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Abstract: Biomaterials that promote angiogenesis are required for repair and regeneration of bone.
In-situ formed injectable hydrogels functionalised with bioactive agents, facilitating angiogenesis have
high demand for bone regeneration. In this study, pH and thermosensitive hydrogels based on chitosan
(CS) and hydroxyapatite (HA) composite materials loaded with heparin (Hep) were investigated
for their pro-angiogenic potential. Hydrogel formulations with varying Hep concentrations were
prepared by sol–gel technique for these homogeneous solutions were neutralised with sodium
bicarbonate (NaHCO3) at 4 ◦C. Solutions (CS/HA/Hep) constituted hydrogels setting at 37 ◦C
which was initiated from surface in 5–10 minutes. Hydrogels were characterised by performing
injectability, gelation, rheology, morphology, chemical and biological analyses. Hydrogel solutions
facilitated manual dropwise injection from 21 Gauge which is highly used for orthopaedic and dental
administrations, and the maximum injection force measured through 19 G needle (17.191 ± 2.296N)
was convenient for manual injections. Angiogenesis tests were performed by an ex-ovo chick
chorioallantoic membrane (CAM) assay by applying injectable solutions on CAM, which produced in
situ hydrogels. Hydrogels induced microvascularity in CAM assay this was confirmed by histology
analyses. Hydrogels with lower concentration of Hep showed more efficiency in pro-angiogenic
response. Thereof, novel injectable hydrogels inducing angiogenesis (CS/HA/Hep) are potential
candidates for bone regeneration and drug delivery applications.

Keywords: thermosensitive injectable hydrogels; injectability; angiogenesis; ex-ovo chick
chorioallantoic membrane (CAM) assay; chitosan; hydroxyapatite; heparin

1. Introduction

The conventional cell-scaffolds techniques in tissue engineering require direct surgical operations
leading causality of bones, devastation of vicinal tissues and traumas as well as difficulties in their
production and cell seeding into their inner cavities. Hereof, in situ form-injectable hydrogels have
drawn attentions since they offer minimal invasive straightforward injection and subsequent crosslinked
gel formation by moulding complex tissue defects in the body stimulated by an external or internal
stimulus [1,2]. Hydrogels as extra cellular matrix (ECM) mimetic materials due to their highly hydrated,
permeable and porous structures enable guided tissue regeneration facilitating cell activities, nutrition
and waste transfer through their crosslinked networks [3]. Swelling and degradation ability of polymer
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matrix hydrogels make them suitable vehicles to encapsulate and deliver numerous therapeutic agents,
such as cells, growth factors, drugs, and genes at tissue defects [4].

In-situ forming thermosensitive hydrogel found as liquid in room temperature and form gel
via an internal stimuli of natural body temperature. Thermosensitive polymer hydrogels undergo a
phase alteration owing to presence of similar amount of hydrophobic and hydrophilic groups in their
networks [5]. Mostly, thermally responsive hydrogels are soluble below a certain temperature, which
is known as lower critical solution temperature (LCST) whereas they form insoluble gels above this
temperature in body [6].

On the other hand, pH responsive gelation occurs due to the pH related ionic interactions leading
proton loose or gain. The swelling in pH sensitive hydrogels is monitored by alteration of electrostatic
charge of the ionised pendant sites of polymers leading electrostatic repulsion. pH sensitive hydrogels
having anionic pendent groups e.g., carboxylic and sulphated groups are entitled as anionic hydrogels
whereas cationic pendent groups (for instance, amine) involved hydrogels are designated as cationic
hydrogels. Anionic hydrogels (such as carboxymethyl chitosan) swell when pH is raised above pKa,
which is feasible for drug delivery at high pH (e.g., intestine possess pH 7.4). On the other hand, cationic
hydrogels (such as chitosan) swell in low pH under the pKb once ionisation occur, and beneficial for
drug delivery in acidic pH e.g., in stomach [7,8].

Drug delivery via diffusion of particles from hydrogel network was based on Fick’s Law [8,9].
The diffusion of molecules depends on net ionic charge in multi-ion systems. For instance, in counter
charged polycomplex systems, particle diffusion is retarded due to electrostatic bonding. Solute
diffusion and partitioning in hydrogels have been correlated by ionic, chemical and steric interactivity
and concentration in theories based on Poisson–Boltzmann (PB) cell model [9,10]. The partition
coefficient equality is given at the Equation (1) [9].

Φ = θαπ = [A]g/[A]w (1)

(Φ: partition coefficient, θ, α and π: steric, chemical and electrostatic interactions, and [A]g and [A]w:
concentration of solute in gel and water, respectively.)

Among in-situ formed hydrogels, pH and thermosensitive hydrogels are more attractive due
to the absence of any toxic cross-linkers or external stimuli, such as UV and their possible adverse
effects against surrounding cells and ECM by elevated temperature during polymer formation
in-situ [11]. Since pH and thermosensitive hydrogels are physically crosslinked, they provide a
temporary mechanical support for non-load bearing bones. They stimulate the cells for regrowth of
tissues with the active agents introduced to the ECM through the swelling and degradation of hydrogels.
Once the regeneration of injured bones start, polymer matrixed hydrogels start to degrade [3,12].

A wider range of different thermoresponsive gels have been used for biomedical applications
in recent years. One commonly used thermosensitive hydrogel in tissue engineering is
Poly(N-isopropylacrylamide) (PNIPAAm) forming nearly at 30 ◦C. The elastic PNIPAAm hydrogels
integrated with cardiac stem cells for hearth regeneration to stimulate cardiac differentiation [13]
and PNIPAAm crosslinked with hyaluronic acid forming injectable porous hydrogels which was
biocompatible with encapsulated adipose derived stem cells have been reported [14]. Recently, highly
tough hydrogels from PNIPAAm and alginate composites whose surfaces were modified by chitosan
and carbodiimide crosslinker for adhesive and contacting via body temperature which accelerate
wound healing in-vivo in mice has been reported. Another example of thermosensitive hydrogels are
Pluronics are polyethylene oxide-based triblock copolymers, known for their bioadhesion, stability and
thermosensitive gel forming capability at 30 ◦C, and are commonly used for injectable drug delivery
systems [15]. In addition, polyurethane based hydrogels constituted by poly(glycerol-sebacate) and
poly(ethylene-glycol) having thermo-reversibility between 5 and 37 ◦C has been reported. These
hydrogels showed elastic, biodegradable and biocompatible features with adipose derived cells
for soft tissue engineering applications [16]. Poly(N-vinylcaprolactam), (PNVCL) based nanogels
have shown antiviral activity against HIV-virus [17] whereas PNVCL–PEGMA based nanogels
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have shown great potential in 5-Fluorouracil (5FU) drug delivery systems [18]. Poly(VCL-co-UA),
Poly(vinylcaprolactam) (PVCL) and Poly(N-isopropylacrylamide) (PNIPAM)-based microgels have
been promising candidates in controlled drug delivery of anticancer drugs, such as, doxorubicin [19–21].
A combination of nanocomposite hydrogels in glycerol–water cosolvent (GW) gels have great
potential to be used in biosensing, soft-robotics and artificial intelligence due to their electrical
sensitivity towards environmental temperature changes [22,23]. A combination of tranexamic
acid (TXA) and thermosensitive CS-β-GP (β-glycerophosphate) gel/spray has promoted nasal
wound healing in the treatment of epistaxis [24]. A sol–gel fabrication of antibacterial peptide
nanofibrils with PNIPAM have shown great promise for minimally invasive drug delivery [25].
A combination of PNIPAM in hybrid PVA and sodium tetraborate decahydrate composite hydrogels
have potential in the development of artificial electronic skins and temperature dependent soft
electronics applications [26]. Sertaconazole-loaded nanostructured lipid carriers (Sertaconazole-NLCs)
incorporated HPMC nanocomposite hydrogels have shown good results in vitro studies in the treatment
of fungal keratitis [27]. In-vitro studies have revealed that silver sulfadiazine (AgSD)/NsS loaded
thermosensitive gels exhibited bactericidal effect on pathogens during wound healing process [28].
PLGA-PEG (PP) copolymer with simvastatin (SIM) nanoparticles combined with porous bioceramic
scaffolds have given promising results in bone regeneration in radial bone defect in rabbits [29].

