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ABSTRACT

Silicon Carbide (SiC) is an indirect wide bandgap semiconductor with high thermal 

conductivity, high breakdown electric field, high carrier saturation drift velocity, and large 

displacement energy making it a suitable candidate for replacing conventional radiation 

detectors based on Si, Ge, CdTe, and CdZnTe (CZT). In this dissertation, fabrication and 

characterization of high-resolution Schottky barrier detectors for alpha particles using 20 

m thick n-type 4H-SiC epitaxial layers are reported. Schottky barriers were obtained by 

depositing circular nickel contacts of ~10 mm2 area.  

Room temperature current-voltage (I-V) measurements revealed Schottky barrier 

heights of the order of 1.7 eV, ideality factor of ~1.1, and leakage currents as low as 1 nA 

at an operating reverse bias of -170 V. Deep level transient spectroscopy (DLTS) revealed 

the presence of shallow defects at Ec – (0.14 ± 0.01) eV and Ec – (0.18 ± 0.01) eV 

corresponding to titanium (Ti) substitution in silicon (Si) lattice, and at Ec – (0.62 ± 0.02) 

eV corresponding to Z1/2 defects caused by carbon vacancies. Deep level defects have been 

found at Ec – (1.42 ± 0.04) eV, and Ec – (1.52 ± 0.03) eV respectively that are related to 

C-C or C-Si di-vacancies.   

A 0.1 µCi 241Am radiation source was used to assess the detector performance by 

pulse height spectroscopy, and an energy resolution of ~ 0.38% full-width half maxima 

(FWHM) was observed for alpha particles at ~ 5447 keV. The average diffusion length 

(Ld) of holes (minority carriers) were calculated to be ~ 13.6 m using a drift-diffusion 
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model and MATLAB code. A noise analysis in terms of equivalent noise charge revealed 

that the white series noise due to the detector capacitance has substantial effect on their 

spectroscopic performance. 

A new edge termination technique was developed by depositing thin Si3N4 

passivating layer on 4H-SiC epitaxial layer surrounding nickel (Ni) contact in order to 

improve detector performance. The 4H-SiC detector with Si3N4 edge termination showed 

a higher barrier height with improved rectifying characteristics and a leakage current in pA 

range, which was two orders of magnitude lower compared to conventional detector 

fabricated from the same parent wafer. DLTS measurements revealed a reduction in life-

time killing defects of detectors with Si3N4 edge termination which could be correlated to 

the observed improvements in energy resolution. 

In addition to SiC alpha detector, Cd0.9Zn0.1Te (CZT) based pixelated detectors 

were fabricated and characterized for gamma ray detection. Large area CZT single crystals 

has been grown using a tellurium (Te) solvent method. A 3×3 guarded pixilated detector 

has been fabricated on a ~ 20×20×5 mm3 crystal cut out from the grown ingot. A guard 

ring was used to reduce inter-pixel/inter-electrode leakage. I-V measurements revealed a 

leakage current of ~ 5 nA at a bias voltage of 1000 V and a resistivity of ~ 1011 cm. The 

mobility-lifetime product (µτ) was calculated to be 6 × 10-3 cm2/V using alpha 

spectroscopic method. Using time of flight measurements, electron mobility was 

determined to be ~ 1192 cm2.V-1.s-1. Gamma spectroscopy using a 137Cs source on the 

pixelated structure showed fully resolved 662 keV gamma peaks for all the pixels, with a 

resolution (FWHM) of ~ 1.51%, which exhibited a significantly improved resolution.  
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CHAPTER 1  

 

GENERAL INTRODUCTION 

 

 

 SIC ALPHA PARTICLE DETECTOR 

Wide bandgap semiconductors are suitable for high temperature, high power, and 

high frequency applications because of their superior physical, electrical, and opto-

electronic properties. Among different wide bandgap materials, silicon carbide (SiC) is one 

of the most promising semiconductor due to its high radiation hardness, high breakdown 

electric field, high saturation electron drift velocity, high thermal conductivity, and smaller 

anisotropy [1] - [10]. 4H-SiC based nuclear radiation detectors have the most appealing 

characteristics for harsh environment applications where conventional semiconductors 

(e.g., Si, Ge, CdTe, CdZnTe) showed inadequate performance [11] - [16]. Amongst all of 

the SiC polytypes, 4H-SiC has the most compatible properties due to its large displacement 

energy (EdSi = 3.5 eV and EdC = 22 eV), high bulk electron mobility (1000 cm2/V.s), high 

thermal stability (2857 oC sublimation point), smaller anisotropy, and, more importantly, 

its wide bandgap (3.27 eV at 300 K). [17] - [24].   

Although SiC possesses superior properties, the conventional growth techniques 

result in crystal defects in the microscopic levels limiting the nuclear detection 

performance [25] - [28]. Major defects present in SiC are edge dislocations, screw 

dislocations, carrot defects, comet defects, triangular defects, and basal plane dislocations 
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[6], [22], [29]. Most of these defects are normally confined to the substrate [30] but some 

screw dislocations can propagate to the epitaxial layer and form micropipe defects in the 

epilayer [31].   

Babcock et al. were the first to demonstrate alpha particle detectors based on SiC 

Schottky diodes [32] and Nava et al. were the first to report 5.48 MeV alpha particle signal 

in 4H-SiC epitaxial detectors [33]. Ruddy et al. demonstrated an energy resolution of 5.8% 

and 6.6% for deposited energy of 294 keV and 260 keV, respectively, by alpha particles 

from a collimated 238Pu source [34]. In 2009 Ruddy et al. reported an energy resolution of 

5.7% for a deposited energy of 89.5 keV alpha particles from a collimated 148Gd source 

with 10 m thick epilayer detector [35]. In another article, Ruddy et al. [36] reported 

fabrication of high-resolution alpha particle detectors with aluminum guard ring structures 

using which they obtained an energy resolution close to 46 keV for alpha particles from a 

238Pu source. These SiC epitaxial layers still suffered from electrically active defects [37] 

- [42], prohibited them to achieve an energy resolution comparable to high-purity 

germanium (HP Ge) or lithium-drifted silicon Si (Li) detectors [43]. 

In the last decade, substantial progress has been made in advanced vapor-phase 

epitaxy for growing SiC epitaxial layers. Availability of high resistive and high-quality 

detector grade SiC epitaxial layers with extremely low micropipe concentrations created 

renewed interest in SiC based radiation detectors [6], [42], [44] – [46]. The reported results 

show that SiC detectors are uniquely suited for alpha-particles, neutrons, and gamma-ray 

monitoring applications in room- or elevated-temperature environments even where high-

intensity gamma-rays are present. Recent results [44] have shown that SiC detectors 

operate well in temperatures up to 700°C. 
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With the expansion of nuclear power and development of advanced nuclear fuel 

cycle processes, there is a growing need for high performance, solid-state nuclear detectors 

capable of operating for extended times at elevated-temperatures (300C – 600C) and high 

radiation fluxes. Silicon carbide (SiC) radiation detectors are excellent candidates for such 

environments, since the material is extremely radiation hard and chemically inert. In 

nuclear fuel safeguards application, the potential diversion of nuclear materials can require 

continuous, long-term monitoring. SiC detectors are well suited for this application. SiC 

detectors have been demonstrated also to withstand high gamma-ray doses that exceeded 

anticipated doses for any long-term monitoring applications [47]. SiC detectors can be 

deployed in key locations on spent fuel assemblies at either commercial fuel storage 

locations or government fuel storage repositories. The detectors could be installed at any 

time following discharge and could potentially monitor both the neutron and gamma-ray 

activity from discharge, during transportation and long-term storage. Diversion of fuel 

assemblies or changes to the neutron and gamma-ray output due to tampering or physical 

changes to assemblies from physical or chemical degradation can be detected through 

unexpected changes in the observed neutron and gamma-ray activities. Other applications 

of SiC nuclear detector will include monitoring of space nuclear reactors, neutron dose 

monitoring of reinforced concrete structures, detecting and quantifying special nuclear 

materials (SNMs) for safeguards, national security, and verification for nuclear treaty 

enforcement. 

 CZT GAMMA-RADIATION DETECTOR 

Currently the most widely used detectors for gamma radiation are based on high-

purity germanium (Ge). Ge has high atomic number for gamma-ray stopping and offer 
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excellent energy resolution (0.2% at 662 keV) [48]. However, Ge detectors must be cooled 

to cryogenic temperatures to obtain such high-energy resolution due to the relatively small 

bandgap energy (0.7 eV at 300K) [49]. The small bandgap leads to excessive dark current 

at room temperature, which can be reduced to an acceptable level upon cryogenic cooling. 

However, cooling makes the detection system bulky and increases power consumption. 

Wide bandgap compound semiconductors are therefore more suitable for gamma detector 

at room temperature operation. 

One of the most promising semiconductor materials used in gamma detectors is 

single crystal cadmium zinc telluride or CZT (Cd0.9Zn0.1Te). CZT is a direct-bandgap 

semiconductor grown by alloying CdTe and Zn using Bridgman growth technique [50]. 

CZT has a bandgap energy of 1.58 eV at 300K and resistivity of 1011 Ω.cm resulting in 

low dark current at room temperature [51]. Due to high average atomic number (Z = 50), 

CZT offers quite good x-ray and gamma-ray stopping power. Properties like adequate 

gamma-ray energy absorption even for small volume detectors, low leakage current, high 

density and ease of detector fabrication has made it a very suitable candidate for nuclear 

radiation detection [51] – [54].  

With growing concerns about nuclear proliferation and terrorism, there are needs 

for portable, high performance nuclear spectrometers. CZT radiation detector could play 

an important role in this matter and could be used for screening of radioactive materials at 

the port of entry, for detection of dirty bomb or special nuclear materials to combat security 

threat, for detection of illicit radioactive enrichment during non-proliferation treaty 

verification, for monitoring and safeguard of nuclear spent fuel. X-ray and gamma-ray 

detectors based on CZT material could also be used in industrial process monitoring, 
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nondestructive testing, medical imaging such as positron emission tomography (PET), and 

high energy astrophysics & astronomy. 

