T.C. NEVŞEHİR HACI BEKTAŞ VELİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YOZGAT BÖLGESİ EV DIŞI HAVASINDAKİ SOĞURULMUŞ GAMA DOZ ORANLARININ BELİRLENMESİ

Tezi Hazırlayan Ahmet MENEVŞE

Tez Danışmanı Doç. Dr. Meltem DEĞERLİER GUIOT

Fizik Anabilim Dalı Yüksek Lisans Tezi

> Haziran 2019 NEVŞEHİR

T.C. NEVŞEHİR HACI BEKTAŞ VELİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YOZGAT BÖLGESİ EV DIŞI HAVASINDAKİ SOĞURULMUŞ GAMA DOZ ORANLARININ BELİRLENMESİ

Tezi Hazırlayan Ahmet MENEVŞE

Tez Danışmanı Doç. Dr. Meltem DEĞERLİER GUIOT

Fizik Anabilim Dalı Yüksek Lisans Tezi

> Haziran 2019 NEVŞEHİR

Doç. Dr. Meltem DEĞERLİER GUIOT danışmanlığında Ahmet MENEVŞE tarafından hazırlanan "Yozgat Bölgesi Ev Dışı Havasındaki Soğurulmuş Gama Doz Oranlarının Belirlenmesi" başlıklı bu çalışma, jürimiz tarafından Nevşehir Hacı Bektaş Veli Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalında Yüksek Lisans Tezi Olarak kabul edilmiştir.

25/06/2019

JÜRİ

Başkan : Prof. Dr. Mehmet ERDOĞAN

Üye : Dr. Öğr. Üyesi Hilal İNCEBAY

Üye : Doç. Dr. Meltem DEĞERLİER GUIOT

G. E

ONAY:

Bu tezin kabulü Enstitü Yönetim Kurulunun/7.17.20/9tarih ve 42-428.... sayılı kararı ile onaylanmıştır.

TEZ BİLDİRİM SAYFASI

Tez yazım kurallarına uygun olarak hazırlanan bu çalışmada yer alan bütün bilgilerin bilimsel ve akademik kurallar çerçevesinde elde edilerek sunulduğunu ve bana ait olmayan her türlü ifade ve bilginin kaynağına eksiksiz atıf yapıldığını bildiririm.

Ahmet N

Bu çalışma Nevşehir Hacı Bektaş Veli Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından NEÜLÜP13F14 numaralı proje ile desteklenmiştir.

Bu çalışma Türkiye Atom Enerjisi Kurumu (TAEK) / Çekmece Nükleer Araştırma Merkezi (ÇNAEM) ile Nevşehir Hacı Bektaş Veli Üniversitesi tarafından 03/12/2012 tarihli "Yozgat İlinin Çevresel Radyoaktivitesinin Belirlenmesi ve Doğal Fon Haritasının Çıkarılması" isimli işbirliği protokolü tarafından desteklenmiştir.

TEŞEKKÜR

Yüksek lisans tezimi bana öneren, yardımcı olan, tamamlamamı sağlayan değerli danışman hocam Sayın Doç. Dr. Meltem DEĞERLİER GUIOT'a,

Yüksek lisans programına başladığımda bana manevi desteğini esirgemeyen 2012 kaybettiğim kız kardeşim Hatice MENEVŞE'ye,

Her zaman varlıklarını hissedebildiğim, maddi ve manevi her daim yanımda olan sevgili anne ve babama,

Bitirme noktasında beni destekleyen hayat arkadaşım Zehra MENEVŞE'ye teşekkür ederim.

Ahmet MENEVŞE

YOZGAT BÖLGESİ EV DIŞI HAVASINDAKİ SOĞURULMUŞ GAMA DOZ ORANLARININ BELİRLENMESİ

(Yüksek Lisans Tezi)

Ahmet MENEVŞE

NEVŞEHİR HACI BEKTAŞ VELİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Haziran 2019

ÖZET

Bu çalışmada 420 000 nüfuslu, 14 123 km² yüz ölçümlü, İç Anadolu bölgesinde yer alan Yozgat ilini kapsayan bölgedeki ev dışı havasında karasal ve kozmik kaynaklı gama ışınları nedeniyle oluşan doz oranları belirlenmiştir. Bu amaç için Eberline portatif ESP-2 model gama sayıcısı ve uç kısmına eklenmiş SPA-6 model sintilasyon algılayıcı kullanılmıştır. Yozgat İlini kapsayan 60 farklı ölçüm noktasında ölçüm yapılmıştır. Ortalama havada soğurulan gama dozu 141,3 nGy/h olarak ölçülmüştür. Bu değer 57 nGy/h olan Dünya ortalamasının üzerinde bir değerdir. Hesaplanan yıllık etkin doz eşdeğeri ortalaması ise 173,3 µSv/y olarak hesaplanmıştır. Ayrıca bölge halkı için havada soğurulan karasal ve kozmik kökenli gamalar nedeniyle yaşam boyu kanser riski ortalaması 0,65 x 10⁻³ olarak hesaplanmıştır. Bu değer 0,29 x 10⁻³ olan limit değerinin üzerinde bir değerdir.

Anahtar kelimeler: Yozgat, Hava, Soğurulmuş Gama Dozu, Doğal Radyoaktivite Tez Danışmanı: Doç.Dr. Meltem DEĞERLİER GUIOT Sayfa Adeti:44

ASSESSMENT OF THE ABSORBED GAMMA DOSE RATES IN THE AIR OF YOZGAT REGION

(M.Sc. Thesis)

Ahmet MENEVŞE

NEVŞEHİR HACI BEKTAŞ VELİ UNIVERSITY GRADUATE SCHOOLOF NATURAL AND APPLIED SCIENCES

June 2019

ABSTRACT

In this study, the outdoor gamma dose rates in the air originating from terrestrial and cosmic radiation are determined in Yozgat region where has 420 000 population and 14123 m2 area. Portable Eberline ESP-2 gamma counter with SPA-6 scintillation detector is used for this aim. 60 different measurements are taken in Yozgat region. The average absorbed gamma dose rate in air is measured as 141,3 nGy/h. This value is higher than the world average which is 57 nGy/h. The average annual effective dose is calculated as 173,3 μ Sv/y. Besides excessive lifetime cancer risks are determined because of outdoor gamma dose rates in the air by the reason of the terrestrial and cosmic radiation. Average excess lifetime cancer risks are calculated as 0,65 x 10⁻³. This value is higher than the limit value of 0,29 x 10⁻³.

Key Words: Yozgat, Air, Absorbed Gamma Dose Rates, Natural Radioactivity Thesis Supervisor: Assoc. Prof. Dr. Meltem DEGERLIER GUIOT Page Quantity: 44

İÇİNDEKİLER

TE	EZ BİL	DİRİM SAYFASI	.i
TE	EŞEKK	ÜRi	V
ÖZ	ZET		v
AF	BSTRA	NCT	'i
İÇ	İNDEF	KİLERv	ii
KI	SALTI	MA VE SİMGELERi	X
TA	BLOI	AR LİSTESİx	i
ŞE	KİLLI	ER LİSTESİxi	i
BĊ	ÖLÜM	1	
1.		GİRİŞ	1
BĊ	ÖLÜM	2	
GI	ENEL I	BİLGİLER	2
2.1		Radyoaktivite ve Radyoaktif Bozunma	2
2.1	.1	Radyoaktivite	2
2.1	.2	Radyoaktif bozunma şekilleri	2
2.1	.2.1	Alfa bozunması	2
2.1	.2.2	Beta bozunması	3
2.1	.2.3	Gama bozunması	1
2.1	.3	Radyoaktif denge5	į
2.1	.3.1	Kalıcı denge	5
2.1	.3.2	Geçici denge	5
2.1	.3.3	Denge olmaması durumu	6
2.2	2	Gama Radyasyonunun Madde İle Etkileşimi	7
2.2	2.1	Fotoelektrik olay	7
2.2	2.2	Compton ve Thomson saçılması	9
2.2	2.3	Çift oluşumu1	0

2.3	Çevresel Radyasyon
2.3.1	Fon radyasyon kaynakları11
2.3.1.1	Uzaysal radyasyon
2.3.1.2	Karasal radyasyon
2.3.2	Vücuttaki radyonüklitler
2.3.3	Fon radyasyonundan alınan dozlar13
BÖLÜM	3
MATER	YAL VE METOD15
3.1	Gama ışın detektörleri
3.2	Sintilasyon detektör
3.3	Portatif gama sayacı
3.4	SPA-6 Sintilasyon detektör
BÖLÜM	4
BULGU	LAR VE TARTIŞMA18
4.1	Yıllık etkin doz eşdeğeri
4.2	Yaşam boyu kanser riski
4.3	Farklı vücut doku ve organlarındaki etkin doz oranı
BÖLÜM	5
TARTIŞ	MA, SONUÇ VE ÖNERİLER
KAYNA	KLAR43
ÖZGEÇI	MİŞ44