Chitosan being a natural cationic long linear chain polysaccharide able to form pH and
thermosensitive hydrogels at the vicinity of body temperature [12]. Chitosan based biomaterials
involving hydrogels have been used in diverse tissue engineering applications. Chitosan based
composite hydrogels and films harnessed as wound healing material with drug delivery [30]. Chitosan
gel-scaffolds combined with pectin or hyaluronate have been explored in tooth root canal regeneration
in dog teeth [31]. In addition, chitosan gels and its combination with collagen or demineralized bone
clinically have been utilised for regeneration of periodontal bone defects in humans. The significant
bone mineralisation obtained in all groups as the best bone filling achieved with the collagen and
chitosan compositions [32].

Chitosan based thermosensitive injectable hydrogels involving pH neutralisation by using
β-glycerophosphate disodium β-(GP) and gelation at the vicinity of 37 ◦C driven by intra-hydrogen
binding of chitosan due to decrease in repulsive forces via basicity of salt and further hydrophobic
interactions due to the increment at the temperature [33]. BTS Car-Gel® commercial thermosensitive
chitosan solution neutralised by β-(GP) have been utilised to treat cartilage lesions after trauma or
joints via bone marrow stimulation method in clinical trials. BTS Car-Gel solution mixed with blood
was applied arthroscopic or minimal surgery methods stabilised blood clotting and adhered the defects
and induced cartilage repair significantly [34,35].

Although the beneficial application of β-(GP) neutralised hydrogels, to achieve a physiological
pH level, high dosages of β-(GP) is required mitigating cell cytocompatibility [36]. Therefore,
some researchers have exploited different neutralising agents as additive to β-GP in thermosensitive
chitosan hydrogels, such as Mg GP to investigate cell adhesion and proliferation via in-vitro
osteosarcoma cells [37] and Ca GP to investigate mineralisation to ensure calcium phosphate
mineralisation [38]. Furthermore, di-sodium carbonate (Na2CO3) [39], and sodium bi-carbonate
(NaHCO3) [40] compounds have been investigated as pH and temperature sensitive hydrogels.

In pH and temperature sensitive chitosan solutions neutralised by a weak base NaHCO3,
gelation occurs gradually from the surface to bulk. The gelation is driven by protonation and
deprotonation of amine groups in chitosan reversibly reacting with HCO3

− in NaHCO3 and H+

ions in the acidic environment provide an ionic crosslinking of chitosan with neutral NH2 linkages.
The accompanying reaction product, carbon dioxide can metabolically release from the body which is
non-toxic. By preventing carbondioxide release, stability of solution is increased for in-situ gelation
which is also stimulated by body temperature [41]. The harnessing sodium bicarbonate addition to
β-GP have provided increase in cell cytocompatibility, as well as enhancing mechanical and gelation
properties [42].
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Chitosan and hydroxyapatite incorporation in biomaterials due to inherited benefits of
hydroxyapatite for bone regeneration have been investigated widely. The impact of hydroxyapatite on
bone regeneration can be associated with its origin comprising the inorganic matrix of natural bones
with diverse ionic substitutions in its crystal lattice. The unique bioactive properties of hydroxyapatite
promotes cell adhesion and osteoconductivity, as well it enhances proliferation and alkaline phosphate
secretion of osteoblasts, which helps early healing of bones [43–45]. Therefore, hydroxyapatite has
significant contributions in bone regeneration involving osteogenic response [44], biocompatibility
and osteoblast attachment [46], in vivo–bone regrowth in rats [47] periodontal tissue regeneration
with anti-inflammatory potential [48], proliferation and differentiation of alveolar bone regeneration
accompanied with drug release [49].

Recently, chitosan/hydroxyapatite (CS/HA) thermosensitive hydrogels neutralised by β-GP has
been reported [50] by utilisation of water soluble thiolated chitosan for bovine serum albumin release.
In addition, CS/HA thermosensitive hydrogels with gentamicin were harnessed to increase porosity
of bone cement PMMA, this led to enhancement of eventual features of composite with better
mineralisation and cell viability [51]. In another study, anti-inflammatory hydrogels from CS, HA and
poly(vinyl-alcohol) system has investigated for drug (meloxicam) delivery for periodontal treatments.
In addition to swelling and sustainable drug release, these hydrogels were cytocompatible and
improved cell proliferation with anti-inflammatory properties [48]. Recently, pH and thermosensitive
chitosan/hydroxyapatite hydrogels neutralised by sodium bicarbonate was integrated by in-situ formed
hydroxyapatite have contributed to increment in pH for neutralisation, and good cell viability and
proliferation was obtained in encapsulated cells [40].

Minimal invasive hybrid hydrogels functionalised with bioactive agents not only facilitating
interfacial bonding with natural bones but also providing vascular network bridging via porous
stimulation of angiogenesis by active agents are crucial for eventual bone regeneration. Therefore,
in this study, pH and thermosensitive chitosan based injectable hydrogels were investigated for
functional guided bone tissue regeneration by stimulating angiogenesis via recruiting physiologically
active glycosaminoglycan, heparin.

As has been reported the most failure in the regeneration and repair of bone tissues root from
insufficient vascularisation [52,53]. Once tissue engineered biomaterials are implanted into large-scaled
bone defects, the tissue healing strongly rely on keeping cells alive by swift branching of present
blood vessels occupying defect sites. In case of deficient blood supply, cells cannot survive since their
metabolic activities are impaired because of supplement of nourishments, oxygen, and transfer of
metabolism products. The sufficiently grown microvascular structure also maintains the regulation of
various cells which participate in remodelling and reconstruction of tissues, including hematopoietic
stem cells, osteoprogenitor and immune cells [54]. Therefore, there is surplus demand of pro-angiogenic
biomaterials to stimulate regeneration of tissues via angiogenesis.

To stimulate angiogenesis for tissue healing, one common strategy is delivery of pro-angiogenic
growth factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor
(bFGF), and transforming growth factor beta (TGFβ) [55–57]. Although they substantially stimulate
angiogenesis, their efficiency is restricted by their instability due to high solubility that reduce their
performance and activation time. This becomes more challenging upon fracture in tough conditions.
To combat their instability, the approach to utilise high level of growth factors also leads toxic effects
and malformation of bones. In addition, regional inflammatory reactions, adverse effects on nerves
and risk of malignant tissue formations have been reported [58,59].

Due to instability issues of growth factors, they are mostly harnessed by their immobilisation into
a scaffold matrix providing their controlled delivery. One approach is to bind these growth factors with
heparin or heparan sulfate proteoglycans (HPSGs) since they have great binding capacity of proteins
involving growth factors due to their highly anionic nature [60]. Heparin and HPSGs are proficient to
bind pro-angiogenic receptors with majority of angiogenic growth factors, comprising VEGF, bFGF,
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and TGFβ [56,61]. The binding heparin with pro-angiogenic factors provides proliferation, generation
of protease and migration of endothelial cells, as well as leading cells for blood vessel formation [56].