CZT crystals suffer from poor growth yield due to defects and inhomogeneity, 

making the detector material very costly [55]. Macroscopic defects in CZT materials such 

as cracks and twin/grain boundaries and microstructural defects such as mosaic structures, 

tilt boundaries, dislocations, impurities, tellurium inclusions/precipitations lead to poor 

charge transport properties [56]. Performance of large volume CZT detectors is further 

limited by poor charge transport properties like low drift-mobility and lifetime especially 

for holes. CZT has much higher electron mobility compared to hole mobility (e = 1000 

cm2/V.s and h = 50 cm2/V.s), so a polarization effect is observed even at a high bias 

voltage [57]. To compensate for poor hole transport properties, specialized detector 

geometries such as coplanar, multipixel, and Frisch grid detector structures where readout 

signal is due to electron movement only are adapted [58]. In this dissertation, multipixel 

CZT detector structure in a unipolar charge sensing mode has been investigated. In this 

approach, the induced pulse is mostly due to electron motion in the detector and the hole 

contribution to the signal is negligible, thereby reducing the effect of hole trapping. 

 DISSERTATION OVERVIEW 

Primary focus of this dissertation was fabrication and characterization of Ni/4H-

SiC epilayer Schottky barrier detectors on 20 m thick n-type SiC epitaxial layer. New 

edge termination using passivating Si3N4 layers was developed in order to reduce surface 

leakage current and to improve energy resolution. Electrical characterization of the 

fabricated detectors was carried out using current-voltage (I-V) and capacitance-voltage 

(C-V) measurements to evaluate Schottky barrier junction properties. Defect analysis using 
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capacitance-mode deep level transient spectroscopy (DLTS) was performed to identify 

deep and shallow defect levels that may be detrimental to detector performance. Electronic 

noise analysis of front-end readout system was developed in terms of equivalent noise 

charge (ENC) using MATLAB program. Charge collection efficiency and detector 

performance was evaluated using pulse-height spectroscopy (PHS) measurements with an 

241Am radiation source (5.48 MeV).  

These investigations and results are described in the following chapters of this 

dissertation. Chapter 2 provides a summary of 4H-SiC properties that are relevant to high-

performance radiation detector and motivated to choose this semiconductor as the detector 

material of interest. Chapter 2 also briefly reviews the growth of 4H-SiC material followed 

by 4H-SiC detector fabrication on 20 m thick n-type SiC epitaxial layer.  

Chapter 3 includes electrical characterization and defect analysis of Ni/n-type 4H-

SiC detectors on 20 µm epilayer. This chapter provides a theoretical background on 

Schottky barrier contacts, reviews thermionic emission model used for detector 

characterization, and discusses the results of current-voltage (I-V) and capacitance-voltage 

(C-V) measurements. Finally, results and analysis of defects in fabricated n-type 4H-SiC 

detectors using deep level transient spectroscopy (DLTS) are reported.  

Chapter 4 describes the systematic study of 4H-SiC detector performance as an 

alpha particle detector using pulse-height spectroscopy (PHS). Radiation detection 

performance in terms of charge collection efficiencies (CCE) as a function of bias voltage 

for 5.48 MeV alpha particles are also reported in this chapter. Using a drift-diffusion model, 

minority carrier diffusion length and contribution of hole diffusion to the charge collection 

efficiency are explained.  
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Chapter 5 reports results of 4H-SiC Schottky barrier detectors with passivating 

silicon nitride (Si3N4) edge termination layers with the goal of reducing surface leakage 

current in order to improve energy resolution. The junction properties, defect levels, and 

energy resolution with alpha spectroscopy are evaluated for the edge-terminated detectors, 

and experimental results are compared to baseline detector without edge termination to 

assess edge termination effectiveness.  

In addition to 4H-SiC radiation detectors, multipixel CZT detector structure have 

also been investigated during this dissertation study. In this approach, the unipolar signal 

induction is achieved in a pixelated detector array by keeping the pixel size small as 

compared to the detector thickness. The multipixel CZT detectors were characterized with 

low leakage current under operating conditions. Electron drift mobility and  product 

have been measured using alpha-ray spectroscopy and a time of flight technique 

respectively. Gamma ray spectroscopic measurements were performed by using 137Cs 

radiation source of 662 keV. A MATLAB based correction scheme was developed to 

improve digitally obtained pulse-height spectra. Results of multipixel CZT detectors have 

been reported in Chapter 6. 

Finally, Chapter 7 concludes the research presented in this dissertation and provides 

suggestions for future work.
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CHAPTER 2  

 

DETECTOR FABRICATION ON SILICON CARBIDE EPITAXIAL 

LAYER 

 

 

 FAVORABLE PROPERTIES OF 4H-SIC FOR RADIATION DETECTION 

Depending on staking sequences of silicon and carbon bilayers, silicon carbide 

(SiC) exhibits different crystal lattice structures called polytypes, which can have 

significantly different optical and electrical properties such as band-gap, drift velocity, 

breakdown electric field strength, and the impurity ionization energies [59] - [62]. Among 

different polytypes, 4H-SiC, which has hexagonal symmetry with four-bilayer stacking 

periodicity, offers appealing characteristics such as a wide bandgap, high bulk electron 

mobility, large displacement energy, high thermal stability, and smaller anisotropy [12], 

[17], [18], [24], [63] – [66]. Table 2.1 summarizes the properties of 4H-SiC that are relevant 

for radiation detector fabrication. With a wide bandgap energy of 3.27 eV and resistivity 

>1010 Ω-cm at 300 K, 4H-SiC offers very low leakage currents (a few nA or lower) at 

operating bias resulting in very low thermal noise. Lower dielectric constant of 4H-SiC 

(9.7 compared to 11.9 for Si and 16.0 for Ge) helps to reduce the detector capacitance for 

a given active detector volume allowing greater charge collection efficiency and decreased 

white series noise component. Good charge transport properties such as high bulk electron 

mobility (1000 cm2/V-s) and saturation electron drift velocity (2 x 107 cm/s) increases 
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charge collection probability and thereby signal resolution. High thermal stability (2857 oC 

sublimation point) and better thermal conductivity (280 W/mK) of 4H-SiC allows for 

detector operation well above room temperature. High displacement energies of the 

constituent elements (EdSi = 35 eV and EdC = 22eV) of 4H-SiC indicates high radiation 

hardness of the material and make it suitable for detectors deployed in harsh environments. 

For these superior electronic properties and physical ruggedness, 4H–SiC has been 

identified as promising semiconductor for nuclear radiation detector operable at room or 

elevated temperature.  

Table 2.1 Properties of 4H-SiC 

Property 4H-SiC Expected Radiation Performance 

Band gap (eV) at 300K 3.27 Offers low leakage current resulting in 

low thermal noise, consequently better 

signal to noise ratio Resistivity (Ω-cm) at 300K >1010 

Electron hole pair creation 

energy (eV) 

7.28 Increased charge generation resulting 

in increased signal and energy 

resolution 

Lower dielectric constant 9.7 Contributes toward higher charge 

conversion efficiency and storage 

High breakdown field 

(MV/cm2) 

3.0 Possibility of achieving high signal to 

noise ratio 

Electron mobility (cm2/V-s) 1000 Offers good charge transport properties 

contributing to high charge collection 

efficiency Saturation electron drift 

velocity (x107 cm/s) 

2 

Thermal conductivity (W/mK) 280 Possibility for high temperature 

operation 
High melting point (˚C) 2830 

Threshold displacement energy 

(eV) 

EdSi = 35 

EdC = 22 

Capability of operation under high 

radiation background 
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 GROWTH OF EPITAXIAL 4H-SILICON CARBIDE DETECTOR MATERIAL 

Conventional growth of SiC bulk crystal is performed using physical vapor 

transport (PVT) technique [67]. Bulk SiC crystals grown by this method, often suffer from 

microscopic crystallographic defects such us dislocations, micropipes, carrot defects, and 

non-uniformity. These intrinsic defects in semiconductor act as carrier traps or 

recombination centers leading to poor charge collection efficiency and poor detector 

performance [25] – [28]. Over the years, efforts have been made to better control thermal 

gradients inside the growth chamber in order to defect density in SiC bulk crystal [68], 

[69]. Nevertheless, commercially available bulk SiC still has relatively high defect 

densities to be used for high performance detector devices. Development of SiC epitaxial 

layers on bulk SiC substrate using techniques such as chemical vapor deposition (CVD) 

has demonstrated the feasibility of high-performance nuclear radiation detectors as 

epitaxial growth yields much higher quality SiC material [70]. SiC epilayers offer high 

crystallinity, higher growth controllability and reproducibility compared to its bulk 

counterpart. 

For present studies, 20 m thick 4H-SiC epitaxial layers were grown on 76 mm 

diameter wafers diced from highly nitrogen-doped 4H-SiC (0001) substrates with a 4o 

offcut towards the [112̅0] direction. The epitaxial layer forms the detector ‘active layer’ is 

grown by hot-wall CVD system using dichlorosilane (SiH2Cl2, DCS) and propane (C3H8) 

precursor gases with hydrogen (~ 6 SLM) as the carrier gas. A dilution ratio of ~ 1000 was 

used and flow rates of precursors were maintained to obtain a C/Si ratio of ~ 1.28. The 

growth temperature and pressure were kept at 1550°C and 80 - 120 torr, respectively. 
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Secondary ion mass spectrometry (SIMS) measurement was performed to characterize the 

epilayer layer thickness and doping profiles. Wafers were evaluated by Nomarski optical 

microscopy and scanning electron microscopy (SEM), and micropipe defect density was 

found to be < 1 cm-2. 