SİMGELER VE KISALTMALAR

- U : Uranyum
- Th: Toryum
- **K** : Potasyum
- Ra: Radyum
- He: Helyum
- Rn: Radon
- At: Astatin
- Po: Polonyum
- Ba: Baryum
- Tc: Teknesyum
- Pu: Plütonyum
- Pb: Kurşun
- α : Alfa Parçacığı
- β : Beta Parçacığı
- γ : Gama Parçacığı
- X : X-Işını
- n : Nötron
- **p**: Proton
- e⁻: Elektron
- **m** : Metre
- **n** : Nano, Alt Birim (10^{-9})
- μ : Mikro, Alt Birim (10⁻⁶)
- h : Saat
- y :Yıl

E : Enerji (MeV)

Gy: Gray, Soğurulmuş Doz Birimi

Sv : Sievert, Eşdeğer Doz Birimi

m₀: Durgun Kütle

c : Işık Hızı

T : Kinetik Enerji

IAEA : Uluslararası Atom Enerji Ajansı

ICRP : Uluslararası Radyolojik Koruma Komisyonu

UNSCEAR: Atom Radyasyon Etkileri Birleşmiş Milletler Raporu

TEAK : Türkiye Atom Enerji Kurumu

ÇNAEM : Çekmece Nükleer Araştırma Merkezi

AEDE : Yıllık Etkin Doz Eşdeğeri

OGDR : Ev Dışı Hava Sahası Gama Dozu

ECLR : Yaşam Boyu Kanser Riski

- LE : Ortalama İnsan Ömrü
- **RFSE** : Risk Faktörü
- **D**: Organların Etkin Doz Oranı
- f: Organ Dozuna Dönüşüm Faktörü

TABLOLAR LİSTESİ

Tablo 2.1	Radyasyon dozu, doz hızı ve etkileri14
Tablo 4.1	Yozgat ili, ilçe ve köylerini kapsayan bölgede havada ölçülen doz oranlarıada (nGy/h)
Tablo4.2	Havada ölçülen gama doz oranları istatistiki hesaplama sonuçları20
Tablo 4.3	Ölçüm yerleri için hesaplanan yıllık etkin doz eşdeğerleri
Tablo 4.4.	Ölçüm yerleri için hesaplanan yaşam boyu kanser riskleri
Tablo 4.5	Farklı vücut doku ve için hesaplanmış etkin doz oranları
Tablo 4.6	Farklı vücut doku ve organlar içiaktörleri
Tablo 5.1	Türkiye'deki bazı şehirlerde yapılan havadaki soğurulmuş gama
	doz oranları ölçümleri

ŞEKİLLER LİSTESİ

Şekil 2.1	Elektromanyetik spektrum şematik gösterimi
Şekil 2.2	Kalıcı denge durumu
Şekil 2.3	Denge olmama durumu7
Şekil 2.4	Fotoelektrik olay şematik gösterimi
Şekil 2.5	Fotoelektrik soğurma tesir kesiti şematik gösterimi8
Şekil 2.6	Compton saçılma şematik gösterimi9
Şekil 2.7	Çift oluşumu şematik gösterimi10
Şekil 2.8	Fotoelektrik olay, Compton olayı ve çift oluşumun baskın olduğu bölgeler
Şekil 3.1	Sintilasyon detektör şematik gösterimi16
Şekil 3.2	ESP-2 Portotif gama sayıcı17
Şekil 3.3	SPA-6 Sintilasyon detektör17
Şekil 4.1	Yozgat ili, ilçe ve köylerini kapsayan bölgede ev dışı havada soğurulmuş gama doz oranları (nGy/h)24
Şekil 4.2	Ölçüm yerlerine göre hesaplanan yıllık etkin doz eşdeğeri (μ Sv/y)31
Şekil 4.3	Ölçüm yerlerine göre hesaplanan yaşam boyu kanser riskleri
Şekil 5.1	Hesaplanan yaşam boyu kanser riskleri ile limit değerlerin
	Karşılaştırılması

BÖLÜM 1

GİRİŞ

İnsanların iyonize radyasyona maruziyetleri konusundaki çalışmalar içerisinde doğal kökenli radyasyonun, popülasyonun toplam radyasyon maruziyetinin tümü içerisinde önemli bir miktarını oluşturması nedeniyle toplumun ilgisini çektiği için günümüzde oldukça önemlidir.

İnsanlar karasal ve kozmik kökenli olarak doğal fon radyasyonuna sürekli olarak maruz kalmaktadırlar. Çevrede doğal olarak oluşan birçok radyonüklit mevcuttur. Bu doğal radyonüklitler toprak, sediment, su, bitkiler ve havada bulunmaktadırlar. Topraktaki doğal radyasyonun temel belirleyicilerinden birisi radyonüklit konsantrasyonlarıdır. ²³⁸U, ²³²Th ve ⁴⁰K gibi doğal radyonüklitler, jeolojik yapılara bağlı oldukları kadar kayaların fosfat, granit ve tuz içeriklerine bağlı olarak da değişmektedirler. Kaya ve toprakta doğal olarak oluşan bu radyonüklitler bitkiler, sular ve meteorolojik bazı olaylar aracılığıyla çevreye ve atmosfere kolaylıkla geçiş yapabilmektedirler. Topraktaki doğal fon radyasyonu ²²⁶Ra, ²³²Th ve ⁴⁰K kaynaklıdır ve bir kişinin bir yılda sahip olduğu toplam radyasyon dozunun %80'ini oluşturmaktadır.

Kozmik radyasyon, derin uzaydan gelen yüksek enerjili parçacıklar tarafından oluşturulurlar. Dünyamız kozmik radyasyon tarafından sürekli olarak bombardıman edilmektedir.

Bu çalışmanın amacı Yozgat bölgesi il, ilçe ve köylerini kapsayan bölgenin ev dışı havasında soğurulmuş olan karasal ve kozmik kökenli gama doz oranlarını belirlemek ve o bölgede yaşayan halkın bu gama dozları nedeniyle sahip oldukları yıllık etkin doz eşdeğerlerini hesaplamaktır.

BÖLÜM 2

GENEL BİLGİLER

2.1. Radyoaktivite Ve Radyoaktif Bozunma

2.1.1. Radyoaktivite

Kararsız atomların çekirdeklerinin atom altı parçacık ya da elektromanyetik ışınım yayımlamasına radyoaktivite denir. Atom çekirdeği kararsız durumdayken gelişi güzel biçimde bozunarak kararlı çekirdeğe dönüşür. Bozunma olayında çok çeşitli parçacık ve enerji salınımı olur. Bozunma olayı neticesinde radyasyon yayımlanır. Marie Curie deneylerinde radyoaktif maddelerden salınan ışımaların madde içinde ilerleme yeteneği olduğunu bulmuştur. Radyoaktivite salınımı iki gruba ayrılır.

a) Alfa (α), Beta (β^+ , β^-), nötron gibi yüksek kinetik enerjili ve maddesel özellik gösteren parçacık radyasyonu.

b) Gama(γ) ve X ışını gibi elektromanyetik özellik gösteren ışık fotonları biçimindeki elektromanyetik radyasyondur [9].

2.1.2. Radyoaktif bozunma şekilleri

2.1.2.1. Alfa bozunması

Atom çekirdeğindeki kararsızlık, proton ve nötronun fazla oluşunda kaynaklanıyorsa, atom çekirdeği iki adet proton ve iki adet nötrondan meydana gelen alfa parçacığı yayımlayarak bozunur. Bunun sonucunda bozunan çekirdek için atom numarası 2 azalırken kütle numarası da 4 azalmış olur. Rutherford alfa bozunumundan oluşan parçacığın ${}_{2}^{4}He$ çekirdeği olduğunu göstermiştir.

$${}^{A}_{Z}X_{N} \rightarrow {}^{A-4}_{Z-2}X'_{N-2} + {}^{4}_{2}He$$
 (2.1)

Bozunum sonucunda oluşan enerjinin büyük kısmını alfa parçacığı alır. ${}^{4}_{2}He$ çekirdeği yüksek enerjili olmasına rağmen ağır kütlelidir. Alfa bozunumu çoğunlukla çekirdeğin kütle numarası 190'dan büyük ise görülebilmektedir. Bu bozunumun enerji spektrumunun kesikli olduğu görülür. Enerjisi 4 MeV ile 10 MeV arasında değişebilmektedir. Yüklü bir parçacık olan alfa parçacığı bu yükü nedeniyle madde

içerisinden geçerken elektronlarla etkileşime girer [10].