Recently in our group, heparin was exploited to induce angiogenesis investigated via CAM
assay to evaluate the potential attachment of physiologically available angiogenic growth factors to
pro-angiogenic receptors by using heparin bonded chemically crosslinked chitosan poly-vinyl alcohol
(PVA) hydrogels. Triethyl orthoformate (TEOF) crosslinked and heparin bonded hydrogels led to more
blood vessel generation as compared to heparin-free control samples [62]. In addition, direct mixing
of heparin in chitosan-PVA-PCL hydrogels in the absence of any growth factors was investigated for
angiogenesis on chick embryo’s CAM tissues for wound healing application. It was found that heparin
bonded chitosan-PVA-PCL hydrogels led to significantly more angiogenesis than the sole collagen
control gels [63].

To our knowledge, heparin inclusion (by blending in solution) in the injectable pH and
thermosensitive chitosan-hydroxyapatite hydrogel systems neutralised by NaHCO3 to investigate their
effects on angiogenesis for bone regeneration has not been investigated till date. Therefore, in this study,
thermosensitive injectable CS/HA/Hep hydrogels have been developed in different compositions via
optimisation of synthesis parameters for homogeneous sol formulations and hydrogels. These hydrogel
compositions were thoroughly characterised comparatively for various aspects. Angiogenesis analyses
were performed via an ex-ovo CAM assay in which in-situ gelation of thermosensitive hydrogel
solutions applied on CAM tissue occurred upon incubation at 37.5 ◦C. This technique mimics the
in-vivo sol–state application of injectable hydrogels, and the rapid gel formation has eliminated the
involvement of using an external material to keep solution in a place on CAM such as, such as silicone
ring which might cause irrelevant material–tissue reactions.

The results have shown that the composite hydrogels with (CS/HA/Hep) and without heparin
(CS/HA) have indicated pro-angiogenic response in CAM. However, it was found that the lowest
concentration of heparin used was sufficient for angiogenesis while less angiogenesis was obtained
at higher heparin concentrations compared to control samples (CS/HA). In addition, the highest
concentration of Hep in hydrogels, as well as decreasing gelation temperature, has led to significant
increase in elastic modulus in comparison to other compositions. This can be the indicator of
strengthening of ionic bonding due to counter charged CS and Hep polycomplex formation. This could
be useful for sustainable drug delivery as long as injectability is maintained for drug encapsulation
in-situ for injectable drug administration.

2. Results

2.1. Synthesis of Hydrogels

All hydrogel compositions have showed a proper flow through syringes coupled with 21 gauge
and thicker size needles. The initial gelation of solutions has started from surface towards to the bulk
in 5–10 minutes at 37 ◦C and the complete gelation occurred in 24–48 h in close-lid glass petri dishes or
test tubes in 37 ◦C oven.

Homogeneous chitosan and composite solutions were obtained at pH between 6.2–6.3 upon
neutralisation with NaHCO3 while higher pH led to precipitation problems. The precipitation problem
with addition of heparin in powder form was overcome by gradual addition of heparin as a solution
in de-ionised water. Diverse hydrogel compositions with their codes and pH of homogeneous
mixtures after neutralisation and gelation, and incipient gelation time in a silicone oil bath at 37 ◦C are
summarized in Table 1.
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Table 1. Different hydrogel compositions according to their weight ratio, pH values of solutions and
hydrogels and incipient gelation time in test tubes at 37 ◦C.

Sample Names and
Codes

Chemical Compositions (w/w, %)
Incipient

Gelation Time
(tig), min

pH of
Final Sol

pH after
Gelation

CS HA Hep

CI: CS
Gel from pure CS 100.00 0.00 0.00 8 6.20 6.50

CII: CS.01HA (CS+HA;
HA/CS=1/10)

90.91 9.09 0.00 7 6.24 6.51

SI: CS-0.1HA-0.005Hep
(CS+HA+Hep; 0.12
mg/mL Hep)

90.50 9.05 0.45 5 6.21 6.53

SII: CS-0.1HA-0.015Hep
(CS+HA+Hep; 0.36
mg/mL Hep)

89.69 8.97 1.35 10 6.22 6.72

SIII: CS-0.1HA-0.025Hep
(CS+HA+Hep; 0.60
mg/mL Hep)

88.89 8.89 2.22 7 6.24 7.01

CI�Chitosan gel; CS�Chitosan; HA�hydroxyapatite; SI = Chitosan; Hep�Heparin; Sol�definesolution.

Transparent yellow colour, homogeneous sole chitosan hydrogel solution (CI) and hydrogels were
obtained after incubation at 37 ◦C and are shown in Figure 1. Sol–gel transition of thermosensitive
hydrogel solutions occurred in minutes in test tubes placed in an oil bath at 37 ◦C which ranges from
5 to 10 min. Figure 2 shows test tube invert method to incipient gelation occurring at a composite
hydrogel solution (CS/HA/Hep) in 7 min. Since the gelation is driven by gradual carbon dioxide
evaporation from surface, the exact gelation time is found to be depend on the surface area and the
depth of the solutions. In addition, it has been found that gelation of solutions occurred very fast
in open-lid glass petri dishes while homogeneous gels were obtained in closed lid vials or plates
gradually. To obtain homogeneous hydrogels, solutions were poured into one-level open a glass-tube
(75 mm × 18 mm) with three level push polythene plug cap) and left in the oven at 37 ◦C until complete
gelation for 2 mL of solution for 48 h.
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Figure 1. Images of the final homogeneous solutions (a) transparent CI (CS, 5% (w/v) initial concentration)
and (c) composite sol, SI: CS-0.1HA-0.005Hep (solutions were obtained after neutralising with NaHCO3

and 2 mL of the solution was taken into a glass-tube (75 mm × 18 mm) with three level push polythene
plug cap) and hydrogels of (b) CI and (d) SI acquired after heat treatment in one level open plug cap of
the tube at 37 ◦C-oven for 48 h.
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Figure 2. A representative sol–gel transition image of a composite SI hydrogel solution (2 mL) in a
closed glass test tube (75 mm × 18 mm) placed into a silicone oil bath at 37 ◦C. ti.g.: incipient gelation
point was determined with the test tube invert method as 7 min.

2.1.1. Injectability

Qualitative Evaluation of Injectability

The hydrogel solutions with higher chitosan concentration (7 and 8 w/v in initial solution) were not
able to pass through 20 G needles. They had already gel like viscosity in solution state. The formulations
with lower concentrations 5 and 6%(w/v) have resulted in injectable (drop flow), transparent yellow
solution (Figure 1). In addition, the incipient gelation occurred in test tube in 8 min with hydrogels
involving 5% (w/v) initial chitosan solution concentration. Therefore, in the composite hydrogels,
5% (w/v) chitosan solution was used for optimal injectability and gelation features.

The injectability rating of all hydrogel solutions are summarised in the Table 2. All solution
compositions have shown perfect flow from 20 G and thicker sized syringes. Sample-III with the
highest concentration of heparin was more viscous and had less flow rate from 22 G needle compared
to other compositions. This composition had lower incipient gelation temperature as well in the
rheology measurements as can be seen in the Section 2.3.

Table 2. Injectability rating of different hydrogel compositions 1.

Sample Names and Codes:
Needle Sizes (Gauge)

18 19 20 21 22 23 25

CI: CS ****** ****** ****** ***** **** *** **
CII: CS-0.1HA ****** ****** ****** ***** **** *** **

SI: CS-0.1HA-0.005Hep ****** ****** ****** ***** **** *** **
SII: CS-0.1HA-0.015 Hep ****** ****** ****** ***** **** *** **
SII: CS-0.1HA-0.025 Hep ****** ****** ****** ***** *** *** **

1 ******�a perfect flow; *****�a good drop flow; ****�a drop flow with slight pressure; ***�a drop flow with high
pressure; **�a drop flow with very high pressure; *�no flow.