2.3 EPITAXIAL LAYER THICKNESS 

The 4H-SiC detectors are intended for monitoring and accounting of alpha 

particles. The incident alpha particles interact with the electrons in valence band of 

absorbing semiconductor atoms (SiC epitaxial layer). When the magnitude of this 

interaction is large enough to excite the electrons to a higher energy band removing them 

from the atoms, electron-hole pairs are created that leads to a loss of energy in alpha 

particles. These radiations generated charge carriers are separated under applied electric 

field, and are then collected by respective electrodes generating a current signal. When a 

charge particle of mass m with kinetic energy E interacts with an electron of mass m0, the 

maximum transferable energy is 4Em0/m in a single collision.  Using SRIM 2012 software 

[71], the electronic stopping power of the alpha particles in 4H-SiC (dE/dx where x is 

penetration depth) was calculated to be ~ 18 m in SiC for 5.486 keV alpha particle. Figure 

2.1 represents a Bragg curve that shows the energy loss of 5.48 MeV alpha particle as a 

function of depth of penetration during interaction with 4H-SiC detector materials. It can 

be seen from the curve that the penetration depth of alpha particle in 4H-SiC epitaxial layer 

is ~ 18 m. Maximum loss of energy for the alpha particles occurs at the end of the range, 

which is typical of charged particle interaction with matter [48]. As per these results, the 

thickness of the epitaxial layer, which is the detector region of the device, should be 18m 

or larger to capture all of the energy of incident alpha particle to obtain a high signal to 
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noise ratio. Hence, in this dissertation, we have studied 20m thick epitaxial layer of 4H-

SiC detectors. 

Furthermore, resolution of a radiation detector is a function of collection efficiency 

of charge carriers generated by alpha particles. Charge carriers produced in the depletion 

region and in neutral region both could contribute to detector signal. However, probability 

of collection is much higher for charges generated within the depletion region (space 

charge region) compared to charges generated in the neutral region. Thus a sufficiently 

large depletion width, which defines the active volume within the detector, is also another 

crucial requirement for obtaining high energy-resolution and high efficiency detection. 

Chapter 4 address this issue. 

 

Figure 2.1. Energy loss of 5.48 MeV alpha particle as a function of penetration depth. 

 

2.4 NI/4H-SIC SCHOTTKY BARRIER DETECTOR FABRICATION 

Planar, single-pixel detector was fabricated on 20 m n-type 4H-SiC epitaxial 

layers, where metal contacts are placed on both sides of the detector material. The detector 

material consists of 20 m thick active layer that is 4H-SiC epitaxial layer, a very thin 
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(1m) 4H-SiC buffer epilayer, and finally 4H-SiC bulk substrate layer.  A circular nickel 

(Ni) Schottky barrier contact on the epilayer face forms top contact. This acts as the 

‘detector window’ through which ionizing radiation is captured. A large square contact 

deposited on the bulk SiC side form the bottom contact. The cross-sectional schematic of 

4H-SiC epitaxial detector is presented in Figure 2.2 

 

 

Figure 2.2 Cross-sectional view of Schottky barrier detector fabricated on n-type 20 m 

thick 4H-SiC epitaxial layer. 

 

Following a modified RCA cleaning of SiC wafer, first a square ~ 6 × 6 mm2 and 

100 nm thick Ni bottom contact is deposited on the bulk SiC (C-face) using a Quorum 

Q150T DC sputtering unit and a shadow mask, followed by rapid thermal annealing (RTA) 

at 950°C for 2 minutes in high-purity argon (Ar).  Next a 3.9 mm diameter and ~ 10 nm 

thick circular window for Schottky contact was deposited on top of the epitaxial layers (Si-

face) using photolithography technique. A Karl Suss MA-6 mask aligner was used in 

conjunction with a predesigned quartz photo-mask containing a 3.9 mm circular patch used 
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for centering of the metal contact and exposure of the photoresist coated samples. After 

exposing and developing of the photoresist, a 10 nm Ni was deposited by DC sputtering 

employing a Quorum 150T sputtering unit followed by liftoff process where a 3.9 mm Ni 

Schottky contact remained. After fabrication, the detector was mounted on a printed circuit 

board (PCB) designed and fabricated in our laboratories and wire bonded using very thin 

(25 m) gold wire. A photograph (top view) of a fabricated detector is shown in Figure 

2.3. 

 

Figure 2.3 Photograph of a 4H-SiC epitaxial Schottky barrier detector with circular nickel 

top contact mounted on a PCB. 

 

2.5 FABRICATION OF 4H-SIC DETECTOR WITH EDGE TERMINATION 

In preparation for Si3N4 thin passivating film for edge termination, the top and 

bottom Ni contacts of 4H-SiC detectors were etched away using dilute nitric acid followed 

by a modified RCA cleaning procedure. A Si3N4 layer with approximate thickness of 400 

nm was deposited on the epilayer surface using a STS Plasma Enhanced Chemical Vapor 

Deposition (PECVD) system. The deposition chamber was seasoned by running the 

process for five minutes prior to the actual run. The deposition parameters used were the 

following: temp process 300 ˚C, temp aux 250 ˚C, pressure 800 mtorr, power (13.56 MHz 
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RF) 25 W. Gases and flow rates were 2% silane balance nitrogen at 2000 sccm and 

ammonia at 40 sccm. The Si3N4 layer thickness was determined to be approximately 410 

nm using a Nanospec Reflectometer. As previously mentioned photolithography process 

was repeated prior to the use of a Vision Reactive Ion Etch (RIE) system to open a window 

in the Si3N4 layer with a slight over-etch to ensure epilayer was completely exposed for 

Schottky contact formation. A 10 nm thick Ni contact was once again deposited using the 

process mentioned previously. A cross-sectional view of the detector following edge 

termination with Si3N4 is shown in Figure 2.4. 

  

Figure 2.4 Cross-sectional view of the edge terminated Schottky barrier radiation detector. 

Si3N4 layer surrounds the Ni contact.
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CHAPTER 3  

 

CHARACTERIZATION OF 4H-SIC RADIATION DETECTOR ON 

EPITAXIAL LAYER 

 

 

3.1 OVERVIEW 

Schottky-diode radiation detectors were fabricated on n-type (nitrogen-doped), 20 

m thick 4H-SiC epitaxial layer using nickel contacts as described earlier. Fabricated 

detectors were characterized using current-voltage (I-V) and capacitance-voltage (C-V) 

measurements. A thermionic emission model [72] was used to determine important 

Schottky barrier junction properties such as leakage current, doping concentration, built-in 

potential, Schottky barrier height, and diode ideality factor, which are predictive of device 

quality and performance. Deep level transient spectroscopy (DLTS) measurements were 

carried out to investigate defect levels in the detector active volume, which may act as 

generation-recombination centers and can lead to increased detector leakage current. 

3.2 SCHOTTKY BARRIER DETECTOR STRUCTURE 

Planar, single-pixel detectors are fabricated on 20 m n-type 4H-SiC epitaxial 

layers, where metal contacts are placed on both sides of the detector material. Of this 

detector structure, most important part is the formation of Schottky barrier junction 

between Ni metal and 4H-SiC epilayer as it forms the ‘detector window’ through which 

ionizing radiations are captured by the 4H-SiC epilayer. Therefore, characterization of the 
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Schottky barrier junction is of great importance to predict detector performance. Figure 3.1 

shows energy band diagram of an ideal Schottky barrier junction between a metal and an 

n-type semiconductor at thermal equilibrium. 

   
 

   

Figure 3.1 Energy band diagram of metal and n-type semiconductor before contact (top) 

and Schottky barrier junction between metal and n-type semiconductor after contact 

formation (bottom) at thermal equilibrium [73]. 

A metal-semiconductor junction is called Schottky barrier junction when at the 

interface of the junction a barrier to charge transport is formed due to the difference 

between metal work function (𝑒𝜙𝑚) and semiconductor electron affinity (𝑒). The barrier 

height (e0) restricts electron injection from the metal into the semiconductor providing 
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a rectifying effect so that current conduction occurs only at forward bias. Ideally at reverse 

bias, there should not be any conduction, however in reality a low saturation current 

(leakage current) is present. To form Schottky contact with an n-type semiconductor, metal 

work function (𝑒𝜙𝑚) must be higher than n-type semiconductor work function (𝑒𝜙𝑛) and 

the Schottky barrier height could be determined using following equation.   

𝑒𝜙𝐵0 =  𝑒𝜙𝑚 − 𝑒 3.1 

On the semiconductor side, the barrier for electron flow from semiconductor 

conduction band into the metal is known as the built-in potential (Vbi) and is given by:  

𝑒𝜙𝑉𝑏𝑖 =  𝑒𝜙𝐵0 − 𝑒𝜙𝑛 3.2 

The Schottky barrier height (e0) of a metal-semiconductor junction should 

remain constant with respect to the polarity of the applied voltage, but built-in potential 

(eVbi) decreases or increases with applied forward or reverse voltage, respectively. In 

‘forward’ bias, where a positive voltage is applied to the metal in respect to the 

semiconductor, Vbi is reduced so electrons can flow more easily from semiconductor into 

metal. The built-in voltage (Vbi) in an n-type semiconductor is given by:  

𝑉𝑏𝑖 =  𝜙𝐵 −
𝑘𝐵𝑇

𝑒
𝑙𝑛 (

𝑁𝐶

𝑁𝐷
) 3.3 

where B = Schottky barrier height,  

kB = Boltzmann constant (8.62 × 10-5 eV/K),  

T = absolute temperature,  

e = electron charge (1.6 × 10-19 C),  

𝑁𝐶 = effective density of states in conduction band, and  
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𝑁𝐷 = effective doping concentration  

During contact formation, due to conduction band bending, free electrons in n-type 

semiconductor at the vicinity of the contact interface are removed exposing positive charge 

and creating a depletion region, which is extended only to semiconductor side. In the metal 

side a neutralizing negative charge is accumulated at the contact interface. Thus an electric 

field develops at the metal-semiconductor interface. At the edge of the depletion region, 

the electric field falls to zero and the energy bands become flat to match with the bulk 

region value as shown in Figure 3.1. The width of the depletion region for a Schottky 

barrier is mostly negligible at forward bias, but increases with applied reverse bias. An 

applied reverse bias to the metal-semiconductor Schottky barrier junction increases the 

potential difference across the junction, which increases the net charge density and thereby 

extending the width of the depletion region, where radiation-induced charge carriers are 

collected. If applied reverse bias voltage is large enough that the depletion width is 

extended throughout the detector active region (epitaxial layer thickness), a ‘fully depleted’ 

detector is created. The width of the depletion region, W, in n-type semiconductor is 

expressed as: 

𝑊 = √
2 × 𝑉𝑏𝑖 × 𝜀 × 𝜀0

𝑒 × 𝑁𝐷
 3.4 

where 𝜀 = dielectric constant of the semiconductor; which is ~9.72 for 4H-SiC,  

𝜀0 = permittivity of vacuum, 

𝑒 = electronic charge (1.6 × 10-19 C), 

𝑁𝐷 = effective doping concentration and  

Vbi = built-in potential  
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Using the expression for resistivity () = 1/eN, where  is the mobility of the 

majority carrier (electrons for n-type SiC), the Equation 3.4 can be written as:  

𝑊 = √2𝑉𝑏𝑖𝜀𝜀0𝜇𝜌 3.5 

The radiation-induced charge carriers are collected most efficiently if generated in 

the depletion region. Therefore, practical detector requires high enough reverse applied 

bias to obtain largest depletion region possible, without large reverse saturation current. 