2.1.2.2. Beta bozunması

Beta bozunması üç farklı şekilde gerçekleşmektedir. Radyoaktif bir atomun kararsızlığının çekirdekteki nötron fazlalığından oluşması durumunda, bu enerji fazlalığını gidermek için çekirdekteki bir nötron, proton ve elektrona dönüştürülür. Bu olaya β^- bozunması adı verilir. Sonuç olarak proton atom çekirdeğinde kalırken, elektron atomdan dışarı atılır.

$$n \to p + e^- + \bar{\nu} \tag{2.2}$$

Fırlatılan bu elektrona beta parçacığı denir. Beta bozunumu yapan atomun, atom numarası bir artar ve kendinden sonra gelen elementin izobarına dönüşür. Kütle sayısı aynı kaldığı için bu bozunuma izobarik bozunma adı verilir.

$${}^{A}_{Z}X_{N} \rightarrow {}^{A}_{Z+1}X'_{N-1} + e^{-} + \bar{\nu}$$
 (2.3)

Atomun kararsızlığının nedeninin proton fazlalığından olması durumunda protonlardan bir tanesi nötron ve pozitrona dönüşür. Bu olaya β^+ bozunması adı verilir.

$$p \to n + e^+ + \nu \tag{2.4}$$

 β^+ bozunması olayında nötron çekirdekte kalır ve pozitif yüklü elektron ise çekirdekten dışarı atılır. Bu bozunumu yapan çekirdeğin atom numarası bir azalır ve kendisinden önceki elementin izobarına dönüşür. Bu durumda kütle numarası değişmez.

$${}^{A}_{Z}X_{N} \to {}^{A}_{Z-1}X'_{N+1} + e^{+} + \nu$$
(2.5)

Atom çekirdeğinde protonların fazla olması durumunda çekirdeğe yakın olan K ya da L yörüngelerinde bulunan elektronlardan yakın olanı yakalanır. Bu olaya elektron yakalama olayı adı verilir. Yakalanan bu elektron ile proton birleşerek nötrona ve yükü ve kütlesi olmayan nötrinoya dönüşür. Bu olay sonucunda çekirdekten herhangi bir parçacık salınmaz fakat atom numarası bir azalırken kütle numarası ise değişmez. Yörüngeden yakalanan elektronun yerine üst yörüngelerden başka bir elektron geçer ve enerji farkı X-ışını olarak yayımlanır.

$$p + e^- \to n + \nu \tag{2.6}$$

$${}^{A}_{Z}X_{N} + e^{-} \rightarrow {}^{A}_{Z-1}X'_{N+1} + \nu$$
 (2.7)

Beta bozunumlarının tümünde nötron ve proton sayıları bir birim değişiyor olmasına rağmen kütle numaraları aynı kalmaktadır. Yüksüz ve kütlesiz parçacıklar olan nötrino ve anti nötrino her üç bozunumda da yayımlanmaktadır. Beta bozunumlarında yayınlanan elektronların enerjisi sürekli bir spektruma sahiptir [10].

2.1.2.3. Gama bozunması

Kararsız atom çekirdekleri bozunarak alfa veya beta yayınlar ve bu bozunum sonrasında oluşan ürün çekirdek uyarılmış enerji seviyesinde kalabilir. Bu çekirdekler daha düşük enerji seviyesine ulaşmak için tekrar bozunum yaparak foton yayınlarlar. Bu olayların sonunda da temel enerji seviyesine inerler. Atomun uyarılmış enerji seviyelerinden temel seviyelere geçiş yaparken yayınladıkları fotonlara gama ışını adı verilir. Gama ışınlarının oluşmasını sağlayan çeşitli olaylar vardır. Yüksek enerjiye sahip bir parçacığın başka bir parçacık ile çarpışması durumunda, zıt parçacığı ile etkileşime girip yok olma durumlarında, radyoaktif bozunma durumları gibi durumlarda gama ışınları oluşmaktadır.

Gama ışınının enerjisi 0,1 MeV ile 10 MeV aralığında çekirdeğin konumları arasındaki enerji farkı derecesindedir. Dalga boyu ise elektromanyetik spektrumun 10² fm ile 10⁴ fm aralığına karşılık gelmektedir. Kütle ve yüke sahip değillerdir dolayısıyla elektromanyetik alanda sapmazlar, enerjilerinin yüksek olması sebebi ile maddede ilerleyebilirler ve ışık hızında hareket ederler [10].

Şekil 2.1 Elektromanyetik Spektrumun Şematik Gösterimi

2.1.3. Radyoaktif denge

Ana ve kız çekirdeklerin bozunum sabitleri ile ilgili olarak bir süre sonra ana ve ürün çekirdeğin aktivitelerinin denge durumuna ulaşması mümkündür. Radyoaktif maddelerin faklı zamanlar aralıkları için kalıcı denge, geçici denge ve denge olmaması durumu olarak adlandırılan üç faklı durumu söz konusudur [8].

2.1.3.1. Kalıcı denge

Kalıcı dengede ana çekirdeğin aktivitesi kız çekirdeğin aktivitesine eşittir. Böyle durumlarda ana çekirdeğin yarı ömrü kız çekirdeğin yarı ömründen çok daha fazladır [8].

 $T^P{}_{1/2}>>T^D{}_{1/2} \ \ ya \ da \ \ \lambda_{dP}<<\lambda_d$

 $Ap \cong Ad$

2.1.3.2 Geçici denge

Geçici denge durumunda ana ve kız çekirdeğin aktiviteleri eşit değildir. Aralarında az miktar fark vardır. Geçici denge durumunda ana çekirdeğin yarı ömrü ürün çekirdeğin yarı ömründen az bir oranda yüksektir [8].

$$T^P{}_{1/2} > T^D{}_{1/2} \ ya \ da \ \lambda_{dP} \! < \! \lambda_{dD}$$

$$\frac{Ap}{Ad} \cong 1 - \frac{\lambda dP}{\lambda dD}$$

2.1.3.3. Denge olmama durumu

Denge olmaması halinde ana çekirdeğin yarı ömrünün ürün çekirdeğin yarı ömründen daha az olması durumunda gerçekleşir. Bu durumda ana çekirdek çabuk yok olur ve sonuçtaki aktivite sadece ürün çekirdeğin aktivitesine eşit olur [8].

 $T^{P}_{1/2} < T^{D}_{1/2}$ ya da $\lambda_{dP} > \lambda dD$

2.2. Gama Radyasyonunun Madde İle Etkileşimi

2.2.1. Fotoelektrik olay

Fotoelektrik olay, detektör kristalinin gelen gama ışını ile etkileşmesi sonucunda meydana gelir. Etkileşim sırasında gama ışınının enerjisinin tamamı kaybolur ancak enerjinin tamamı elektrona verilmez. Enerjinin bir miktarı elektronu uyarmakta kullanılır. Etkileşen elektronlara, foto elektron olarak isimlendirilir. Foto elektronların kinetik enerjisi T_e, gelen gama ışınının enerjisi E_{γ} , elektronu uyarmak için sahip olunan enerji E_b olarak isimlendirilir. Foto Elektronun enerjisi;

$$T_e = E_{\gamma} - E_b \tag{2.8}$$

şeklinde hesaplanır. Fotoelektrik soğurmasından sonra, foto elektrondan doğan boşluğa başka yörüngeden bir elektron yerleşir. Daha sonra gelen fotonun enerjisi ile bağlanma enerjisi arasındaki enerji farkına sahip X ışını yayımlanır. elektron tarafından Gelen fotonun enerjisi elektronun bağlanma enerjisinden büyük olmak zorundadır, aksi halde elektron koparılamaz [11].

Şekil 2.4 Fotoelektrik Olayın Şematik Gösterimi

Fotoelektrik olayın oluşma olasılığı, soğurulan maddenin atom numarası ile artar. Elektron yörüngelerinin bağlanma enerjilerine denk gelen enerjilerde kesikler vardır. Örneğin Kurşun (Pb)'da K yörüngesinde bulunan elektronunun bağlanma enerjisi 88 keV'dir. Bu enerjiden düşük değerde gelen foton K yörüngesinden foto elektron salınımı yapamaz. Foton enerjisi 88 keV'nin üstüne çıkarılırsa, K yörüngesindeki elektronların fotoelektrik olayı gerçekleştirme olasılığının artışına sebep olur. Bu durum K sınırı olarak adlandırılır [11].