Quantitative Injectability Measurements

Injectability results were represented as a graph of force versus displacement measurements
(Figure 3.). Initial glide force (IGF), dynamic glide force (DGF) and maximum force (Fmax) were counted
and are given in Table 3.
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Figure 3. A representative graph of the injectability tests of hydrogel solutions via force versus
displacement measurements. CI/II�define; 19G�define; SI�define.

Table 3. Injectability force measurements of hydrogel solutions by 10 mL syringe (BD, tip inner and
outer diameter of 2 and 4 mm, respectively) with and without a needle (19G × 1 1/2” 1 × 40mm). Initial
glide force (IGF), dynamic glide force (DGF) and maximum force (Fmax) values were counted as mean
of three experiments (n = 3) with standard deviations in Newton (N) unit.

Syringe Type Sample IGF (N) DGF (N) Fmax (N)

Needleless
CI 4.478 ± 0.273 1.217 ± 0.050 4.478 ± 0.273
CII 3.219 ± 0.331 0.679 ± 0.033 3.219 ± 0.332
SI 3.138 ± 0.054 1.36 ± 0.050 3.138 ± 0.054

19G needle
CI 2.697 ± 2.296 16.697 ± 0.324 17.191 ± 2.296
CII 4.520 ± 1.125 10.682 ± 0.265 10.996 ± 1.125
SI 3.127 ± 1.263 11.460 ± 0.172 11.892 ± 1.263

IGF� initial glide force; DGF� dynamic glide force; Fmax�maximum force.

The Fmax value was the highest in CI solution as compared to composite hydrogel solutions
in both experiments with and without needle. DGF and Fmax forces were similar in both CII and
SI solutions while these forces for SI solution was slightly higher than CII solutions at experiments
performed with 19 G needle.

The injectability through needleless syringe, Fmax values were the same with the IGF while Fmax

were at least two times higher than IGF values at tests through a 19 G needle (BD, 19 G × 1 1/2”
1 × 40 mm). The DGF values at injection through 19 G needle were at least 10 times higher than those
of needless syringe flow. However, all forces applied for injectability via a 19 G needle reached to
maximum was about 17 N.

2.2. Solution Stability

Synthesised thermosensitive solutions were stored in closed lid universal tubes in a fridge at 4 ◦C.
Hydrogel solutions without heparin (CI and CII) persisted their fluid form up to six months. However,
heparin involved composite hydrogels were maintained their stability as fluid up to three weeks.

2.3. Rheology Measurements

A temperature sweep test between 15 to 60 ◦C was performed with a chitosan hydrogel solution
(the initial CS concentration of 6% (w/v)) presented a sol–gel transition behaviour occurring at 35.9 ◦C
(Figure 4). The elastic modulus has increased up to 496 Pa while the temperature was increasing until
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60 ◦C. The high elastic modulus of hydrogel was also maintained during the cooling temperature down
back to 15 ◦C. This has revealed thermo-irreversible gel formation behaviour which was obtained in all
compositions. There was a slight decrease in both viscous (G”) and elastic modulus (G′) from 15 to
nearly 30 ◦C then, elastic modulus started to increase gradually.
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Figure 4. The gradient of viscous and elastic modulus of thermosensitive CS sol (initial concentration
of CS solution 6% (w/v) neutralised by NaHCO3) with temperature sweep between 15–60 ◦C during
heating and cooling, respectively.

Time sweep tests in which the temperature was kept at 37 ◦C for 30 min have shown that elastic
modulus has gradually increased with time while viscous modulus stayed constant. This is the
indicator of the mechanical strengthening of gels in body temperature with the time. As it can be seen
in the Figure 5, the elastic modulus of chitosan hydrogel has increased from 252 Pa to 619 Pa during
30 min time sweep.
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Figure 5. Elastic and viscous modulus changes versus time with a constant temperature at 37 ◦C for of
CI:CS sol.

In Figure 6, there is a comparative rheology measurement of two control samples (CI and CII)
and samples with heparin (SI and SIII). The CI sample with only chitosan had an incipient gelation
at almost 37 ◦C (Figure 6a). Hydroxyapatite addition into hydrogels has contributed to decrease the
gelation temperature to almost 31 ◦C (Figure 6b). Furthermore, heparin has further impact on reducing
the incipient gelation temperature to approximately 28 and 21 ◦C in SI and SIII samples, respectively
(Figure 6c,d). Moreover, the highest concentration of heparin in SIII significantly enhanced elastic
modulus of hydrogels from approximately 5 Pa up to 130 Pa (Figure 6d). However, these more viscous
formulations had quicker gelation during storage at 4 ◦C which limits the injectability and storage.
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Figure 6. Elastic and viscous modulus changes with the increasing temperature between 15 and
37 ◦C in following hydrogel compositions: (a) CI: CS; (b) CII: CS-0.1HA; (c) SI: CS-0.1HA-0.005Hep;
(d) CS-0.1HA-0.025Hep.

2.4. Scanning Electron Microscopy (SEM)

The SEM images of freeze-dried hydrogel foams revealed an interconnected porous morphology
(Figure 7). The mean pore diameter counted in Image-J® (Version 1.52 k, National Institutes of Health,
Bethesda, MD, USA) software was 73.4 µm, while minimum and maximum length of pores were 19.5
and 158 µm, respectively. The chitosan hydrogel matrix itself had some particulates on the surface
which is considered due to sodium salts from neutralising agent. In CS/HA hydrogels the surface of
chitosan matrix was covered by the spherical hydroxyapatite particles which are considered to provide
active surface properties (Figure 7b)
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Figure 7. SEM micrographs of lyophilized hydrogels: (a) CI:CS; (b) CII: CS.0.1HA at 5000 magnification
(Scale bars indicate 10 µm).

The hydrogel composites with heparin has also porous morphology with a folding structure
on top surface, as can be seen for SIII sample at Figure 8a. The semi-crystalline chitosan network
involving the prismatic shaped crystals can be attributed to sodium salts result from neutralizing agent.
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The thinner round like hydroxyapatite particles were detected as agglomerates at different regions of
hydrogels. The smoother surface feature covering all rough particles might be the indicator of coating
effect of heparin on the surface (Figure 8b–d).
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Figure 8. The SEM images of SIII:CS-0.1HA-0.25Hep at different magnifications; (a) 500 (Scale bar is
100 µm); (b) 5000 (Scale bar is 10 µm); (c) 10,000 (Scale bar is 5 µm); (d) 20,000 (Scale bar is 3 µm).

2.5. Chemical Analyses

2.5.1. Fourier-Transform Raman (FT-Raman) Spectroscopy

The FT-Raman spectra of all gel compositions are given at Figure 9. The peaks at the region of
3100–3400 were assigned as hydroxyl groups while a sharpest peak at 2932 and its small shoulder
at 2748 cm−1 indicate C–H stretching peaks in all samples. The peaks at 960 and 1035 cm−1 showed
the presence of (PO4)−3 bonds in hydroxyapatite [64]. The S=O bonds at 1260 cm−1 become the peak
has become sharper and more intense showing the characteristic of heparin in compare to control
samples [63]. The intensity of the peak at 446 cm−1 has increased in higher heparin concentrations due
to O=S=O bonds in heparin [65].
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Figure 9. A comparison of FT-Raman spectra of all hydrogel samples obtained by mean of nine spectra
from a square area mapping and baseline corrected and offset data in OMNICTM software.