Also from Equation 3.5, it is imperative that the semiconductor should have high resistivity 

as possible in order to obtain a large depletion width. The resistivity is limited by the purity 

of the semiconductor material, thus it is highly important to fabricated detectors on defect-

free and highly pure material. 

As positive charge accumulates in the n-type semiconductor side and negative 

charge at the metal side of the junction, the depletion region behaves like charged capacitor. 

The junction capacitance per unit area at an applied reverse bias of V is expressed as: 

𝐶 = (
𝜀𝜀0𝑒𝑁𝐷

2(𝑉𝑏𝑖 − 𝑉)
)

1/2

 3.6 

When reverse bias is applied, depletion region (space charge region) grows wider 

and the capacitance per unit area decreases. At high reverse bias when a detector becomes 

fully or highly depleted, the maximum electric field will occur and the junction capacitance 

will become very small. This condition is ideal for charge carrier movements due to drift 

velocity increasing charge collection efficacy significantly and thereby detector resolution. 
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3.3 CURRENT-VOLTAGE MEASUREMENTS 

Using a Keithley 237 High Voltage SMU, current-voltage (I-V) measurements 

were carried out for planar Schottky detector fabricated on 20 m epitaxial layer 4H-SiC. 

The forward-biased I-V characterizations were used to study the properties of the Schottky 

contacts such as barrier height and the diode ideality factor. The reverse I-V characteristics 

were used to determine the leakage current under operating conditions. An electronic box 

made up of aluminum was used during the measurements to shield the detector against any 

electromagnetic interference (EMI).  Figure 3.2 shows a typical I-V characteristic at room 

temperature for an n-type 4H-SiC epitaxial (20 m) Schottky detector with Ni-contact. The 

variation of observed current as a function of applied bias voltage across the detector 

clearly shows rectifying Schottky behavior of the device 

 

Figure 3.2 Current-Voltage characteristics of an n-type 20 m 4H-SiC epitaxial/Ni 

Schottky detector at room temperature. 

 

   Reverse 

   Forward 
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Thermionic emission model, which is for thermally induced flow of charge carriers 

over a potential barrier [74], was applied to the forward bias region of the I-V 

characteristics. As per this model, the measured current I in a Schottky barrier junction for 

the applied bias V can be given by: 

𝐼 = 𝐴∗𝐴𝑇2 (𝑒𝑥𝑝
−

𝑒
𝑘𝐵𝑇

𝐵) (exp  
(

𝑒𝑉
𝑛𝑘𝐵𝑇

)
− 1) 3.7 

where 𝐴∗ = Richardson’s constant taken to be 146 A·cm-2K-2 for 4H-SiC [8], [10],  

A = diode area,  

T = absolute temperature,  

e = electron charge (1.6 × 10-19 C),  

kB = Boltzmann constant (8.62 × 10-5 eV/K),  

B = Schottky barrier height, and  

n = diode ideality factor.  

Using logarithm expression, the Equation 3.7 could be written as a linear equation 

as given below where 𝐼𝑠 is the saturation current, 𝐼𝑠 = 𝐴∗𝐴𝑇2(𝑒𝑥𝑝−𝛽𝐵) and 𝛽 = 𝑞/𝑘𝐵𝑇:  

𝑙𝑜𝑔(𝐼) =
𝛽𝑉

𝑛
+ 𝑙𝑜𝑔(𝐼𝑠) 3.8 

The saturation current 𝐼𝑠 then can be obtained from the intercept and the ideality 

factor ‘n’ could be measured from the slope using following equation:  

𝑛 =  
1

𝑠𝑙𝑜𝑝𝑒 × 1
𝛽⁄

  . 3.9 

Schottky barrier height (ΦB) can be determined using following expression:  

ΦB =  
𝑘𝐵𝑇

𝑞
ln (

𝐴𝐴∗𝑇2

𝐼0
) 3.10 
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Applying the thermionic emission model as discussed in Equation 3.7, a Schottky 

barrier height (ΦB) of the fabricated diode was calculated to be 1.13 eV using Equation 

3.10. A linear fit was applied to the forward current region of the semi logarithmic I-V plot 

to determine the diode ideality factor using Equation 3.9 and was determined as 1.19. 

Barrier height specifies the amount of current flow through the junction and the ideality 

factor specifies the spatial uniformity of the barrier height across the diode surface [75]. 

The ideality factor greater than 1 suggests presence of charge traps resulting from 

recombination of the charge carriers and inhomogeneity in the depletion region [12], [76] 

- [78]. Up to -170 V bias was applied during the I-V measurements, and at this bias voltage, 

the dark current (reverse bias leakage current) was measured to be ~1 nA at room 

temperature. Leakage current at applied reverse bias across the detector is also an important 

property as the detector electronic noise increases with leakage current thereby reducing 

the overall detector resolution [79]. 

3.4 CAPACITANCE-VOLTAGE MEASUREMENTS 

Capacitance-voltage (C-V) measurement at a frequency of 1 MHz was carried out 

at room temperature under dark condition. The C-V measurement provided values of 

effective carrier concentration (ND) in n-type 4H-SiC epitaxial layer and built-in potential 

(Vbi) of Schottky detector. The junction capacitance of Schottky barrier at an applied 

reverse bias depends on the depletion region width and is expressed as shown in Equation 

3.6, which can be rearranged as following where A is detector area: 

1

𝐶2
=

2𝑉𝑏𝑖

𝑒𝜀𝐴2𝑁𝐷
+

2𝑉

𝑒𝜀𝐴2𝑁𝐷
   3.11 
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Applying a linear fit where 1/C2 is plotted against applied voltage bias, V, built-in 

voltage (𝑉𝑏𝑖) could be estimated, from the intercept, and the effective doping concentration 

(ND) could be determined from the slope using the following formula: 

𝑁𝐷 =
2

𝑒𝜀𝐴2 × 𝑠𝑙𝑜𝑝𝑒
   3.12 

Once doping concentration and built-in voltage is determined, the barrier-height (𝜙𝐵) can 

also be calculated from C-V measurements using the following equation:  

𝜙𝐵(𝐶−𝑉) = 𝑉𝑏𝑖 + 𝑘𝐵𝑇𝑙𝑛
𝑁𝐶

𝑁𝐷
   3.13 

where NC is the effective density of states in the conduction band of 4H-SiC and is taken 

equal to 1.6×1019 cm-3 [62]. 

 

Figure 3.3 1/C2 vs V characteristic of 20 m epilayer 4H-SiC/Ni Schottky detector, at 

300 K, under dark. The Inset shows the actual C-V plot. 
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Figure 3.3 shows a Mott-Schottky plot (1/C2 vs V plot) obtained for a 20 m n-type 

4H-SiC epitaxial Schottky detector at 300 K. From the slope of the linear plot and using 

Equation 3.12, effective carrier concentration was determined to be 2.9 × 1014 cm-3. From 

the extrapolation of the plot to where it intersects the voltage axis, the built-in potential Vbi 

was determined to be 1.67 V. The barrier height calculated from the C-V measurements 

using Equation 3.13 is 1.35 eV, which is slightly higher than the value of 1.13 eV obtained 

from the forward I-V characteristics. The barrier height value determined from C-V 

characteristic gives an average value for the whole diode [61], [80] whereas the barrier-

height value obtained from forward I-V characteristics is for surface barrier height which 

is affected by inhomogeneity due to presence of defect centers. The higher built-in potential 

can be explained by the presence of a thin oxide layer at the metal-semiconductor interface, 

which introduces an additional small series capacitance [18] - [20], [81] – [82].  

3.5 DEFECT STUDY BY DEEP LEVEL TRANSIENT SPECTROSCOPY 

The current-voltage and capacitance-voltage measurements showed evidence of 

non-uniform barrier height due to the presence of defect centers, which can act as trap or 

recombination centers and may lead to incomplete charge collection. The defects 

characterization was carried out by deep level transient spectroscopy (DLTS) using the 

capacitance mode of a SULA DDS-12 DLTS system that consists of a Janis VPF-800 LN2 

cryostat, a pulse generator, a 1 MHz oscillator, a correlator module, a Lakeshore LS335 

temperature controller, and a high-sensitive capacitance meter. The detector was kept under 

a steady state reverse bias of 2 V and was pulsed to 0 V every 5 seconds with a period of 1 

s to fill the traps within the depletion region.  
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After each time the pulse ended, thermal emission of the trapped charges caused 

capacitance transients and then relaxed into equilibrium. A set of correlators (10 ms, 20 

ms, 50 ms, 100 ms) were applied with scanning temperature range of 84 K to 750 K, which 

was controlled at a heating rate of 0.05 Ks-1. To be able to capture the shallow levels 

completely, a smaller set of correlators within a confined temperature range is needed.  For 

this purpose, another DLTS spectra from 84 K to 140 K was conducted using 0.2 ms, 0.1 

ms, 0.05 ms, 0.02 ms delays as the correlator set. 