Şekil 2.5 Fotoelektrik Soğurma Tesir Kesiti Şematik Gösterimi

2.2.2. Compton ve Thomson saçılması

Compton saçılması olayında gelen foton, maddedeki bir atomun zayıf bağlı elektronu tarafından saçılır. Gelen fotonun enerjisi E_{γ} , elektronla etkileştikten sonraki enerjisini ise E'_{γ} olarak alırsak, fark enerji, saçılma açısına bağlı olarak elektrona aktarılır ve böylece saçılma yönü değişir. Saçılmayla meydana gelen enerji kaybı, saçılan elektronlara kinetik enerji olarak geçer.

$$T_e = E_{\gamma} - E'_{\gamma} \tag{2.9}$$

Saçılan gama ışınının enerjisi öncekine göre daha düşüktür ve atomla yeniden etkileşmeye girebilir ya da herhangi bir etkileşme olmaksızın atomdan ayrılabilir. Foton bir veya birden fazla compton saçılması yapabilir. Enerji azaldıkça fotoelektrik olayın olma olasılığı fazlalaşır. Bu sebepten dolayı yüzeye gelen foton enerjisinin bir miktarını Compton saçılması şeklinde ya da tamamını Compton saçılmasını izleyen fotoelektrik olay şeklinde kaybedebilir. Enerjinin ve momentumun korunumundan elektronun kinetik enerjisi hesaplayabiliriz [11].)

$$T_e = E_{\gamma} - E'_{\gamma} = \frac{E_{\gamma}^2 (1 - \cos \theta)}{mc^2 + E_{\gamma} (1 - \cos \theta)}$$
(2.10)

Şekil 2.6 Compton Saçılması Şematik Gösterimi

Thomson saçılması ise Compton saçılmasının daha yalın halidir. Thomson saçılmasında, saçılan fotonun enerjisi gelen fotonun enerjisine eşittir $(E'_{\gamma} = E_{\gamma})$, fakat bu durumda saçılan fotonun yönü değişmektedir [8].

2.2.3 Çift oluşumu

Çift oluşum olayında gelen foton, çekirdeğin coulomb alanında elektron-pozitron çifti oluşturarak kaybolur. Elektron veya pozitronun durgun kütlesi 0.511 MeV'dir. Çift oluşumun olabilmesi için minimum 1.022 MeV enerjiye sahip $(2m_0c^2)$ foton gerekmektedir. Gelen fotonun enerjisi 1.022 MeV'dan fazla ise arta kalan enerji elektron ve pozitron çiftine kinetik enerji (T_e) olarak aktarılır.

$$2m_0 c^2 + T_e = E_{\gamma} \tag{2.11}$$

Çift oluşumu olayının tersi de mümkündür. Bu durumda pozitron ile elektron birbirleriyle çarpışarak yok olurlar ve 0.511 MeV enerjili iki adet gama ışını oluşur. Oluşan gama ışınları da enerjilerinin tümünü ya da bir miktarını detektör kristalinde Compton saçılması veya foto elektrik olay ile kaybedebilir. Çift oluşumun gerçekleşmesi için gerekli eşik enerjisi 1.02 MeV dir. Bu enerji değerinin altındaki değerlerde çift oluşum olayı gerçekleşmez [11].

Şekil 2.7 Çift Oluşumu Şematik Gösterimi

Özet olarak; düşük enerjili fotonlarda ve büyük atom numarasına sahip yüzeylerde fotoelektrik olay daha fazla görülmektedir. Gelen fotonun enerjisi arttıkça da, yüzey tarafından soğurulma olasılığı azalacaktır. Bu durumda Compton saçılması

gerçekleşecektir ve de foton saçılacaktır. Foton enerjisinin 5 MeV'den büyük olması durumunda ise çift oluşum olayının oluşma olasılığı artacaktır [8].

Şekil 2.8 Fotoelektrik olay, Compton olayı ve çift oluşumunun baskın olduğu bölgeler

2.3. Çevresel Radyasyon

Doğal çevremizdeki fon radyasyon sürekli olarak bizi kuşatmaktadır. Dünyanın şekillenip yaşamın başlamasından bu yana fon radyasyonu sürekli olarak bize eşlik etmektedir [1].

2.3.1. Fon radyasyon kaynakları

Fon radyasyon doğal ve insan yapımı radyonüklitlerin her ikisinden yayınlanmaktadır. Bazı doğal oluşan radyonüklitler yerkabuğunda bulunurken diğerleri uzaydan gelen radyasyon tarafından atmosferde üretilmektedirler. İnsan yapımı radyonüklitler, insan vücudunu görüntülemek için radyonüklit kullanılan tıbbi işlemler ve radyoaktif uranyumu kullanarak elektrik üretilmesi gibi aktivitelerden çevremize yayılmaktadır.

İnsanlar sürekli olarak vücut içindeki ve dışındaki kaynaklar tarafından ışınlanırlar. Dış kaynaklar uzay radyasyonu ve karasal radyasyonu içerir. İç kaynaklar ise insanların yiyecekler ve suyu sindirmesi ve havayı soluması yoluyla vücudumuza giren radyonüklitlerdir. Kaynağı ne olursa olsun radyasyon çevremizde her yerdedir [1].

2.3.1.1. Uzaysal radyasyon

Uzaydan dünya atmosferine giren radyasyon Dünya'nın radyasyon kuşağının yakınından, güneşten ya da güneş sistemi sınırları ötesinden ve hatta Samanyolu galaksisinin ötesinden gelebilmektedir.

Güneş sisteminin ötesinden gelen radyasyon atmosferden geçerken yeni bir radyasyon üretmek için yeterli enerjiye sahiptir. Bunlar havada radyonüklitler ve ikincil parçacıklar üretirler. Bazı ikincil parçacıklar Dünya yüzeyine ulaşır. Bu yerler genellikle bizi uzaysal radyasyondan koruyan manyetik alanın en zayıf olduğu manyetik kutuplar ve atmosferin en ince olduğu yüksek rakımlı yerlerdir. Uzay radyasyonu tarafından oluşturulan radyonüklitler kozmojenik radyonüklitler olarak adlandırılır. Bu radyonüklitler trityum (³H), berilyum-7, karbon-14 ve sodyum-22'yi içermektedir [1].

2.3.1.2. Karasal radyasyon

Dünya kaynaklı radyasyon karasal radyasyon olarak adlandırılır. Yerkabuğunun şekillendiği 4,5 milyon yıl öncesinden bu yana var olan en eski radyonüklitler volkanik ve tortul kayalarda bulunurlar. Bu radyonüklitler kayalardan toprağa, suya ve hatta havaya taşınırlar. Uranyum madenciliği gibi insan aktiviteleri de bu radyonüklitlerin yeniden dağılımını sağlar. Bu en eski radyonüklitler uranyum ve toryumun bozunumuyla üretilen radyonüklit serilerini ve aynı zamanda potasyum-40 ve rubidyum-87'yi içerir [1].

Yarı ömürlerini dünyanın yaşı ile kıyaslayabildiğimiz doğal oluşan radyonüklitlerden yayılan gama radyasyonu insan vücudunun ışınlanmasına neden olan en temel dış kaynaktır. Yerkabuğunun yüzeyine yakın topraktaki radyoaktif minerallerden kaynaklı radyasyon ve ondan havaya yayılan radyoaktif gazlar atmosferin iyonizasyonuna katkıda bulunurlar.

Kayalardaki uranyum ve toryumun varlığı silika içeriği ile artmaktadır. Bundan dolayı yüksek konsantrasyonlar genellikle metamorfik asidik, volkanik ve tortul kaya içeriklerinde görülür [2].

2.3.2. Vücuttaki radyonüklitler

Karasal ve kozmojenik radyonüklitler yediğimiz yiyecekler, içtiğimiz su ve soluduğumuz hava yoluyla vücudumuza girerler. Tüm kimyasallar gibi radyonüklitler de normal metabolik faaliyetler sırasında vücut tarafından kullanılır ve elimine edilir. Bunlardan bazıları hemen bozunup yok olurlar. Diğerleri ise daha yavaş bozunurlar ve bazı vücut organlarında yoğunlaşırlar, bazıları da bağırsaklar tarafından soğurulmazlar ve vücuttan hemen elimine edilirler.

Vücuda giren en önemli radyonüklitler karasal kökenlidir. Bunların arasında en önemlisi bozunum ürünü olan radon gazı sürekli olarak solunum yoluyla vücuda alınmaktadır. Radon seviyesi topraktaki uranyum ve toryum içeriğine bağlı olarak değişmektedir. Vücuttaki diğer radyonüklitler uranyum, toryum ve onların bozunum ürünleri ayrıca potasyum-40 'dır [1].

2.3.3. Fon radyasyonundan alınan dozlar

Bir kişi vücut dışındaki ve vücut içindeki radyasyon kaynakları nedeniyle radyasyon dozlarına sahip olabilmektedir. Radyasyon dozu olarak etkin doz anlaşılmaktadır. Etkin doz vücut tarafından soğurulan radyasyon enerji miktarını göstermektedir. Bir kişi her yıl yaklaşık olarak 3,1 mSv lik fon radyasyon dozu almaktadır [1].

Radyasyonun kesin etkileri radyasyon çeşidine ve şiddetine bağlıdır.