2.5.2. Attenuated Total Reflectance (ATR) Spectroscopy

Figure 10 presents the overlay of ATR spectral data of all gel compositions. The peaks between
3000–3400 cm−1 were assigned as OH and NH stretching [66,67]. C–H stretching of chitosan and
heparin were observed at ~2930 and 1150 cm−1, which decrease when the heparin concentration
increases. The peaks near to 1020 cm−1 correspond to ring stretching and in plane bending of C–H in
CS, asymmetric stretching of PO4

−3 bond [66,68].
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Figure 10. Surface chemical analyses of all hydrogel samples by FTIR-ATR spectroscopy. Data has been
baseline corrected in OMNIC TM software.

The pyranoid ring stretching of chitosan was seen at 898 cm−1 at CS (CI) sample while this
value was slightly decreased (893 cm−1) gradually when the Hep amount increased [67]. In addition,
pyranoid ring stretching of C–H and symmetric COO− vibrations occurred at 927 cm−1 [66,69]. Amide
II or N–H bending and C–H deformation occurred in most composition at 1544 and 1406 cm−1,
respectively [66,67]. Amide III or C–N stretching in CS and was at 1338 cm−1 [70]. Amide I groups
have taken place at 1636 and 1687 cm−1 [66,67].
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2.6. Ex-Ovo Chick Chorioallantoic Membrane (CAM) Assay

Angiogenesis evaluation of hydrogels with and without heparin was carried out with an ex-ovo
(shell-less) CAM assay on chick embryos (see Section 4.4.7). After implementing hydrogel samples on
CAM at day 7 of the incubation, images of newly formed blood vessels attached to samples were taken
at day-10 and day-14. The obtained results have revealed pro-angiogenic response of hydrogels leading
micro vascularity at adjacent tissues to the samples. The total survival rate of CAM experiments and the
survival rate after sample implantation were between 45–50% and 70–80%, respectively. The Figure 11
shows a comparison of new blood vessel occurrence with the effect of different concentration of heparin
with control (CII).

Int. J. Mol. Sci. 2020, 20, x FOR PEER REVIEW 13 of 26 

 

2.5. Ex-Ovo Chick Chorioallantoic Membrane (CAM) Assay  

Angiogenesis evaluation of hydrogels with and without heparin was carried out with an ex-ovo 

(shell-less) CAM assay on chick embryos (see Section 4.4.7). After implementing hydrogel samples 

on CAM at day 7 of the incubation, images of newly formed blood vessels attached to samples were 

taken at day-10 and day-14. The obtained results have revealed pro-angiogenic response of hydrogels 

leading micro vascularity at adjacent tissues to the samples. The total survival rate of CAM 

experiments and the survival rate after sample implantation were between 45–50% and 70–80%, 

respectively. The Figure 11 shows a comparison of new blood vessel occurrence with the effect of 

different concentration of heparin with control (CII).  

 

Figure 11. Comparative chorioallantoic membrane (CAM) images taken at day-14 of embryo 

incubation to evaluate angiogenic response of hydrogel samples: (a) CII: CS.0.1HA;  

(b) SI: CS.0.1HA.0.005Hep (0.12 mg/mL Hep); (c) SIII: CS.0.1HA.0.025Hep (0.60 mg/mL Hep), and 

images after white cream injection underneath CAM to make blood for contrast: (d) CII; (e) SI; (f) SIII. 

2.5.1. Vascular Index Counting  

The newly formed blood vessels at the images acquired from CAM (day-14) were counted by 

vascular index method by Barnhill and Ryan (1983) [71]. Vascular index counted for six samples from 

each sample group were plotted in GraphPad Prism (Version 7.0, San Diego, CA, USA) and unpaired 

two-tailed t-test applied. 

The results have shown that SI hydrogels with minimum heparin concentration (0.12 mg/mL in 

final sol) has shown maximum pro-angiogenic response in the CAM (Figure 12). However, micro 

vessel formation in control samples (CII:CS/HA) without heparin has also comparable with SI 
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control (CII).  

Figure 11. Comparative chorioallantoic membrane (CAM) images taken at day-14 of embryo incubation
to evaluate angiogenic response of hydrogel samples: (a) CII: CS.0.1HA; (b) SI: CS.0.1HA.0.005Hep
(0.12 mg/mL Hep); (c) SIII: CS.0.1HA.0.025Hep (0.60 mg/mL Hep), and images after white cream
injection underneath CAM to make blood for contrast: (d) CII; (e) SI; (f) SIII.

Vascular Index Counting

The newly formed blood vessels at the images acquired from CAM (day-14) were counted by
vascular index method by Barnhill and Ryan (1983) [71]. Vascular index counted for six samples from
each sample group were plotted in GraphPad Prism (Version 7.0, San Diego, CA, USA) and unpaired
two-tailed t-test applied.

The results have shown that SI hydrogels with minimum heparin concentration (0.12 mg/mL in
final sol) has shown maximum pro-angiogenic response in the CAM (Figure 12). However, micro
vessel formation in control samples (CII:CS/HA) without heparin has also comparable with SI sample.
In addition, the highest concentration of Hep (SIII) has led to less vascularity compared to control (CII).



Int. J. Mol. Sci. 2020, 21, 1633 14 of 26Int. J. Mol. Sci. 2020, 20, x FOR PEER REVIEW 14 of 26 

 

 

Figure 12. Quantification of angiogenesis on the images taken in the sacrificing day of embryos (day-

14) in the following samples: C2: CS.0.1HA; S1: CS.0.1HA.0.005Hep (0.12 mg/mL Hep);  

S3: CS.0.1HA.0.025Hep (0.60 mg/mL Hep) (ns and * represent the p values which are equal to 

0.3482 and 0.0408, respectively). 

2.6. Histology Analyses of CAM Tissue-Samples. 

Histology sections of hydrogel-tissue samples preserved after CAM assay were acquired after 

fixing, sectioning and Hematoxylin and Eosin (H&E) staining. Figure 13 shows images of horizontally 

sectioned slides obtained from a CII hydrogel-tissue specimen. Images showed that there is a 

connective tissue formation in the edge of circular hydrogel specimen. Blood vessels filled with blood 

cells grooving toward to the samples can be seen clearly. These results indicate also well integration 

of hydrogels with surrounding tissues since hydrogels found in the connective tissue regions which 

are adjacent newly growing micro vessels. In addition, endothelial cells and other blood cells were 

located in hydrogels. 

 

Figure 13. Histology images of CAM tissue-hydrogel slides obtained after horizontal sectioning and 

H&E staining: Images represents the connective tissue surrounding hydrogels with tiny blood vessels 

C
2 S1 S3

0

20

40

60

Sample Groups

V
a
s
c
u

la
r 

In
d

e
x

ns *

Figure 12. Quantification of angiogenesis on the images taken in the sacrificing day of embryos
(day-14) in the following samples: C2: CS.0.1HA; S1: CS.0.1HA.0.005Hep (0.12 mg/mL Hep); S3:
CS.0.1HA.0.025Hep (0.60 mg/mL Hep) (ns and * represent the p values which are equal to 0.3482 and
0.0408, respectively).