A capacitance-DLTS (C-DLTS) spectrum is generated from the temperature 

dependent capacitance transients followed by a saturated trap filling pulse applied to a 

semiconductor junction. In C-DLTS mode, the thermally activated emission rate, 𝑒𝑛, can 

be expressed as: 

𝑒𝑛 = (𝜎𝑛〈𝑉𝑡ℎ〉 𝑁𝐶 𝑔⁄ ) 𝑒𝑥𝑝(−∆𝐸 𝑘𝐵𝑇⁄ ) 3.14 

where σn = carrier capture cross section,  

〈Vth〉 = mean thermal velocity,  

NC = effective density of states,  

g = degeneracy of the trap level and was considered to be equal to 1,  

∆E = energy separation between the trap level and the carrier band,  

𝑘𝐵 = Boltzmann constant (8.62 × 10-5 eV/K), and  

T = absolute temperature  

The relationship between emission rate and the capacitance transient is given by: 

𝐶(𝑡) =  𝐶𝑜 +  ∆𝐶 exp(−𝑡𝑒𝑛)  3.15 
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where C0 is the junction capacitance at steady-state reverse bias voltage, ∆C is the 

difference in capacitance change measured within the rate window. The trap concentration 

Nt can be calculated using the following expression: 

𝑁𝑡 = 2 (
∆𝐶(0)

𝐶⁄ ) 𝑁𝑑 3.16 

where ∆C(0) is the difference in capacitance change between the two edges of the 

filling pulse and Nd is doping concentration. The peak position in DLTS spectroscopy 

depends on the rate window, τ, which is defined by an initial delay set for the emission rate 

calculations following the termination of the filling pulse: 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑒𝑙𝑎𝑦 (𝑚𝑠)  =  1
(4.3 × 𝜏)⁄    3.17 

Obtained DLTS spectra is shown in Figure 3.4. Five distinct negative peaks 

appeared at different temperatures corresponding to different defect levels indicating 

majority carrier (electron) traps. The activation energies (∆E) corresponding to the energy 

separation between the trap level and the conduction band was calculated for each defect 

level from the Arrhenius plots (𝑇2 𝑒𝑛⁄ 𝑣𝑠 1000 𝑇⁄ ) shown in Figure 3.5. Using the 

Equation 3.16, the concentration (Nt) of each defect level was determined. The capture 

cross-section (σn,), which determines if a defect may act as a trap or 

recombination/generation center is also determined from the DLTS scans. Table 3.1 shows 

the deducted peaks, associated defect parameters, and the possible trap levels they 

correspond. 
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Figure 3.4 DLTS spectra obtained using n-type Ni/4H-SiC epitaxial (20 m) detector: at a 

temperature range of 84 to 140 K using a smaller set of initial delays (top) and at 84 to 750 

K using a larger set of initial delays (bottom). 



29 

 

Figure 3.5 Arrhenius plot for all the peaks obtained from the DLTS scans. 

 

Table 3.1 Defect parameters obtained from the DLTS measurements 

 Peak #              σ                        ΔE                         Nt                    Possible  

                          (cm2)                   (eV)                         (cm-3)                  Trap Identity  

   Peak #1       4.83 x 10-15         Ec - (0.14 ± 0.01)       1.61 x 1011             Ti(h)  

   Peak #2       9.69 x 10-15         Ec - (0.18 ± 0.01)       2.05 x 1012   Ti(c)   

   Peak #3       5.09 x 10-16         Ec - (0.62 ± 0.02)       2.92 x 1012   Z1/2  

   Peak #4       2.16 x 10-14         Ec - (1.42 ± 0.04)       1.08 x 1012   EH6 

   Peak #5       1.50 x 10-15      Ec - (1.52 ± 0.03)       1.61 x 1012   EH7 

 

The activation energy for trap levels in Peak #1 and Peak #2 were found to be 

Ec - 0.14 eV and Ec - 0.18 eV, respectively. These shallow level defects are titanium (Ti) 
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related substitutional impurities. These impurities come from the growth process and 

caused by the Ti growth reactor parts [83]. Dalibor et al. has attributed these defects to Ti3+ 

residing at cubic and hexagonal Si lattice sites [78]. Zhang et al. also assigned defect level 

located at Ec - 0.16 eV as Ti electron trap [77]. Castaldini et al. assigned trap level located 

at Ec - 0.17 eV as chromium or titanium impurities (acceptor like) in hexagonal position 

[84].  

The Peak #3 found at 0.62 eV below the conduction band edge is due to carbon 

related vacancies and is identified as Z1/2 centers. Several research groups have reported 

the presence of this defect level in n-type 4H-SiC and attributed the origin of such defect 

from silicon and carbon vacancy complexes (VSi+VC) or antisite complexes (SiC+CSi) [78], 

[85] – [89].  Z1/2 center is reported to be an electrically active defect responsible for the 

reduction of carrier lifetime, which is detrimental to detector performance [83], [89].  

The Peak #4 and peak #5, which are located at Ec-1.42 eV and Ec-1.52 eV, 

respectively, are related to carbon vacancies or carbon-silicon di-vacancies [11], [12], [85], 

[90] - [93]. They are resolved levels of EH6/7 peak and identified as EH6 and EH7 trap 

levels. 

3.6 SUMMARY OF NI/4H-SIC DETECTOR CHARACTERIZATION 

20 µm n-type epilayer 4H-SiC detectors exhibited high Schottky barrier height and 

an excellent current rectification with low leakage current of ~1 nA at a reverse bias 

of -170 V. Current-Voltage (I-V) measurements at 300 K showed barrier height and diode 

ideality factor of ~1.14 eV and 1.19, respectively. The obtained barrier height was high 

enough to offer very good rectification properties. Capacitance-Voltage (C-V) 

measurements revealed a doping concentration of 2.9 x 1014 cm-3. The I-V and C-V 
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measurements showed evidence of non-uniform barrier heights due to inhomogeneity 

indicating presence of defect centers in the detector active volume. From DLTS 

measurements, 5 defect levels (shallow and deep) were detected and identified as Ti(h) at 

Ec - (0.14 ± 0.01) eV, Ti(c) at Ec - (0.18 ± 0.01) eV, Z1/2 at Ec - (0.62 ± 0.02) eV, EH6 at Ec 

- (1.42 ± 0.04) eV, EH7 at Ec - (1.52 ± 0.03) eV respectively. The origin of the Ti related 

defects are the substitutional impurities at hexagonal and cubic Si lattice sites, Z1/2 defects 

are caused by interstitials and carbon vacancies, resolved levels of EH6/7 (EH6 and EH7) 

are related to carbon vacancies and carbon-silicon di-vacancies. Low-leakage current and 

low-defect bearing 4H SiC detectors were then chosen for performance evaluation with 

alpha-radiation source.



32 

CHAPTER 4  
 

DETECTOR EVALUATION USING PULSE-HEIGHT SPECTROSCOPY  

 

 

4.1 OVERVIEW 

The performance of 4H-SiC detectors were evaluated in terms of energy resolution 

of the detection peak obtained by pulse-height spectroscopy (PHS). Detector response to 

alpha particles was evaluated using 0.1 Ci 241Am alpha source which provides low-energy 

gamma-rays at 59.6 keV or alpha particles at 5.486 MeV. The energy resolution was 

calculated as full width at half maximum (FWHM) of the alpha energy peak using Gaussian 

peak fitting function. The collected spectrum was converted from bins to energy by 

adopting an absolute calibration approach developed using LabVIEW and MATLAB 

programming languages [4], [5], [7].  Charge collection efficiencies (CCE) were measured 

as a function of bias voltage for 5.48 MeV alpha particles. Using the experimentally 

obtained CCE values and a minority carrier diffusion model, contribution of hole diffusion 

to the charge collection efficiency values and the hole diffusion length has been 

numerically calculated. Digital spectroscopic methods were adopted to obtain the rise-time 

of pulses. Finally, to monitor the electronic noise associated with the detector and detection 

electronics, we have carried out noise analysis based on an equivalent noise charge (ENC) 

calculation model. 
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4.2 EXPERIMENTAL SETUP 

When 4H-SiC radiation detectors are irradiated with 241Am alpha source, incident 

ionizing radiations (alpha particles) interact with the semiconductor material and generate 

electron-hole pairs.  These generated charge carriers are then swept out due to applied bias 

and collected at the respective electrodes giving rise to an electrical signal. The electrical 

signal is then converted by the front-end electronics to provide pulse-height spectra for the 

incident radiation. Front-end readout electronics consist of: (i) preamplifiers, which 

convert charge signal generated by incident alpha particles to a voltage signal; (ii) shaping 

amplifier, which spends a set period of time known as shaping time to filter out noise and 

provides a semi-Gaussian amplified output; (iii) multi-channel analyzers (MCA) which 

converts analog signals into digital information as pulse-height spectrum. The MCA 

records the height of the shaped pulse and the number of pulse-heights acquired within a 

given range yielding a histogram known as “Pulse-Height Spectrum”. PHS depicts how 

many counts of radioactive photons interacted with the detector in a given energy window. 

Figure 4.1 shows the basic schematic diagram of the detection testing setup. 

 

 

Figure 4.1 Schematic of the detector testing electronics. 
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For this study, the 4H-SiC detector was mounted inside an EMI shielded aluminum 

box, which was constantly evacuated using a mechanical rotary pump to keep the detector 

under a vacuum of <1 x 10-4 Torr in order to minimize scattering of alpha particle with air 

molecules. A monoenergetic 0.1 𝜇Ci 241Am alpha was placed directly on top of the 

detector. This was a broad window source which implies that the whole surface of the 

detector was uniformly illuminated. An Amptek CoolFet A250CF charge sensitive 

preamplifier and an Ortec 671 Spectroscopy Amplifier were used to collect the detector 

signals. The amplified signals were then digitized and binned to obtain pulse-height spectra 

using a Canberra Multiport II ADC-MCA unit controlled by Genie 2000 interface software. 