	Radyasyon Dozu, Doz Hızı ve Etkileri	
0,05 mSv/yıl	Doğal fon radyasyonun küçük bir kısmıdır. Nükleer santral tasarımında izin veriler maksimum doz miktarıdır	
0,3-0,6 mSv/yıl	Yapay kaynaklardan alınan radyasyon dozu miktarıdır. Genellikle tıbbi kaynakl olanlar için geçerli doz miktarıdır	
2,4 mSv/yıl	Ortalama tipik fon radyasyon dozudur. Coğrafi konuma göre değişmektedir	
5mSv/yıl (maksimum)	Orta yüksekliklerde uçan uçaklardan alınan doz hızı miktarıdır	
9 mSv/yıl	Okyanus aşırı uçuşlardan alınan doz miktarıdır (Tokyo-New York).	
10 mSv	Karın ya da pelvis bölgesi için tomografi (CT) taraması doz miktarıdır	
20 mSv/yıl	Bazı ülkelerdeki radyasyon işçileri için doz limiti miktarıdır	
50 mSv/yıl	Radyasyon işçileri için bir yıllık maksimum doz limit miktarıdır (5 yılın ortalaması 20 mSv/yıl). İran, Hindistan ve Avrupa'nın bazı bölgelerindeki fon radyasyon dozu miktarıdır	
50 mSv	Acil durumlarda çalışanlar için izin verilen doz miktarı (IAEA)	
100 mSv	Kanser riskini artırdığına dair bulguların olduğu en düşük yıllık doz miktarıdır (UNSCEAR) Bu değerin üzerinde kanser oluşma olasılığının arttığı varsayılmaktadır. (IAEA)	
130 mSv/yıl	Radyolojik olay sonrası uzun dönem güvenlik seviyesi doz miktarı (kirlenen bölgenir 1 m üzerinden ölçüldüğünde)	
170 mSv/hafta	Radyolojik olay sonrası 7 günlük geçici güvenlik seviyesi doz miktarı (kirlenen bölgenin 1 m üzerinden ölçüldüğünde)	
250 mSv	Fukushima-Daiichi kazasında çalışanlar için müsaade edilen kısa dönem doz miktarı	
250 mSv/yıl	Sv/yıl İran'ın Ramsar bölgesindeki doğal fon radyasyon dozu miktarı.	
500 mSv	Hayat kurtarma durumlarında izin verilen kısa dönem doz limiti. (IAEA)	
700 mSv/yıl	Nükleer kaza sonrası önerilen çevrenin boşaltması için limit doz hızı miktarı.	
800 mSv/yıl	Kaydedilen en yüksek fon radyasyon dozu miktarıdır. Bu ölçüm Brezilya sahillerinde yapılmıştır	
1000mSv(kısa dönem)	Her 100 kişiden 5'inin ışınlanmadan yıllar sonra ölümcül kansere yakalanacağının varsayıldığı doz miktarı.	
5000mSv(kısa dönem)	Maruz kalanların yarısını bir ay içerisinde öldürebilecek doz miktarı.	
10000mSv(kısa dönem)	Birkaç hafta içinde ölüm beklenir.	

Tablo 2.1. Radyasyon dozu, doz hızı ve etkileri

BÖLÜM 3

MATERYAL VE METOD

3.1. Gama ışın detektörleri

Radyasyonu tespitinde kullanılan detektörler birbirlerine benzer şekilde çalışırlar. Radyasyon, detektör materyali ile etkileşir, enerjisinin bir miktarını ya da tümünü kaybeder. Atom yörüngelerinden daha düşük enerjili elektronların salınmasına sebep olur. Salınan bu elektronlar toplanır ve akım pulsu ya da voltaja dönüştürülür. Detektör materyali ölçülecek radyasyon çeşidine bağlı olarak değişmektedir. Gama ışınlarının ölçümünde genellikle sintilatörler ve yarı iletken detektörler kullanılmaktadır [12].

3.2. Sintilasyon detektörleri

Gama ışınlarının algılanması için kullanılan detektörlerden biriside kristal sintilasyon detektörleridir. Sintilasyon detektörleri, yüksek enerjili yüklü parçacıkların kristale çarpmasıyla düşük enerjili (görülebilir dalga boylarında) fotonun yayınlanması prensibine dayanarak çalışmaktadır. Sintilasyon detektörlerinin gama detektörü olarak kullanılması durumunda ise detektör gama ışınını doğrudan algılamaz. Gama ışınları fotoelektrik olay, compton saçılması ve çift oluşum olayıyla yüklü parçacıkların üretilmesine neden olur. Bu parçacıklar sintilatör kristalleriyle etkileşir. Daha sonra üretilen görünür dalga boylarındaki fotonlar foto çoğaltıcı tüpler tarafından algılanır. Foto çoğaltıcı tüp, bu görünür fotonları voltaj pulslarına dönüştürür. Katota çarpan düşük enerjili fotonlar, katottan foto elektron salınımı yapar. Bu elektronlar, elektrik alanda dinot adı verilen metal plakaya doğru hızlandırılır. Dinota çarpan elektronlar, daha fazla elektronun salınmasına sebep olur. İlk dinottan çıkan elektronlar, elektrik alan sayesinde ikinci dinota yönlendirilir ve bu işlem böylece devam eder. Dinotlar, bir önceki dinottan daha yüksek potansiyele sahip olacak şekilde yerleştirilmiştir. Bir foto çoğaltıcı tüpte yaklaşık olarak 10-12 dinot vardır. Elektronlar, dinotlara her çarpıştığında sayıları artar ve hızlanırlar. En son dinottaki yük, tüpe giren fotonla orantılıdır. Foton sayısı ile kristale gelen gama ışının sayısı orantılıdır. Dolayısı ile çıkış voltajı doğrudan gelen gama ışınıyla orantılı olur. Sintilasyon detektörleri organik veya inorganik olabilir. Gama ışın detektörleri genellikle inorganik madde olan NaI veya CsI gibi alkali tuzlardan yapılmaktadır. Bu inorganik maddelerin foton yayınlama ihtimalini

artırmak ve ışığın soğurulmasını indirgemek için bir miktar katkı ilave edilir. Bu ilave katıya, aktivatör denir. Talyum (Tl) ve Sodyum (Na) en çok tercih edilen aktivatör malzemelerdir [12].

Şekil 3.1 Sintilasyon Detektörün Şematik Gösterimi

3.3. Portatif gama sayıcısı

Yozgat İli, ilçe ve köylerini kapsayan bölgedeki havada karasal ve kozmik kökenli gama radyasyonlarının ölçümleri için Eberline Smart Portable (ESP-2) model, taşınabilir mikro bilgisayarlı ve ucuna SPA-6 model plastik sintilasyon detektörü bağlı bir ölçüm sistemi kullanılmıştır.

Bu alet portatif bir radyasyon inceleme aletidir ve çoklu ölçüme izin verir. Çalışma sırasında detektör tarafından oluşturulan sinyal bilgisayara girer ve hesaplama oranına çevrilir. Bu alet tarih, zaman, kullanıcı kimliği, detektör numarası, işlem modu, kalibrasyonu gibi bilgileri depolayabilmektedir (TAEK Rapor No:32, 1985).

Şekil 3.2. ESP-2 Portatif Gama Sayıcısı

3.4. SPA-6 Sintilasyon detektörü

Bu detektör doğal gama radyasyonu ya da düşük aktiviteli radyonüklitlerin oluşturduğu radyasyon gibi radyasyonlara karşı oldukça duyarlıdır.

Şekil 3.3. SPA-6 Sintilasyon Detektörü

BÖLÜM 4

BULGULAR VE TARTIŞMALAR

Bu çalışmada Yozgat İli, ilçe ve köylerini kapsayan bölgede havada soğurulan karasal ve kozmik ışın kaynaklı ev dışı gama doz oranları belirlenmiştir. Bu amaç için özellikle halkın yoğun olarak yaşadığı bölgeler başta olmak üzere 60 farklı ölçüm noktasında gama doz oranları ölçümü yapılmıştır.

Bu ölçümlerde Eberline Smart Portable (ESP-2) model sayıcı ucuna SPA-6 model plastik sintilasyon algılayıcılı portatif bir detektör kullanılmıştır.

Havada ölçülen gama doz oranları büyük miktarlarda karasal kaynaklı olmasına rağmen bu ölçümlere kozmik radyasyonun da bir miktar katkısı olmaktadır.

Tablo 4.1 bu ölçüm noktalarında ölçülen gama doz oranlarını göstermektedir. Ölçüm sonuçları içerisinde hem karasal hem de kozmik ışın kaynaklarının etkisi bulunmaktadır.

Şekil 4.1 ise ölçüm noktalarında ölçülen gama doz oranlarını grafiksel olarak göstermektedir. Bu değerler en küçük 60 nGy/h olarak en büyük ise 300 nGy/h olarak ölçülmüştür.

Tablo 4.2. ise havada ölçülen ev dışı gama doz oranlarının istatistiki hesaplamalarını göstermektedir.