2.7. Histology Analyses of CAM Tissue-Samples

Histology sections of hydrogel-tissue samples preserved after CAM assay were acquired after
fixing, sectioning and Hematoxylin and Eosin (H&E) staining. Figure 13 shows images of horizontally
sectioned slides obtained from a CII hydrogel-tissue specimen. Images showed that there is a connective
tissue formation in the edge of circular hydrogel specimen. Blood vessels filled with blood cells
grooving toward to the samples can be seen clearly. These results indicate also well integration of
hydrogels with surrounding tissues since hydrogels found in the connective tissue regions which are
adjacent newly growing micro vessels. In addition, endothelial cells and other blood cells were located
in hydrogels.
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Figure 13. Histology images of CAM tissue-hydrogel slides obtained after horizontal sectioning and
H&E staining: Images represents the connective tissue surrounding hydrogels with tiny blood vessels
grooving into them (Images were taken at a magnification of (a) ×10 and (b–d) at ×20, and all scale
bars equal to 10 µm. The green and black arrows represent hydrogels, and blood vessels, respectively).
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3. Discussion

Injectable homogeneous chitosan-based hydrogels solutions were obtained, and gelation was
occurred at the vicinity of body temperature. Qualitative injectability rating evaluated with a range of
needle coupled with 10 mL syringe showed all present compositions had good drop flow from 21 Gauge
and thicker sized needles. Therefore, viscosity of solutions is found suitable for injectability in bone
regeneration applications (orthopaedic procedures and dental applications are 10–16 G and 16–25 G,
respectively) [72]. Furthermore, the quantitative measurements have shown that the maximum force
applied during the tests with 19 G needle was 17.191 ± 2.296 N which is less than the maximum manual
force for injection is considered as 30 N [73].

In final mixture solutions, the maximum solution pH after neutralization with NaHCO3 was less
than 6.4. To avoid heterogenicity in the solution, pH was kept at the vicinity of 6.2 but the gelation
started in 5 to 10 min and this led to increase at the pH up to 7 which is in the range of physiological
pH level [33]. As has been reported by other authors [41] although pH could be increased above
6.5 by increasing sodium bi-carbonate amount in chitosan solution, the phase separation occurred
during the storage of solution following several days. Although the utilization of β-GP lead higher pH
values in thermosensitive chitosan-based hydrogels, cell cytotoxicity problem has been reported [36].
Therefore, recently researchers have harnessed sodium bicarbonate accompanying β-GP which has led
to increase at cell viability [42]. Other researchers have reported thermosensitive chitosan hydrogels
with co-synthesised hydroxyapatite which were neutralised by only sodium bicarbonate. The results
indicate the beneficiary impact of hydroxyapatite at surging pH up to 6.96 [40]. However, as reported
in these formulations, the incipient gelation point could not be determined by the cross over point of
elastic and viscous modulus since at the beginning of the rheology measurements elastic modulus
was higher than the viscous modulus. Although this result shows desirable pH values in solutions
and mechanical strengthen hydrogels, having viscous solutions can cause limitations in injectability.
Therefore, in CS/HA/Hep hydrogels, increase at the pH can be provided by involving higher amount
of hydroxyapatite. However, injectability and gelation features need to be preserved in the meantime.

Rheology tests have revealed that the sol–gel transition of all hydrogel compositions showed
thermo-irreversible gelation feature. These thermosetting behaviours were distinguished from chitosan
hydrogels neutralized by β-GP which presents thermo-reversible sol–gel behaviour at pH values
between 6.5–6.9 despite their irreversibility at higher pH [33]. Thermosetting hydrogels can be
considered as an advantageous that once the homogeneous sol easily injected into tissue defects,
hydrogels form and they strengthened mechanically with time. This feature can be suitable for
sustainable drug delivery applications. The rheology studies have also showed that the gelation time
and temperature can be modulated by hydroxyapatite and heparin inclusion since both compounds
have contributed to decrease at the gelation temperature. The highest concentration of heparin
(0.60 mg/mL in final solution) has led to almost 30-fold increase at the elastic modulus of the hydrogels.
This mechanical enhancement can be attributed to strong reversible ionic interaction chitosan and
heparin which is due to the oppositely charged polyelectrolyte complex phenomena [74].

The heparin inclusion method inside hydrogels is also very important in terms of stability of
heparin and blood compatibility as well as homogeneity of sol in CS/Hep polycomplex. Polymer
mixing method was found suitable by authors [75] since it provides immobilization of heparin leading
sustainable delivery of heparin as enhancing blood biocompatibility in CS/Hep composites. In addition,
they stated that the formation of a homogeneous solution from CS/HA polycomplex depends on the
molecular weight of chitosan, the mixing order of compounds and solid or liquid status addition, and
speed of mixing. In our hydrogel system (CS/HA/Hep), the synthesis method was optimised to get
homogeneous solutions. While use of heparin in powder state lead to huge precipitation problem, the
gradual addition of heparin as water solution with constant stirring ensured to acquire homogeneous
solutions. In addition, as has been reported [75], the use of medium molecular weight (Mw) of CS
in CS/Hep polycomplexes result with homogeneous solution whereas low and high Mw CS lead
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to precipitates in solutions. Our results have also confirmed this positive effect of medium Mw CS
providing homogeneity compared to other molecular weights of CS.

Hydrogel composites in freeze dried state has revealed highly porous and interconnected pore
morphology varying between 19.5 and 158 µm while average pore diameter is 73.4 µm. Although
freeze drying process can cause alteration in hydrogel structures leading less porosity than that of
swollen hydrogels [56], the representative porosity of hydrogels in the freeze-dried form are also
comparable with the pore sizes required to maintain cell activities and diffusion in bone tissue
engineering (75–100 µm) [76].

Angiogenesis evaluation by ex-ovo CAM assay have shown that composite hydrogel samples
with or without heparin had exhibited pro-angiogenic response. Histological analyses have also
shown the evidence of the blood vessel generation in a spoke-wheel like pattern in the edges of
hydrogels assigned as pro-angiogenic response [77]. Although the vascular index of the minimum
heparin loaded samples (0.12 mg/mL) was slightly higher than sole CS/HA hydrogels, the difference
was not significant. The CS/HA samples were alone also exhibited pro-angiogenic response in CAM.
In addition, the vascular index has decreased with the highest concentration of Hep. In this study, Hep
concentration range was higher as compared to the previous studies that Hep has involved through
direct mixing into solutions [63]. Additionally, there is very limited studies investigating different
concentrations of Hep on angiogenesis. In one study for cardiovascular biomaterial application, it has
been reported that high Hep concentrations have decreased the vascular cell proliferation while low
heparin amount triggered the endothelial progenitor cell production and endothelial cell proliferation
and but reduced the smooth muscle cell proliferation [78]. In another study, researchers have reported
hemocompatible Hep-CS coatings on the decellularized bone scaffolds leading the blood diffusion,
endothelial generation and bone vascularization [79]. Although the current lowest concentration of
Hep in CS/HA hydrogel system was found the best concentration among all, the less concentrations
of Hep may lead better pro-angiogenic response. The lower Hep concentrations in compositions
are under further investigations in our lab. Overall, in terms of injectability and gelation features
and pro-angiogenic response of most thermosensitive hydrogel compositions, CS/HA/Hep bioactive
natured injectable hydrogels could have potential applications as minimally-invasive biomaterials to
promote vascularized bone tissue regeneration.

4. Materials and Methods

4.1. Materials

For preparation of thermosensitive hydrogels, the raw commercial hydroxyapatite (HA)
(CAPTAL® ‘R’ grade, Batch No: P218R) was supplied from Plazma Biotal (Buxton, UK). Chitosan
(medium molecular weight, 100–300 kDa) and glacial acetic acid (Aca) (ACROS OrganicsTM, Thermo
Fisher Scientific, Geel, Belgium) and sodium bi-carbonate (NaHCO3) (Fluka®, Sigma Aldrich, USA)
were purchased, and injectable grade sodium bovine heparin was kindly gifted by Extrasul Ext. An.
Veg. LTDA (Sao Paulo, Brazil).