A Canberra Multiport II ADC-MCA unit was utilized to count the shaped signal and to 

acquire the pulse-height spectra of the radiation detector. The peaks obtained in various 

spectra were fitted using peak analyzer function of Origin 8.6. Charge collection 

efficiencies (CCE) were measured using the same alpha source at different reverse bias 

voltages as the ratio of energy deposited in the detector to the actual energy of particles 

(5.48 MeV) emitted by the source. The energy deposited was calculated from the alpha 

peak position in a calibrated MCA. 

Digital spectroscopic measurements were accomplished using a GWInstek 

(GDS1062A) digital oscilloscope used as a digitizer with a sampling rate of 1 Ms/sec and 

8 bit ADC resolution. The pre-amplifier pulses were digitized and recorded in a PC for 

offline analysis. At least 5000 pulses were recorded to obtain a decent statistics. The data 

acquisition and the offline analysis software were designed in-house using the LabVIEW 

and MATLAB programming languages, respectively. The analyses involved calculation of 
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the 10 – 90 % rise-time of the charge pulses and pulse-height determination after shaping 

the pre-amplifier signal. The Gaussian shaping of the pulses were achieved using a transfer 

function resembling CR-RC4 semi-Gaussian configuration. The software was also used to 

obtain distributions of pulse-height and rise-time and biparametric plots to investigate any 

type of correlation between the pulse-heights and pulse-shapes of a set of events. 

To calibrate the system, a precision pulser, which generates waveforms and 

simulates the output of a radiation detector, is connected to the detection system through a 

capacitor. By injecting pulses of various known amplitudes (Vpulser, mV), energy of the 

charge pulses from the capacitor, Epulser (in keV) is determined by the following expression: 

𝐸𝑝𝑢𝑙𝑠𝑒𝑟 =
𝑉𝑝𝑢𝑙𝑠𝑒𝑟 ×  𝜀 ×  𝐶

1.6 × 10−19
 4.1 

where ε is the electron-hole pair creation energy (7.7 eV for 4H-SiC).  A graphical 

plot between 𝐸𝑝𝑢𝑙𝑠𝑒𝑟 and the corresponding MCA peak positions of different pulse-heights 

gives the calibration graph. The linear plot of the peak centroid (“center of mass” of an 

energy peak) channel number against the pulser energy in keV gives the required 

calibration parameters [7]. 

4.3 PULSE-HEIGHT MEASUREMENTS WITH 
241AM ALPHA SOURCE 

Response of Ni/4H-SiC Schottky detectors fabricated on 20 μm epitaxial layer was 

evaluated by irradiating the detector with 0.1 Ci 241Am source (peak energies: 60 keV for 

 and ~ 5.5 MeV for  particles) at room temperature (~300 K). The source kept at a 

distance of 1.5 cm from the detector. Detector performance was evaluated in terms of 

energy resolution of the detection peak obtained by PHS (Figure 4.2). The energy 

resolution was calculated as full width at half maximum (FWHM) of the alpha energy peak 
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using Gaussian peak fitting function. The energy resolution of the detector was calculated 

by the following equation:  

 
% 𝐸𝑛𝑒𝑟𝑔𝑦 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =

𝐹𝑊𝐻𝑀 (𝑘𝑒𝑉)

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑘𝑒𝑉)
∗ 100% 4.2 

where the incident energy is the centroid (center of the mass) of the energy peak in 

keV observed in the pulse-height spectrum. Lower values of energy resolution and FWHM 

indicate better detector performance. 

 

Figure 4.2 Alpha pulse height spectrum of the fabricated 4H-SiC epitaxial (20 μm) 

Schottky detector at an applied bias of -170 V and a shaping time of 6 µs using 1 μCi 241Am 

alpha source. The solid lines show the deconvoluted alpha peaks, which were partially 

resolved. 

 

The energy resolution was found to be ~ 0.38% for 5486 keV alpha particles 

incident on the detector through the 10 nm thick Ni window. This spectrum completely 

vanished and counts became background noise when a piece of A4 white copying paper 

was placed in between the radiation source and detector, confirming the detector’s response 
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to alpha particles. By comparing response with gamma radiation, it is clear that the peak is 

the distinctive signal of α-radiation. The centroid of the observed peak was slightly less 

than the characteristic main energy peak of 5486 keV. Since a broad alpha source was used, 

a portion of the charged particles incident on the Ni window will scatter depending on 

angle of incidence and thickness of the Ni window. An improvement of the detector 

performance is expected if the source is collimated and metal contact thickness and 

material selection is optimized. 

4.4 CHARGE COLLECTION EFFICIENCY 

During interaction with detector material, incident alpha particles excite outer shell 

electrons of semiconductor atoms to a higher energy band generating electron-hole pairs 

(charge carriers), which are separated under applied electric field, and collected by 

respective electrodes producing current signal. Resolution of a radiation detector is a 

function of collected charge carriers generated by alpha particles, thus charge collection 

efficiency (CCE) provides an important measure of detector performance. Experimentally, 

CCE is calculated as the ratio of energy deposited in the detector (Ev) to the actual energy 

of the alpha particles (5.48 MeV) emitted by the source (E0) given by: 

 𝐶𝐶𝐸𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =  𝐸𝑣 𝐸0⁄ .  4.3 

The energy deposited is calculated from the alpha peak position in a calibrated 

MCA. Charge carriers produced in the depletion region and neutral region both could 

contribute to detector signal (Figure 4.3). The charge collection efficiency in theory is the 

sum of two contributions – CCEdrift and CCEdiffusion [79]. CCEdrift is the contribution of 

charge carriers generated within the depletion region and drifted to collecting electrode. 
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CCEdifussion is the contribution of charge carriers generated in the neutral region behind the 

depletion region and diffused to the depletion region.  

 

Figure 4.3 Schematic of drift-diffusion movement of charge particles in detector material; 

charges generated in depletion region get collected efficiently by drift, whereas charges 

generated in neutral region first need to diffuse to depletion region to get collected. 

 

These two types of charge collection efficiency could be determined separately 

using drift-diffusion model as described in the following equations:  

𝐶𝐶𝐸𝑑𝑟𝑖𝑓𝑡  =
1

𝐸𝑝
∫ (

𝑑𝐸

𝑑𝑥
)

𝑊

0

𝑑𝑥 

 

4.4 

 

𝐶𝐶𝐸𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 =
1

𝐸𝑝
∫ [(

𝑑𝐸

𝑑𝑥
) × exp {−

𝑥 − 𝑊

𝐿𝑑
}] 𝑑𝑥

𝑥𝑟

𝑊

 

 

4.5 

 

𝐶𝐶𝐸 = 𝐶𝐶𝐸𝑑𝑟𝑖𝑓𝑡 + 𝐶𝐶𝐸𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 

 

4.6 

 

where 𝐸𝑝 = energy of the alpha particles,  

𝑊 = depletion width at the particular bias 

𝑥𝑟 = projected range of the alpha particles with energy 𝐸𝑝 

𝐿𝑑 = diffusion length of the minority carriers, and  

𝑑𝐸

𝑑𝑥
 = electronic stopping power of alpha particles calculated using SRIM software.  
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Although charge carriers generated in both regions - depletion and neutral - could 

contribute to CCE, probability of collection is generally higher for charges generated 

within the depletion region (space charge region) compare to charges generated in the 

neutral region. Thus a sufficiently large depletion width, which defines the active volume 

within the detector, is also another crucial requirement for obtaining high energy-resolution 

and high efficiency detection. The width of the depletion region, W, for a Schottky barrier 

diode is dependent on the effective doping concentration (ND) of the semiconductor 

material and applied bias voltage. It is mostly negligible at forward bias, but increases with 

applied voltage at reverse bias. Width of the depletion region can be expressed as: 

𝑊 = √
2𝜀𝜀0(𝑉𝑏𝑖  −  𝑉)

𝑒𝑁𝐷
 

4.7 

where 𝜀 = dielectric constant of the semiconductor; which is ~9.72 for 4H-SiC,  

𝜀0 = permittivity of vacuum, 

𝑒 = electronic charge (1.6 × 10-19 C), 

𝑁𝐷 = effective doping concentration  

Vbi = built-in potential and 

V = Applied bias.  
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Figure 4.4. Flowchart of the Matlab based code to calculate (a) CCEdrift, (b) CCEdiffusion 

and diffusion length Ld. 

 

Figure 4.4 shows the flowcharts of the developed MATLAB based code to calculate 

the CCEdrift and CCEdiffusion using Ld as a free parameter. The process started by obtaining 

the depletion width (W) values as a function of the applied bias. In order to integrate the 

dE/dx array in terms of dx, it was necessary to find the position of the array where the 

depletion region (W) and the x array match. This process was repeated for each value of 

the depletion width and which returned the CCEdrift values at a particular bias voltage. The 

CCEobs (observed charge collection efficiency) was calculated as the ratio of the output 

energy observed by the detector to the actual incident energy of the alpha particles (5.48 

MeV). Implementing the MATLAB based program and using drift-diffusion model 

(Equations 4.4 - 4.6), total charge collection efficiency (CCEtotal), collection efficiency in 

depletion region (𝐶𝐶𝐸𝑑𝑟𝑖𝑓𝑡), and collection efficiency in neutral region (𝐶𝐶𝐸𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛) 



41 

were determined separately with varying applied bias under 5.48 MeV alpha particles 

irradiation. 

Figure 4.5 compares different CCE values with varying reverse bias voltages. At 

lower bias the depletion width was smaller than the alpha penetration depth in 4H-SiC 

(18 m), and most of the charge carriers were generated in the neutral region and minority 

carrier has to diffuse to depletion region to get collected. As the applied reverse bias 

increases, width of depletion region increases allowing more number of generated electron-

hole pairs to contribute toward 𝐶𝐶𝐸𝑑𝑟𝑖𝑓𝑡, thereby increasing total CCE. Total CCE 

improves with applied reverse biases up to a reverse bias of about 85 V, then levels off.  At 

this point, charge collection is almost solely due to carrier drift inside the depletion region 

(𝐶𝐶𝐸𝑑𝑟𝑖𝑓𝑡). Any electron-hole pairs generated by the alpha particle outside of the depletion 

region do not contribute significantly toward total charge collection efficiency. 