Numara		Havada Soğurulmuş
		Gama Doz Oranı
	Olçüm Noktaları	(nGy/h)
1	Ozler	73
2	Boğazlıyan-1	95
3	Boğazlıyan-2	107
4	Boğazlıyan şehir merkezi	120
5	Çalapverdi	80
6	Uzunlu Giriş	80
7	Uzunlu Çıkış	90
8	Çandır Giriş	85
9	Çandır Çıkış	60
10	Curalı	90
11	Curalı-2 yol karşısı kayalık üstü	60
12	Çayıralan	97
13	Çayıralan-2 nehir kıyısı	107
14	Çatköy-akdağmadeni	110
15	Akdağmadeni	120
16	Yoğunhisar	77
17	Sırçalı	104
18	Yenipazar	107
19	Yenipazar-Battal Köyü	118
20	Торçи	67
21	Yozgat giriş üniversite Yakını	66
22	saray	110
23	Yerköy Giris	171
24	Yerköy-2	166
25	Calatlı	113
26	Sorgun	150
27	Karaveli	95
28	Sarıkava	94
29	Karahasanlı	175
30	Karahasanlı-2	130
31	Sarıkent	110
32	Temlik	150
33	Sefaatli Giris	290
34	Sefaatli merkez	230
35	Sefaatli Cikis	270
36	Yıldız	230
37	Yozgat-yıldız Arası	300
38	Vozgat_vildiz Arası_?	60
30	Vozgat_Vildiz Arası-3	103
40	Alaca(ekili alan)	107 00
<u> </u>	Fkili alan Vanı vol kenarı	\$0 \$
41	User ad vol	125
42	yei aui yok	155

Tablo 4.1. Yozgat ili, ilçe ve köylerini kapsayan bölgede havada ölçülen gama doz oranları (nGy/h)

43	Aydıncık	164
44	bazlambaç	165
45	Yol kenarı yol üzeri değil	77,5
46	Çekerek şehir merkezi	193
47	Çekerek2/süreyyabey barajı	
	yakını/koyunculu köyü yakını	138
48	özükavak kasabası	203
49	kadışehri	191
50	kavakalan 190	
51	beyyurdu	66,6
52	çiğdemli 140	
53	karaveli	294
54	sarıkaya sonrası çokumeşme	
	çıkış mermer fab yanı	207
55	akbeni çiftliği	129
56	boğazlıyan yakını	188
57	yenifakılı yolu boğazlıyan	215
58	yenifakılı yanı bektaşlı öncesi	195
59	yenifakılı yanı	271
60	yenifakılı şehir merkezi	258

Tablo 4.2. Havada ölçülen gama doz oranları için istatistiki hesaplama sonuçları

İstatistiki Hesaplamalar		
Aritmetik Ortalama	141,2817	
Geometrik Ortalama	127,862	
Standart Sapma	64,9344	
Standart Hata	8,4537	
En Küçük Sayı	60	
En Büyük Sayı	300	

Şekil 4.1.Yozgat İli, ilçe ve köylerini kapsayan bölgede ev dışı havada soğurulan gama doz oranları (nGy/h)

4.1. Yıllık etkin doz eşdeğeri

Bir insanın, 1 yıl süresince maruz kaldığı radyasyonlar nedeniyle sahip olacağı doz miktarları yıllık etkin doz eşdeğeri olarak adlandırılmaktadır. Sievert (Sv) uluslararası birim sisteminde eşdeğer doz birimi olarak adlandırılmaktadır.

$$AEDE = OGDR \ \left(\frac{nGy}{h}\right) x \ 0.7 \left(\frac{Sv}{Gy}\right) x \ 0.20 \ x8760(\frac{h}{y})$$

Burada OGDR (nGy/h) ölçülen ev dışı havada soğurulan gama doz oranını göstermektedir.

UNSCEAR 2000 raporuna göre etkin doz eşdeğerinin havadaki soğurulmuş doza oranı hem ev içi hem de ev dışı doğal gamalar için 0,7 Sv/Gy olarak tanımlanmıştır.

İnsanların gün içerisinde vakitlerinin % 20'sini kapalı ortamların dışında geçirdikleri düşünülmektedir. 8760 ise 1 yıl içerisindeki saat miktarıdır.

Yozgat bölgesi içerisindeki 60 ölçüm noktası için hesaplanan yıllık etkin doz eşdeğerleri tablo 4.3'de gösterilmektedir. Şekil 4.2 ise hesaplanan bu değerleri grafiksel olarak göstermektedir.

Hesaplanan en küçük yıllık etkin doz eşdeğeri 73,584 μ Sv/y ve en büyük değer ise 367,92 μ Sv/y'dır.

No	Ölcüm Noktaları	AEDE(µSv/y)
1	Özler	89.5272
2	Boğazlıvan-1	116.508
3	Boğazlıyan-2	131,2248
4	Boğazlıyan şehir merkezi	147,168
5	Çalapverdi	98,112
6	Uzunlu Giriş	98,112
7	Uzunlu Çıkış	110,376
8	Çandır Giriş	104,244
9	Çandır Çıkış	73,584
10	Curalı	110,376
11	Curalı-2 yol karşısı kayalık üstü	73,584
12	Çayıralan	118,9608
13	Çayıralan-2 nehir kıyısı	131,2248
14	Çatköy-akdağmadeni	134,904
15	Akdağmadeni	147,168
16	Yoğunhisar	94,4328
17	Sırçalı	127,5456
18	Yenipazar	131,2248
19	Yenipazar-Battal Köyü	144,7152
20	Topçu	82,1688
21	Yozgat giriş üniversite Yakını	80,9424
22	saray	134,904
23	Yerköy Giriş	209,7144

Tablo 4.3. Ölçüm yerleri için hesaplanan yıllık etkin doz eşdeğerleri

24	Yerköy-2	203,5824
25	Çalatlı	138,5832
26	Sorgun	183,96
27	Karaveli	116,508
28	Sarıkaya	115,2816
29	Karahasanlı	214,62
30	Karahasanlı-2	159,432
31	Sarıkent	134,904
32	Temlik	183,96
33	Şefaatli Giriş	355,656
34	Şefaatli merkez	282,072
35	Şefaatli Çıkış	331,128
36	Yıldız	282,072
37	Yozgat-yıldız Arası	367,92
38	Yozgat-yıldız Arası- 2	73,584
39	Yozgat-Yıldız Arası- 3	126,3192
40	Alaca(ekili alan)	131,2248
41	Ekili alan Yanı yol kenarı	110,1307
42	yer adı yok	165,564
43	Aydıncık	201,1296
44	bazlambaç	202,356
45	Yol kenarı yol üzeri değil	95,046
46	Çekerek şehir	236,6952
	merkezi	

köyü yakını	
özükavak kasabası	248,9592
kadışehri	234,2424
kavakalan	233,016
beyyurdu	81,67824
çiğdemli	171,696
karaveli	360,5616
sarıkaya sonrası	
çokumeşme çıkış	253,8648
mermer fab yanı	
akbeni çiftliği	158,2056
boğazlıyan yakını	230,5632
yenifakılı yolu	263 676
boğazlıyan	203,070
yenifakılı yanı	230 1/8
bektaşlı öncesi	237,140
yenifakılı yanı	332,3544
yenifakılı şehir	316 /112
morkozi	310,4112
	köyü yakını özükavak kasabası kadışehri kavakalan beyyurdu çiğdemli karaveli sarıkaya sonrası çokumeşme çıkış mermer fab yanı akbeni çiftliği boğazlıyan yakını yenifakılı yolu boğazlıyan yenifakılı yanı bektaşlı öncesi yenifakılı şehir

4.2. Yaşam boyu kanser riski

Bir insanın yaşadığı ömür boyunca karasal ve kozmik kaynaklı doğal radyasyonlardan dolayı ev dışı havada bulunan gama dozları nedeniyle karşı karşıya kalabileceği kanser riski yaşam boyu kanser riski olarak adlandırılır. Yaşam boyu kanser risk hesabı radyasyonun sağlık üzerine etkilerini tahmin etmekte yararlı bir araçtır. Bu risk şu şekilde hesaplanır:

$$ELCR = AEDE \left(\frac{\mu Sv}{y}\right) x \ LE(y) x \ RFSE(Sv^{-1})$$

Burada AEDE, Yozgat bölgesi için ev dışı havadaki soğurulan gama dozları nedeniyle sahip olunan yıllık etkin doz eşdeğeri, LE ise ortalama olarak insan ömrü (75 yıl), RFSE ise ICRP 1990 raporuna Sievert için risk faktörüdür. Bu değer 0.05 Sv⁻¹ olarak alınmıştır. Tablo 4.4. Yozgat bölgesi için hesaplanan ev dışı havadan soğurulmuş gama dozları nedeniyle sahip olunan kanser risk değerlerini göstermektedir. Şekil 4.3. grafiksel olarak kanser risk değerlerini göstermektedir. Bu değerler en düşük 0,27594 ile 1,3797 arasında değişmektedir.

