyrhiza were negatively correlated with Pb accu-
mulation, but nutrient enrichment mitigated the
decrease in chlorophylls. In fronds treated with Pb, a
concentration of 5 mg l−1 was sufficient to cause a
decrease in pigment molecules, indicating that al-
though lead is a non-essential metal ion, it was toxic
for the growth and development of plants and, at high
levels, could be a strong inhibitor of photosynthesis
(Frankart et al. 2002; Vavilin et al. 1995). The loss in
chlorophyll content could be due to peroxidation of
chloroplast membranes or replacement of magnesium
in chlorophyll molecules by Pb ions (Mal et al. 2002;
Sandmann and Boger 1980).

3.3 Metal and Nutrient Concentrations in Water

A rapid decrease in Pb concentration in water was
observed without differences between the metal and
nutrient-enriched treatments in L. minor (Fig. 5a, b).
Pb concentrations in water decreased with time,
reaching a plateau after about 5 days of exposure in
L. minor. Pb concentrations in water were significant-
ly lower in the treatments enriched with nutrients than
in the treatments without enrichment in S. polyrhiza
(Fig. 6a, b). Metal concentrations in water decreased
with time in all the experiments. According to Zayed
et al. (1998), a plant which is considered a good
accumulator must have a BCF over 1,000. Our results
confirmed that L. minor and S. polyrhiza were good
accumulators of Pb (Figs. 5 and 6) and have potential
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for the remediation of Pb-polluted water. Our study
also indicated that S. polyrhiza was less effective than
L. minor. According to Khellaf and Zerdaoui (2009),
L. gibba was less effective than L. polyrrhiza used by
Sharma and Gaur (1994). However, the species was
more effective than L. minor and S. polyrhiza reported
in the work of Jain et al. (1989) and Mishra and
Tripathi (2008), respectively.

Nitrate, phosphate, and sulfate concentrations in
water decreased with time in the nutrient-enriched
treatments in L. minor and S. polyrhiza (Fig. 7). Pb
exposure reduced nutrient removal from water. Lower
nitrate concentrations were attained in the conical
flasks with nutrient enrichment than in the Pb
exposures (Fig. 7). In line with our results, Hadad et
al. (2007) found that zinc exposure reduced nutrient
removal from water. Göthberg et al. (2004) empha-
sized the role of competition between metals and
nutrients for active stress in the uptake by roots and in
the plant translocation system.

4 Conclusıons

Contaminated water with toxic and undesirable heavy
metals is a serious environmental problem which may
be solved with phytoaccumulation. In this study, we
investigated the toxic effects of Pb on L. minor and S.
polyrhiza and bioaccumulation of this metal. L. minor
was more effective than S. polyrhiza. Our results
showed that nutrient enrichment raised the tolerance
of L. minor and S. polyrhiza to metal contamination.
This effect has important implications in the use of
constructed wetlands for industrial wastewater treat-
ment. Many processes in the metallurgical industry
produce wastewater containing high concentrations of
metal ions. Higher tolerance would be useful for
wastewater treatment as it allows macrophyte growth
at metal concentrations that would otherwise impair
their development. Nutrient addition will thus aid
metal removal by increasing macrophyte production,
leading to higher metal uptake by the macrophyte
biomass and thereby enhancing overall biological
activity to reach higher metal retention levels in the
detritus fractions.
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