 

Figure 4.5 Variation of total CCE as a function of reverse bias voltage. CCE from drift 

and diffusion are calculated separately using drift-diffusion model. Variation in  depletion 

width are also shown. 
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Alpha particles of 5.48 MeV energy have a projected range (penetration depth) of 

18 𝜇m in SiC. The depletion width in the fabricated detector was calculated to be ~ 15 𝜇m 

at a reverse bias of 85 V. So the alpha particles did not deposit their full energy within the 

depletion region which is the active region of the detector. This suggests although 

theoretically 100% collection efficiency should be achieved at a reverse bias of 85V, in 

reality a lower value of CCE was attained. Experimentally, the highest CCE achieved was 

92 %. A CCE value less than 100% also suggests that a fraction of the generated charge 

carriers are getting trapped and eventually lost (recombine) in the defect centers. The 

energy resolution increased with the increment in the bias due to the increased CCE at 

higher bias. At biases beyond - 85 V, the performance of the detector gets almost saturated, 

and experimental results indicated that the best resolution was obtained at - 90 V. 

4.5 ELECTRONIC NOISE ANALYSIS 

It is critical to control electronic noise in signal processing by front-end readout 

electronics as noise introduced in this stage can significantly affect the resulting pulse-

height spectrum and thereby detector resolution. The charge signal generated in the 

detector requires amplification to a voltage signal by a preamplifier. A field effect transistor 

(FET) is used at the input of the high-gain amplifier. Equivalent noise charge (ENC) 

consists of contribution of different noise sources that influence in the radiation detection 

signal acquisition and processing. For ENC analysis, pulse-height spectra were recorded 

using the precision pulser generating pulses at a fixed amplitude and frequency. The 

electronic noise was measured from the pulser peak width and expressed in terms of ENC 

in charge units. ENC noise components were calculated using the formalism developed by 

Bertuccio and Pullia [79] where ENC is expressed as: 
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𝐸𝑁𝐶2 = (𝑎𝐶𝑡𝑜𝑡
2 𝐴1)

1

𝜏
+ [(2𝜋𝑎𝑓𝐶𝑡𝑜𝑡

2 +
𝑏𝑓

2𝜋
) 𝐴2] + (𝑏𝐴3)𝜏 

4.8 

where Ctot is the total input capacitance 

𝑎 = white series noise contribution from the thermal noise in the FET channel,  

𝐴1, 𝐴2, and 𝐴3 = constants which depend on the response of the shaping network, 

τ = shaping time, 

𝑎𝑓 = coefficient of the FET 1/f noise, 

𝑏𝑓 = dielectric noise coefficient, and  

b = sum of the white parallel noise contribution due to the shot noise of the FET, 

leakage current in the detector, and thermal noise in the feedback resistor. 

The ENC as a function of amplifier shaping time τ was fitted to Equation 4.8 using 

a least square estimation method implemented with MATLAB coding [42] in order to 

calculate the three components – (i) white series noise, , which is primarily due to the total 

input capacitance, (ii) white parallel noise, and (iii) pink noise (𝑓 parallel and 1 𝑓⁄  series). 

As expected, the noise components were higher when the biased detector was connected 

to the system compared to the noise with preamplifier only. The data revealed that the 

contribution of the white series noise dominate over the white parallel and the pink noise. 

At a given shaping time, following connection of the detector, the white series noise 

increased by an order of magnitude, the white parallel noise increased by a factor of ~5, 

and the pink noise increased marginally as it is independent of shaping time. The increase 

in white series noise is due to increase in the input capacitance from the detector. The 

increase in white parallel noise results from the additional current from the detector due to 
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charge carrier generation. The minimum ENC for the biased detector under irradiation was 

observed at a shaping time of 3 μs.  

4.6 BIAS DEPENDENCE OF EQUIVALENT NOISE CHARGE 

In order to study the effect of detector leakage current on the electronic noise, a 

bias dependent study of the electronic noise was carried out. The ENC was measured at 

seven different reverse bias voltages viz. -20, -40, -60, -80, -100, -120 and -140 V. Figure 

4.6 shows the variation of ENC and the separate noise contributions to the overall ENC as 

a function of applied reverse bias at an optimized shaping time of 3 s. Increasing reverse 

bias reduces the detector junction capacitance and increases leakage current. The 

contribution of the dominating white series noise decreased with the increasing reverse 

bias. The pink noise followed a similar trend. The white parallel noise, which incorporates 

the detector leakage current, contributed the least at lower biases and increased steadily 

with reverse bias due to the increase in leakage current. It can be noticed that beyond a bias 

of -80 V, the contribution of the white parallel noise exceeded that of the pink noise. 

 
Figure 4.6 . Variation of equivalent noise charge (ENC), white series noise, white parallel 

noise, and pink noise measured using 3 s shaping time, as a function of different bias 

voltages.  
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4.7 CONCLUSION 

Performance of alpha particle detectors fabricated on 20 m thick 4H-SiC n-type 

epitaxial layers was evaluated using pulse-height spectra (PHS) produced under a 0.1 Ci 

241Am alpha source. The pulse-height spectra showed clearly resolved peaks for three 

major alpha particle energies – 5388 keV, 5443 keV, and 5486 keV emitted from an 241Am 

source at 170V reverse bias. The energy resolution was calculated as full width at half 

maximum (FWHM) of the alpha energy peak using Gaussian peak fitting function. An 

energy resolution of ~0.38% was observed for 5486 keV alpha particles with this detector. 

The high resolution was achieved by using high quality epitaxial layers which provided 

less doping concentration, a micropipe density less than 1 cm-2 and Schottky barriers with 

high barrier height and diode ideality factor close to 1.   

Using a precision pulser, which generates waveforms and simulates the output of a 

radiation detector, charge collection efficiency (CCE) was determined as a function of bias 

voltage. A MATLAB code was used to implement a drift-diffusion model which fits the 

variation of CCE with reverse bias. A diffusion length of ~13.6 m was calculated using 

the drift diffusion model. A CCE of ~92% was observed for this detector, which suggests 

that a fraction of the generated charge carriers is getting trapped and eventually lost 

(recombine) in the defect centers. 

An electronic noise analysis of the detection system revealed the possibility of 

achieving even better energy resolution by lowering the detector capacitance. The 

contribution of the white series noise (which is primarily due to the total input capacitance) 

to the overall electronic noise was found to dominate compared to the white parallel and 

the pink noise up to a reverse bias of -140 V and decrease steadily with decreasing 
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capacitance. The contribution of pink noise which is also primarily due to the total input 

capacitance, was seen to be more than that of the white parallel noise for bias voltages less 

than -80 V and beyond which the contribution of white parallel noise which incorporates 

the detector leakage current became more because of the increased leakage current. As a 

future venture, we would target lower detector capacitance without reducing the detector 

active area by increasing the detector active thickness, i.e. using a thicker epitaxial layer. 
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CHAPTER 5  

 

IMPROVED DETECTOR PERFORMANCE BY EDGE TERMINATION  

 

 

5.1 OVERVIEW 

Wide bandgap semiconductor 4H-SiC has been established as a suitable material 

for devices operating beyond room temperature and in harsh environments. Although the 

desired material properties for creating excellent radiation detectors are present in 4H-SiC, 

there are extended and microscopic defects identified within the detector active region. 

These defects which were introduced during substrate and epilayer growth adversely affect 

the charge transport properties and thereby detector performance. More specifically, 

surface related defects with the metal-semiconductor interface and deep levels traps, 

radiation interaction generated electron-hole pairs before reaching the electrodes resulting 

in incomplete charge collection. This in turn leads to a decrease in signal-to-noise ratio and 

a reduction in energy resolution of the pulse-height spectra (PHS) which is a ratio between 

the full-width at half-maxima (FWHM) and the centroid of the peak. Consequently, there 

is a need for a process aimed at suppressing leakage currents and reducing the effects of 

deep levels by eliminating or rendering them electrically inactive.  

In this Chapter, the development of an edge termination by depositing thin Si3N4 

passivating film on 4H-SiC epilayer is presented. This technique significantly improves 

device leakage current and favorably affects deep levels leading to a drastic improvement 
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in detector performance. A comparison of the results prior to and subsequent edge 

termination using passivating Si3N4 layer on 4H-SiC epilayer Schottky barrier detectors 

are presented. Defect parameters are evaluated and compared with that of a similar non-

edge terminated detector from the same parent wafer. 

5.2 ELECTRICAL CHARACTERIZATION 

For these experiments, a 400 nm thick Si3N4 passivating layer was deposited on the 

epilayer surface surrounding the Ni Schottky contact of a 4H-SiC detector grown on 20 m 

thick n-type epitaxial layer. The fabrication of such detector is described in detail in 

Chapter 2. The electrical properties of edge terminated Schottky barrier diodes were 

studied by current-voltage (I-V) and capacitance-voltage (C V) measurements in an EMI-

shielded aluminum box at room temperature. 

Figure 5.1 shows the I-V characteristics under forward and reverse bias at room 

temperature prior to and subsequent Si3N4 edge termination. The leakage current was found 

to have reduced two orders of magnitude from 4.5 nA to 86 pA following edge termination. 

Effective surface barrier height and diode ideality factor were determined from the forward 

I-V characteristics by applying a thermionic emission model as discussed in Chapter 3. 