Şekil 4.2. Ölçüm yerlerine göre hesaplanan yıllık etkin doz eşdeğerleri

Şekil 4.3. Ölçüm yerlerine göre hesaplanan yaşam boyu kanser riskleri

No	Ölçüm Noktaları	ELCR x 10 ⁻³
1	Özler	0,335727
2	Boğazlıyan-1	0,436905
3	Boğazlıyan-2	0,492093
	Boğazlıyan şehir	
4	merkezi	0,55188
5	Çalapverdi	0,36792
6	Uzunlu Giriş	0,36792
7	Uzunlu Çıkış	0,41391
8	Çandır Giriş	0,390915
9	Çandır Çıkış	0,27594
10	Curalı	0,41391
	Curalı-2 yol karşısı	
11	kayalık üstü	0,27594
12	Çayıralan	0,446103
	Çayıralan-2 nehir	
13	kıyısı	0,492093
14	Çatköy-akdağmadeni	0,50589
15	Akdağmadeni	0,55188
16	Yoğunhisar	0,354123
17	Sırçalı	0,478296
18	Yenipazar	0,492093
	Yenipazar-Battal	
19	Köyü	0,542682
20	Topçu	0,308133
	Yozgat giriş	
21	üniversite Yakını	0,303534
22	saray	0,50589
23	Yerköy Giriş	0,786429
24	Yerköy-2	0,763434
25	Çalatlı	0,519687
26	Sorgun	0,68985
27	Karaveli	0,436905
28	Sarıkaya	0,432306
29	Karahasanlı	0,804825
30	Karahasanlı-2	0,59787
31	Sarıkent	0,50589
32	Temlik	0,68985
33	Şefaatli Giriş	1,33371
34	Şefaatli merkez	1,05777
35	Şefaatli Çıkış	1,24173
36	Yıldız	1,05777
37	Yozgat-yıldız Arası	1,3797
	Yozgat-yıldız Arası-	
38	2	0,27594
39	Yozgat-Yıldız Arası-	0,473697

Tablo 4.4. Ölçüm yerleri için hesaplanan yaşam boyu kanser riskleri

	3	
40	Alaca(ekili alan)	0,492093
	Ekili alan Yanı yol	
41	kenarı	0,41299
42	yer adı yok	0,620865
43	Aydıncık 0,754236	
44	bazlambaç 0,758835	
	Yol kenarı yol üzeri	
45	değil	0,356423
	Çekerek şehir	
46	merkezi	0,887607
	Çekerek2/süreyyabey	
	barajı	
	yakını/koyunculu	
47	köyü yakını	0,634662
48	özükavak kasabası	0,933597
49	kadışehri	0,878409
50	kavakalan 0,87381	
51	beyyurdu	0,306293
52	çiğdemli	0,64386
53	karaveli	1,352106
	sarıkaya sonrası	
	çokumeşme çıkış	
54	mermer fab yanı	0,951993
55	akbeni çiftliği 0,593271	
56	boğazlıyan yakını	0,864612
	yenifakılı yolu	
57	boğazlıyan	0,988785
	yenifakılı yanı	
58	bektaşlı öncesi 0,896805	
59	yenifakılı yanı 1,246329	
	yenifakılı şehir	
60	merkezi	1,186542

					Tüm
	Akciğerler	Yumurtalıklar	Kemik İliği	Testisler	Vücut
1	0,0572974	0,051925776	0,061773768	0,073412304	0,060878
2	0,0745651	0,06757464	0,08039052	0,09553656	0,079225
3	0,0839839	0,076110384	0,090545112	0,107604336	0,089233
4	0,0941875	0,08535744	0,10154592	0,12067776	0,100074
5	0,0627917	0,05690496	0,06769728	0,08045184	0,066716
6	0,0627917	0,05690496	0,06769728	0,08045184	0,066716
7	0,0706406	0,06401808	0,07615944	0,09050832	0,075056
8	0,0667162	0,06046152	0,07192836	0,08548008	0,070886
9	0,0470938	0,04267872	0,05077296	0,06033888	0,050037
10	0,0706406	0,06401808	0,07615944	0,09050832	0,075056
11	0,0470938	0,04267872	0,05077296	0,06033888	0,050037
12	0,0761349	0,068997264	0,082082952	0,097547856	0,080893
13	0,0839839	0,076110384	0,090545112	0,107604336	0,089233
14	0,0863386	0,07824432	0,09308376	0,11062128	0,091735
15	0,0941875	0,08535744	0,10154592	0,12067776	0,100074
16	0,060437	0,054771024	0,065158632	0,077434896	0,064214
17	0,0816292	0,073976448	0,088006464	0,104587392	0,086731
18	0,0839839	0,076110384	0,090545112	0,107604336	0,089233
19	0,0926177	0,083934816	0,099853488	0,118666464	0,098406
20	0,052588	0,047657904	0,056696472	0,067378416	0,055875
21	0,0518031	0,046946592	0,055850256	0,066372768	0,055041
22	0,0863386	0,07824432	0,09308376	0,11062128	0,091735
23	0,1342172	0,121634352	0,144702936	0,171965808	0,142606
24	0,1302927	0,118077792	0,140471856	0,166937568	0,138436
25	0,0886932	0,080378256	0,095622408	0,113638224	0,094237
26	0,1177344	0,1066968	0,1269324	0,1508472	0,125093
27	0,0745651	0,06757464	0,08039052	0,09553656	0,079225
28	0,0737802	0,066863328	0,079544304	0,094530912	0,078391
29	0,1373568	0,1244796	0,1480878	0,1759884	0,145942
30	0,1020365	0,09247056	0,11000808	0,13073424	0,108414
31	0,0863386	0,07824432	0,09308376	0,11062128	0,091735
32	0,1177344	0,1066968	0,1269324	0,1508472	0,125093
33	0,2276198	0,20628048	0,24540264	0,29163792	0,241846
34	0,1805261	0,16360176	0,19462968	0,23129904	0,191809
35	0,2119219	0,19205424	0,22847832	0,27152496	0,225167
36	0,1805261	0,16360176	0,19462968	0,23129904	0,191809
37	0,2354688	0,2133936	0,2538648	0,3016944	0,250186
38	0,0470938	0,04267872	0,05077296	0,06033888	0,050037
39	0,0808443	0,073265136	0,087160248	0,103581744	0,085897
40	0,0839839	0,076110384	0,090545112	0,107604336	0,089233
41	0,0704836	0,063875806	0,075990183	0,090307174	0,074889

Tablo 4.5.Farklı vücut doku ve organları için hesaplanmış etkin doz oranları

42	0,105961	0,09602712	0,11423916	0,13576248	0,112584
43	0,1287229	0,116655168	0,138779424	0,164926272	0,136768
44	0,1295078	0,11736648	0,13962564	0,16593192	0,137602
45	0,0608294	0,05512668	0,06558174	0,07793772	0,064631
46	0,1514849	0,137283216	0,163319688	0,194090064	0,160953
47	0,1083156	0,098161056	0,116777808	0,138779424	0,115085
48	0,1593339	0,144396336	0,171781848	0,204146544	0,169292
49	0,1499151	0,135860592	0,161627256	0,192078768	0,159285
50	0,1491302	0,13514928	0,16078104	0,19107312	0,158451
51	0,0522741	0,047373379	0,056357986	0,066976157	0,055541
52	0,1098854	0,09958368	0,11847024	0,14079072	0,116753
53	0,2307594	0,209125728	0,248787504	0,295660512	0,245182
54	0,1624735	0,147241584	0,175166712	0,208169136	0,172628
55	0,1012516	0,091759248	0,109161864	0,129728592	0,10758
56	0,1475604	0,133726656	0,159088608	0,189061824	0,156783
57	0,1687526	0,15293208	0,18193644	0,21621432	0,1793
58	0,1530547	0,13870584	0,16501212	0,19610136	0,162621
59	0,2127068	0,192765552	0,229324536	0,272530608	0,226001
60	0,2025032	0,183518496	0,218323728	0,259457184	0,21516

4.3. Farklı vücut doku ve organlarındaki etkin doz oranı

Alınan dozlar nedeniyle yıllık etkin doz eşdeğerine bağlı olarak bu doz değerinin her bir vücut doku ve organdaki miktarı her bir organ için farklı dönüşüm faktörleri kullanılarak hesaplanabilir.

$$D_{organ}(mSv y^{-1}) = AEDE x f$$

f değeri organ dozuna dönüşüm faktörüdür ve her bir organ için farklı bir değere sahiptir. Tablo 4.6 farklı vücut doku ve organları için doz dönüşüm faktörlerini göstermiştir. Tablo 4.5 ise farklı vücut doku ve organları için hesaplanmış etkin doz oranlarını göstermektedir.