4.2. Synthesis of Thermosensitive Injectable CS Hydrogels

Prior to the reactions, reagent solutions were filter sterilized by using 0.22 µm polyethersulfone
(PES) membrane filter. Synthesis of hydrogels were carried out in aseptic conditions. In control
solution sample (CI), initial CS concentration of 5% and 6% (w/v) (which account for 2.44% and 2.93%
(w/v), respectively, in the final sol) were found optimal in terms of injectability and gelation features.
Therefore, all composite hydrogels (CS/HA/Hep) were prepared with the final chitosan concentration
of 2.44% (w/v).

Initial experiments covered the optimisation of CS concentration in terms of the final sol injectability
after pH neutralisation and gelation capability of final sol. Therefore, different concentrations of CS
solutions were prepared in acetic acid including 4%, 5%, 6% and 8% (w/v). Among these concentrations,
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chitosan initial solution of 5% (w/v) was chosen as optimal concentration which is approximately 2.4%
(w/v) in final solution after neutralisation by sodium bicarbonate. The further synthesis of composite
hydrogels was carried out by using this concentration.

For preparation CS hydrogel solutions, 1 g of CS was dissolved in 20 mL, 0.5 M acetic acid by
maintaining constant stirring. Before pH neutralisation with NaHCO3, chitosan solution was chilled in
a fridge at 4 ◦C for 15 min. Then, the stock NaHCO3 solution (0.48 M) 4 ◦C was dropwise added into
the chilled chitosan solution in a flask placed into an ice bath at 4 ◦C. Homogeneous solutions were
obtained after pH adjustment up to (6.2–6.3) by ensuring constant stirring.

4.3. Synthesis of Thermosensitive Injectable Composite Hydrogels (CS/HA/Hep)

For CS/HA hydrogel preparation, medical grade HA powders were mixed into CS (5% w/v)
solution (HA/CS:1/10), and this dispersion was kept stirring overnight to obtain a homogenous mixture.
Then, the solution pH was neutralised as described in Section 4.2.

CS/HA/Hep hydrogels with three different concentrations: SI, SII and SIII with the concentration
of 0.45%, 1.35%, and 2.22% (w/w) Hep, respectively, were prepared (See Table 1). The sterile Hep
solution in respective amounts was prepared by dissolving in deionized water. Then, Hep solution was
gradually added into CS/HA solutions. Subsequently, pH of the CS/HA/Hep solution was adjusted via
gradual addition of NaHCO3 solution in an ice bath. In Figure 14, the synthesis of injectable composite
(CS/HA/Hep) and pH and thermosensitive gelation mechanism are presented.

Homogeneous hydrogel solutions were placed into universal tubes with closed lid and stored in a
fridge at 4 ◦C. Hydrogels were formed in glass test tubes or glass dishes with lids upon incubation of
solutions at 37 ◦C.
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4.4. Characterisation of Hydrogels

Hydrogel solutions were freeze-dried at −20 ◦C in a freeze drier (SciQuip Epsilon 1-4 LSC,
Shropshire, UK) prior to the morphological and chemical characterisations.

4.4.1. pH Measurements

The pH of reagent solutions and their mixtures were measured by using a pH-meter (Mettler-Toledo
GmbH, Analytical, FiveEasy Plus™, Greifensee, Switzerland).

4.4.2. Injectability Measurements of Hydrogels

Injectability of thermosensitive solutions were tested in two different ways. The first method was
the qualitative evaluation of the flow rates of each solution from a range of needle sizes. The second



Int. J. Mol. Sci. 2020, 21, 1633 18 of 26

method was quantitative measurements of diverse hydrogel solutions in terms of force applied
for injection.

Qualitative Injectability Measurements

Injection capacity of all solutions were tested immediately after the synthesis, by using 10 mL
disposable syringes (BD, Luer-Lok™, (Becton, Dickinson U.K. Limited, Wokingham, UK) with a series
of needle sizes; 18G ×1 1/2” (1.2 × 40 mm), 19G ×1 1/2” (1 × 40 mm), 20G ×1 1/2” (0.8 × 40 mm), 21G ×1
1/2” (0.8 × 40 mm), 22G ×1 1/2” (0.7 × 40 mm), 23G ×1” (0.6 × 25 mm), and 25 G ×5/8” (0.5 × 16 mm).
The injection observations for each solution were rated comparatively.

Quantitative Injectability Measurements

Quantitative measurement of injectability was carried out by a Universal testing Machine (Instron®

3345, Norwood, MA, USA) in compressive mode adapted as described in the literature [80–82]. A 10 mL
syringe (BD, Luer-Lok™) was filled with 5 mL hydrogel solution and fixed into a syringe rig which
was placed between the compression plates of the machine. Experiments were carried out by using the
syringe coupled with a needle (19 G ×1 1/2” 1 × 40 mm) and without needle. After the contact of the
upper compression plate onto the plunger, a 30 mm displacement of the plunger at the speed of 0.5 mm/s
was applied to expel 5 mL of solution through the syringe. The force (kgf) versus displacement (mm)
measurements were obtained in Bluehill® Universal Software (Version 4.06, Norwood, MA, USA).

Experiments were repeated three times for each solution. The force unit was converted into SI unit,
Newton counted in the Excel. The following forces were counted as mean values of three experiments
with standard deviation; initial glide force (IGF): the force required to initiate syringe plunger motion,
dynamic glide force (DGF): the force required to maintain the plunger movement and the maximum
force (Fmax) during plunger displacement.

Test Tube Invert Method

Test-tube invert method was used to identify initial gelation time of the mixtures. In this method,
2 mL of the solution was taken into a closed glass tube (with push polythene plug cap, 75 mm ×Ø:18 mm)
placed in a beaker filled with silicon oil bath on hot plate at 37 ◦C. The tube was tilted horizontally
every minute, and then the time when the solution did not have any flow was recorded as incipient
gelation time (ti.g.).

4.4.3. Rheology Measurements

Rheological analyses of hydrogels were performed using a Rheometer (TA Instruments®, TA-AR
2000, Newcastle, DE, USA) with a cone geometry (Ø = 40 mm, 2◦). Frequency sweep tests were
carried in a viscoelastic region at a constant strain of 1%, the frequency range of 0.1–10 Hz at certain
temperatures; 25 ◦C, 15 ◦C, and 37 ◦C. The storage (G′) and loss modulus (G”) changes were recorded
at 1 Hz constant frequency in oscillatory measurements during heating and cooling between 15–37 ◦C
temperatures. In addition, temperature was held at 37 ◦C for 30 min to observe the alteration of the
viscoelastic behaviour of hydrogels with time. Incipient gelation point of solutions was determined via
the intersection point of G′ and G” (tan δ:G”/G′ = 1) when the material start to present more viscous
behaviour rather than elastic (sol–gel transition) [83].

4.4.4. Scanning Electron Microscopy (SEM)

Freeze dried hydrogels were gold coated (10 nm) and morphological images were obtained by
using an SEM device (FEI QuantaTM 650 3D FEG/FIB ESEMTM, Hillsboro, OR, USA). The image
analyses were performed by image-J® (Version 1.52 k, National Institutes of Health, Bethesda, MD,
USA) software by manual measuring a series of pores and counting the mean, minimum and maximum
lengths of individual and interconnected pores.
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4.4.5. Fourier-Transform-Raman (FT-Raman) Spectroscopy

FT-Raman analyses were carried out by using Thermo NicoletTM iS50 FTIR spectrophotometer
(Thermo Fisher Scientific Inc, Madison, WI, USA) in conjunction with FT-Raman compartment.
The measurements were carried by using Detector InGaAs and Beam splitter CAF2. In these experiments
following experimental parameters were used: Aperture: 200; resolution: 16 cm−1; scan number: 64;
and the wavelength range: 4000–400 cm−1. Spectral data were obtained via a nine-points square area
mapping, and the resultant spectra was obtained with the average of all spectra in Thermo Nicolet
OMNICTM version 9 software.