Organ ya da Doku	Doz Dönüşüm Faktörü (f)
Akciğerler	0,64
Yumurtalıklar	0,58
Kemik İliği	0,69
Testisler	0,82
Tüm Vücut	0,68

Tablo 4.6. Farklı organ ve dokular için doz dönüşüm faktörleri

BÖLÜM 5

TARTIŞMA, SONUÇ VE ÖNERİLER

Bu çalışma Türkiye'de Yozgat İli, ilçe ve köylerini kapsayan bölgedeki karasal ve kozmik kaynaklı havada soğurulmuş gama doz oranlarının belirlenmesi için yapılmış literatürde yer alan ilk çalışmadır.

Bu tezi oluşturan konunun çalışılmasıyla birçok sonuca ulaşılmıştır.

- Yozgat bölgesi için karasal ve kozmik gama ışınları kaynaklı havada soğurulan doz oranları için radyolojik bir veri tabanı oluşturulmuştur.
- Bu bölgede yaşayan halk için, havadaki bu gamalar nedeniyle maruz kaldıkları radyasyon dozları ile ilgili bir veri tabanı oluşturulmuştur.

Yozgat bölgesi havasında soğurulmuş gama doz oranlarını belirlemek ilerde oluşabilecek herhangi bir nükleer kirlilik durumunda oluşabilecek radyolojik kirliliğin miktarını belirlemek açısından oldukça önemlidir. Bu tez konusunu çalışmak bu bölge havası için bu tür bir veri tabanı oluşturmaya da olanak sağlamaktadır.

Yozgat ili, ilçe ve köylerini kapsayan önceden belirlenmiş 60 faklı ölçüm noktasında havada soğurulmuş gama doz oranları ölçülmüştür. Ölçülen bu değerler kozmik ve karasal kökenlidir. Bu bölge için ölçülen ortalama gama doz oranı 141,3 nGy/h olarak bulunmuştur. Ölçülen en büyük havadaki soğurulmuş gama doz oranı ise 300 nGy/h olarak Yozgat-Yıldız arasındaki bölgede ölçülmüştür. Tablo 5.1 de Türkiye'de bulunan bazı şehirler için yapılan havadaki soğurulmuş gama doz oranları gösterilmektedir. Yozgat için bulunan ortalama değer diğer şehirler için bulunanlardan daha yüksektir. UNCEAR 2000 raporuna göre ev dışı havasındaki soğurulmuş gama doz oranı Dünya ortalaması 57 nGy/h'dır. Yozgat bölgesi için ölçülen değer Dünya ortalamasının üzerindedir.

Yozgat bölgesinin yakın zamanlarda uranyum madeni bakımından zengin olduğu bulunmuştur. Havada soğurulan gama radyasyonu kozmik kökenli olsa bile daha fazla miktarda karasal kökenlidir. Ayrıca Yozgat bölgesi 1300 m rakıma sahiptir. Bu bölge için yapılan ölçümlerin, bölgenin bazı kısımlarında yer alan uranyum yatakları ve bölgenin sahip olduğu yüksek rakım nedeniyle daha fazla kozmik radyasyonun bulunmasından dolayı yüksek çıktığı söylenebilir.

Yerler	Havada Soğurulan Gama Doz	Referanslar
	Oranları (nGy/h)	
İstanbul	64,7	[3]
Tekirdağ	43,27	[4]
Hatay	61,9	[5]
Trabzon	324,7	[6]
Adana	65,6	[7]
Yozgat	141,3	Şimdiki Çalışma

Tablo 5.1. Türkiye'deki bazı şehirlerde yapılan havadaki soğurulmuş gama doz oranları ölçümleri

Yozgat bölgesi, ilçe ve köylerinde yaşayan halkın havada soğurulmuş gama dozları nedeniyle bir yılda maruz kaldıkları radyasyon dozları yıllık etkin doz eşdeğerleri olarak hesaplanmıştır. Bu bölge için bulunan ortalama yıllık etkin doz eşdeğeri 173,3 µSv y⁻¹ 'dir. En yüksek yıllık etkin doz eşdeğeri 355,7 µSv y⁻¹ olarak Şefaatli ve 367,9 µSv y⁻¹ olarak Yozgat- Yıldız arasındaki bölge için bulunmuştur.

Yozgat bölgesi ev dışı havasındaki soğurulmuş gama dozları için hesaplanmış yıllık etkin doz eşdeğerlerine bağlı olarak bölge halkı için yaşam boyu kanser riski de hesaplanmıştır. Bölge halkı için hesaplanan ortalama kanser riski 0,65x 10⁻³ olarak bulunmuştur. En yüksek yaşam boyu kanser risk değerleri Şefaatli bölgesi için 355,66 ve Yozgat-Yıldız arası bölge için 367,9 olarak hesaplanmıştır.

Şekil 5.1 hesaplanan yaşam boyu kanser riskleri ile 0,29 x 10⁻³ olan limit değerlerin karşılaştırması gösterilmektedir. Hemen hemen tüm yerleşim birimlerinde hesaplanan yaşam boyu kanser riskleri limit değerlerinin üzerindedir.

Şekil 5.1. Hesaplanan Yaşam Boyu Kanser Riskleri İle Limit Değerlerin Karşılaştırması

KAYNAKLAR

- 1. Linnea E. Wahl, "Environmental Radiation Fact Sheet", *Health Physics Society* Specialist Radiation Protection Documents, 2014.
- Guagliardi I, Rovella N, Apollaro C, Bloise A, Derosa R, Scarciglia F, Buttafuoco G, "Effects of source rocks, soil features and climate on natural gamma radioactivity in the Crati Valley (Calabria, Southern Italy), *Chemosphere*, 150, 97-108, 2016.
- 3. G. Karahan, A. Bayulken, "Assessment of gamma dose rates around Istanbul (Turkey)", *Journal of Environmental Radioactivity*, 47(2), 213-221, 2000.
- 4. E.Kam, Y.Yarar, A.Bozkurt, "A study of background radioactivity level for Tekirdag, Turkey". *Radiation Protection Dosimetry*, 138 (1), 40-4, 2010.
- 5. Muhammet Karataşlı, "Hatay ve çevresinde çevresel gama ölçümü", *AKUJ. Sci. Eng.18*, 011102, 780-785, 2018.
- 6. A. Kurnaz, "Trabzon İlinin ve Şebinkarahisar ilçesinin doğal radyoaktivite düzeylerinin belirlenmesi ve yıllık etkin doz eşdeğerleri", *Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi*, Trabzon, 2009.
- M. Degerlier, G. Karahan, G. Ozger, "Radioactivity concentrations and dose assessment for soil samples around Adana, Turkey". *Journal of Environmental Radioactivity*, 99(7), 1018-1025, 2008.
- Syed Naeem Ahmed, "Physics & Engineering of Radiation Detection", *Elsevier*, ISBN-10:0-12-045581-1, First Edition, 2007.
- 9. AR. Çekirdek Kimyası ve Radyokimya. Etiler, İ.Ü. Basımevi ve Film Berkem Merkezi,1992;74-111
- Tüysüz, M.Z., Yorulmaz, N., Bozkurt, A., 2004. Co-60 Radyoterapi Kaynağı İçin Monte Carlo Yöntemiyle Uygun Zırh Tasarımı. Türk Fizik Derneği 22. Fizik Kongresi Bildiriler Kitapçığı, Bodrum
- 11. Knoll ,F.K. 1999. Radiation Detection and Measurement. John Willey ans Sons.
- 12. Krane, K.S. 2001. Nükleer Fizik. Palme.

ÖZGEÇMİŞ

1978 Nevşehir doğumluyum. İlkokulu 20 Temmuz İlkokulunda, orta ve lise eğitimimi Nevşehir Lisesinde tamamladım. 1997 yılında Erciyes Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümünü kazandım. 2007 yılında o anki ismi Nevşehir Üniversitesi şimdiki adı Nevşehir Hacı Bektaş Veli Üniversitesi Fen Bilimleri Enstitüsünde Yüksek Lisans Eğitimime başladım1978 Nevşehir doğumluyum. İlkokulu 20 Temmuz İlkokulunda, orta ve lise eğitimimi Nevşehir Lisesinde tamamladım. 1997 yılında Erciyes Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümünü kazandım. 2007 yılında o anki ismi Nevşehir Üniversitesi şimdiki adı Nevşehir Hacı Bektaş Veli Üniversitesi Fen Bilimleri Enstitüsünde Yüksek Lisans Eğitimime başladım. Ders ve Seminer dönemini o yıl tamamladım. Tez çalışmalarına 2018 mayısında tekrar hız kazandırdım. 2019 haziran ayında Yüksek Lisans programından mezun oldum.