4.4.6. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR spectra of hydrogel samples were obtained using Thermo NicoletTM iS50 FTIR
spectrophotometer (Thermo Fisher Scientific Inc, Madison, WI, USA) in conjunction with Attenuated
Total Reflectance (ATR) sampling accessory to allow the analysis of neat samples without any sample
preparation. Experiments were performed with DTGS ATR detector and KBr beam splitter in the
mid-infrared region (4000–400 cm−1) at 16 cm−1 resolution accumulating 128 scans. Thermo Nicolet
OMNICTM software was employed for data acquisition.

4.4.7. Ex-Ovo Chick Chorioallantoic Membrane (CAM) Assay

Chick Chorioallantoic Membrane (CAM) assay is very useful technique to investigate angiogenic
response of biomaterials and biocompatibility [71]. A standardised ex-ovo (shell-less).

CAM assay protocol was followed as described by authors [84]. CAM assay was used to explore
the angiogenic potential of CS/HA/Hep hydrogels. A representative ex-ovo CAM technique and related
analyses are illustrated in Figure 15. To elaborate, first fertilized brown eggs were purchased from
(Henry Stewart & Co.Ltd, Louth, UK) on the lay day and were incubated horizontally for 3 days in
rotational incubators (RCOM King SURO, P&T Poultry, Powys, Wales) with 60% humidity at 37.5 ◦C.
At day 3, by using ex-ovo technique, eggshells were removed and placed embryo into sterilised
weighing boats including 2 mL of 1% penicillin/streptomycin solution (Sigma-Aldrich®, Dorset, UK)
prepared in Phosphate Buffer Saline (PBS-Dulbecco A, Thermo Scientific™, Oxoid™, Basingstoke, UK).
Then, chick embryos were kept in static incubators at 37.5 ◦C.

At day 7, implantation was carried out on CAM. Prior to implantation, hydrogel solutions in
bijous were sterilized under the UV in an ice bath to prevent gelation in the room temperature. By using
a micro-syringe, 100 µL of hydrogel solution was dropped on CAM, between two arteries and at the
midway of the chick embryo’s formation and at the shiny CAM border. Subsequently, thermosensitive
hydrogels were formed on chick CAM membranes in-vivo upon incubation at 37.5 ◦C forming gel
layer from surface in minutes. Then, newly formed growing blood vessels at the vicinity of hydrogels
were photographed with a scale, at day 10 and 14 of incubation. At day 14, embryos were sacrificed,
and samples were retrieved and fixed with formaldehyde for further histology studies. The wastes
were disposed accordingly Laboratory regulations for animal waste.

The angiogenesis was quantified by using Image-J® (Version 1.52 k, National Institutes of Health,
Bethesda, MD, USA) Software through the method defined as ‘vascular index’ as described by Barnhil
and Ryan [71]. Angiogenesis was evaluated for all hydrogel specimens with and without heparin
as control.
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Figure 15. The process diagram for ex-ovo CAM assay technique to investigate pro-angiogenic potential
of pH and thermosensitive injectable CS/HA/Hep hydrogels, vascular index counting in Image-J®

(Version 1.52 k, National Institutes of Health, Bethesda, MD, USA) Software, and example histology
sectioned sample.

4.4.8. Statistical Analysis

Comparative results of blood vessel counts were plotted in Graph Prizm for six samples per
group and analysed by GraphPad Prism (Version 7.0, San Diego, CA, USA) and unpaired two-tailed
t-test applied.

4.4.9. Histology

The tissue-hydrogel specimens retrieved after CAM assay were fixed by using 3.7% formaldehyde
(Sigma-Aldrich®, Dorset, UK) prior to histology studies. Then, tissue samples were moulded by using
a tissue freezing media (Leica, Germany) and subsequently were snap frozen by using liquid nitrogen.
The frozen tissues were sectioned in 10 µm thickness by using a cryostat (Leica Biosystems, CM1860
UV, Nussloch, Germany). Then, the standard Haematoxylin Eosin staining protocol with supplied
reagents (Sigma-Aldrich®, Dorset, UK) was performed. The stained specimen slides were imaged by
using optical microscope (Motic, Barcelona, Spain) to identify tissue-sample interactions and vascular
tissue features.

5. Conclusions

The functionalised novel bioactive injectable CS/HA/Hep hydrogels were prepared via sol–gel
technique. Homogeneous injectable solutions were acquired by indirect gradual mixing of Hep as
solution, into hydroxyapatite dispersed medium Mw CS solution. Injectability capacity of formulations
accords with manual injection for dental and orthopaedic applications, and pH formation of
thermosensitive hydrogels start in 5 to 10 min and set at 37 ◦C. Interconnected and porous morphology
of freeze-dried hydrogels ranging pores from 19.5 µm to 158 µm with average pore size 73.4 µm
provide maintenance of cell activities and diffusion, as well as angiogenesis for bone regeneration.

Polymer blending method is beneficial to stabilize Hep in CS/Hep polycomplex leading better
mechanical strengthening due to affinity bonding, and sustainable release of Hep or delivery of other
targeted active agents. The highest concentration of Hep (0.60 mg/mL) in hydrogels led to increase in
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elastic modulus almost 30-fold whereas initial gelation temperature has decreased up to 21 ◦C which
can lead quicker gelation compromising injectability. In addition, the angiogenesis via these samples
was less than the sole CS/HA hydrogels.

The vascular index obtained via minimum heparin loaded samples (0.12 mg/mL) was the highest,
however sole CS/HA hydrogels also showed the comparable results. This might be associated with
chosen a high concentration range of Hep in comparison to those of in similar studies. As previously
addressed, the low concentration of Hep inducing production of progenitor cells and endothelial
cell proliferation while high concentrations lead decrease in the vascular cells had been reported.
In conclusion, CS/H/Hep hydrogels in current minimal Hep concentration induces angiogenesis which
might be enhanced via lower concentrations.

To conclude, minimally invasive in-situ forming bioactive CS/H/Hep hydrogels versatilely
functioned to induce angiogenesis, which could be employed for rapid bone regeneration and drug
delivery applications.
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Abbreviations

ATR Attenuated Total Reflectance
bFGF Basic Fibroblast Growth Factor
β-GP β-Glycerol-Phosphate
CAM Chick Chorioallantoic Membrane
CS Chitosan
ECM Extra Cellular Matrix
FT-Raman Fourier-Transform Raman
G Gauge
GW Glycerol–water cosolvent
HA Hydroxyapatite
Hep Heparin
H&E Hematoxylin Eosin
HPSGs Heparan sulfate proteoglycans
Mw Molecular Weight
PBS Phosphate Buffer Saline
PCL Polycaprolactone
PEGMA Poly (ethylene glycol) methacrylate
PES Poly Ether Sulfone
PMMA Poly (methyl methacrylate)
PNIPAAm Poly(N-isopropylacrylamide)
PNVCL Poly(N-vinylcaprolactam)
PVA Polyvinyl alcohol
poly(VCL-co-UA) Poly(N-vinylcaprolactam-co-undecenoic acid)
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SEM Scanning Electron Microscopy
Sertaconazole-NLCs Sertaconazole-loaded nanostructured lipid carriers
SIM Simvastatin
TEOF Triethyl orthoformate
TGFβ Transforming Growth Factor Beta
TXA Tranexamic acid
UV Ultraviolet
VEGF Vascular Endothelial Growth Factor
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