Schottky barrier height was found to improve significantly after Si3N4 edge termination 

and was high enough to show very good rectification properties as seen in the reverse I-V 

characteristics of Figure 5.1. The diode ideality factor did not vary significantly and was 

determined to be near unity, which suggests spatial uniformity of the barrier height across 

the Schottky contact surface area. C-V measurements were carried out in a bias range of -

15 to +15 V, and a change in the capacitance value in this bias range was ~ 1pF for the 

detector with edge termination. The capacitance value obtained for 4H-SiC detector with 



49 

Si3N4 passivating layer was lower by an order of magnitude compared to the detector 

without passivating layer. 

 

Figure 5.1 I-V characteristics from before and after Si3N4 edge termination of a 4H-SiC 

Schottky barrier radiation detector. Inset shows forward I-V characteristics. 

 

5.3 PULSE HEIGHT SPECTROSCOPY 

Pulse height spectroscopy was carried out in an EMI shielded aluminum sealed box 

with a standard broad window 0.1 µCi 241Am alpha source mounted above the detector. A 

charged sensitive Amptek A250CF preamplifier was used to collect the detector signals. 

The incoming signals were shaped by an Ortec 671 Spectroscopy Amplifier. The amplified 

and shaped signals were collected using a Canberra Multiport II ADC-MCA unit to obtain 

the pulse-height spectra. The energy resolution was expressed in terms of full width at half 

maximum (FWHM). 
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Figure 5.2 compares alpha spectroscopy measurements of the detector before and 

after Si3N4 edge termination using a 241Am source. The measurements were carried out at 

room temperature with an applied bias of -120 V. The results showed that after Si3N4 edge 

termination, the energy resolution exhibited a significant improvement from 0.55% to ~ 

0.38% where the three major alpha particle energies emitted from the 241Am source are 

clearly resolved compared with those without edge termination shown in the inset in Figure 

5.2.  Since a broad alpha source was used, depending on angle of incidence a portion of the 

incident charged particles on the Ni window will scatter. So the centroid of the observed 

peak was slightly lower than the characteristic energy peak of 5486 keV. This could be 

improved using a collimated energy source. It is evident from the convolution of the two 

peaks on the lower energy side of the 5486 keV line and small variation in pulser peak 

FWHM that the detector performance is affected by charge loss due to defects.   

In 4H-SiC detector with edge termination, the Si3N4 layer surrounding the detector 

widow act to colliminate alpha particles incident on the detector widow and block particles 

incident outside of the widow when using a broad alpha source. This improves charge 

collection efficiency and reduces the broadening of the spectrum. Detector parameters 

obtained from electrical and spectroscopic characterization are summarized in Table 5.1. 

Table 5.1 Detector parameters obtained from electrical and spectroscopic characterization 

Detector ID Ideality Barrier Leakage Neff Bias Sh. Energy Pulser 

Factor Height Current (1014 (-V) Time Resolution width 

 n ΦB @ -200 V cm-3)  (µs) (%) (keV) 
 (eV) (pA)      

S2 (w/o Si3N4) 1.04 0.96 4524 2.05 120 6 0.55 15.8 

S1 (w Si3N4) 1.02 1.34 85.8 2.42 120 6 0.38 10.3 



51 

 

 

Figure 5.2  Alpha pulse-height spectrum collected prior (Inset) and subsequent to Si3N4 

edge termination of a 4H-SiC Schottky barrier radiation detector. 

 

5.4 DEFECT CHARACTERIZATION 

Defect characterization was performed on edge terminated and non-edge 

terminated detectors using a SULA DDS-12 Deep Level Transient Spectroscopy (DLTS) 

system. DLTS scans were carried out in the temperature range from 80 K to 750 K with a 

steady-state reverse bias of -2 V. The detector was pulsed to 0 V with a pulse width of 1 

ms followed by the capacitance transient measurements. The DLTS measurements for the 

Si3N4 edge terminated detector revealed three defect levels shown in Figure 5.3 as Peaks 

#1 - #3. The negative peaks suggest majority carrier traps (electron trap in this case). An 

additional DLTS scan (Figure 5.3-b) was performed with smaller correlator delays to fully 

observe peak #1. A non-edge terminated detector was fabricated from a sample adjacent to 

the Si3N4 edge terminated detector in the same parent wafer and characterized by DLTS 
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for comparison. Figure 5.4 shows the Arrhenius plots for the two detectors. The defect 

parameters viz., activation energy, capture cross-section, and the trap concentration were 

calculated for the two detectors and are listed in Table 5.2 where S1 is the detector with 

edge termination and S2 is without. 

 

 

Figure 5.3  DLTS scan from 80 K to 750 K of Si3N4 edge terminated 4H-SiC Schottky 

barrier radiation detector: (a) using larger correlator delays and (b) using shorter correlator 

delays to fully observe peak #1. 

(a) 

(b) 
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Figure 5.4  Arrhenius plot of the Si3N4 edge terminated detector (peaks 1-3) and a non-

edge terminated detector (○) fabricated from an adjacent sample in the same parent wafer. 

 

According to the calculated activation energy, the position for peak #1 was found 

to be EC – 0.22 eV where EC is the bottom of the conduction band. This shallow level defect 

has been identified as titanium substitutional impurity. Dalibor et al. have reported similar 

defect levels in titanium implanted 4H-SiC [78]. Peak #2 located at 0.63 eV below the 

conduction band edge and has been designated as electrically active Z1/2 defects which is 

related to defect complexes involving equal number of silicon and carbon site vacancies as 

summarized by Zhang et al. [77]. The activation energy for the defect level corresponding 

to peak #3 was found to be located at 1.25 eV below the conduction band edge for which 

Alfieri et al. have reported a similar defect level for chlorine implanted n-type 4H-SiC 

designated by them as Ci1 [94]. In our previous work [4], [93], we have reported on two 

deep levels that were found to affect detector performance the most, Z1/2 and a shouldered 
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peak EH6/7. The defect level EH6/7 represents carbon-carbon or carbon-silicon di-vacancies 

or related complex. The EH6/7 was not observed in the Si3N4 detector during DLTS 

measurements, but this defect has appeared in every detector fabricated from this wafer as 

can be seen in Peak #3 and #4 for detector S2 listed in Table 5.2. Comparing the Z1/2 and 

EH6/7 defect levels between the two detectors, it can be concluded that Si3N4 edge 

termination had a significant effect in the reduction of the trap concentration of Z1/2 and no 

detectable presence of EH6/7 defect level. Hiyoshi et al. [95], and Kawahara et al. [96] have 

demonstrated the reduction of Z1/2 and EH6/7 defect levels by thermal oxidation and have 

suggested the mechanism to be the indiffusion of interstitials from the interface 

recombining with vacancies in the epilayer. The Si3N4 edge termination layer was 

processed at a temperature of 300˚C which is much lower than the thermal oxidation 

temperature (1150˚C - 1300˚C) used by Hiyoshi. 

5.5 CONCLUSION 

The effectiveness of edge termination using passivating Si3N4 layer was studied in 

terms of detector leakage current and alpha radiation detection performance. Results were 

compared with those of non-edge terminated detectors. Following edge termination with 

Si3N4, 4H-SiC detectors exhibited two orders of magnitude lower leakage current 

compared to I-V measurements taken from before edge termination. Alpha spectroscopy 

measurements conducted prior and subsequent to edge termination revealed a substantial 

improvement in terms of energy resolution. DLTS results showed a reduction in the defect 

densities of Z1/2 and no detectable presence of EH6/7 defect levels in the Si3N4 edge 

terminated detectors compared with a non-edge terminated detector from the same parent 

wafer. These defects play significant role in detector performance and reduction or 
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elimination of these defects resulted in higher charge collection thereby improved detector 

resolution. We suggest the Ci and Sii atoms in participation induced stress/strain from 

lattice mismatch at the Si3N4/SiC interface layer may be responsible for the reduction of 

the Z1/2 and EH6/7 defect levels; however, further investigation is going on for correlation. 
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Table 5.2  Defect parameters obtained from DLTS measurements (Detector S1 is with edge termination and S2 is without) 

Detector  

ID 

Peak #1 Peak #2 Peak #3 Peak #4 

Trap n E Nt Trap n E Nt Trap n E Nt Trap n E Nt 

×10-13 eV ×1012 ×10-16 eV ×1012 ×10-15  eV ×1012 ×10-16 eV ×1012 

cm2  cm-3 cm2  cm-3 cm2  cm-3 cm2  cm-3 

S1 Ti(c) 4.70 0.22 2.14 Z1/2 7.24 0.63 3.16 Cil 0.6 1.25 18.3 - - - - 

S2 Ti(c) 0.71 0.19 2.52 Z1/2 5.04 0.62 4.16 EH6/7 5.52 1.40 1.04 EH6/7 1.73 1.45 1.34 
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CHAPTER 6  

 

MULTIPIXELATED CZT GAMMA-RAY DETECTOR 

 

 

6.1 OVERVIEW 

Cd0.9Zn0.1Te (CZT) based pixelated radiation detector was fabricated and 

characterized for gamma ray detection. CZT has inherent poor hole-transport properties 

compared to electrons, meaning holes are more likely to get trapped causing degradation 

in energy resolution. In small-pixel geometry, where the size of segmented contact 

electrode known as ‘pixel’ is smaller compared to the detector thickness, detector operates 

in a unipolar charge-sensing mode where observed signal is mostly due to electron 

transport. A 3×3 guarded pixilated detector was fabricated on a ~20×20×5 mm3 crystal cut 

out from the grown ingot. A guard ring grid was used to reduce inter-pixel/inter-electrode 

leakage. CZT single crystal grown in our lab using a tellurium solvent method was used to 

fabricate the pixelated detector. The crystal was characterized in planar configuration using 

electrical, optical, and optoelectronic methods prior to the fabrication of pixilated 

geometry. Current-voltage (I-V) measurements was carried out to determine resistivity and 

leakage current at various operating bias voltage.  Electron mobility-lifetime products 

(ee) was measured through alpha ray spectroscopy. The devices were tested for their 

performance as high-energy gamma ray detector using a 137Cs radiation source. 
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6.2 SMALL PIXEL DETECTOR STRUCTURE 

While CZT offers several advantages such as room temperature operation, high 

stopping efficiency, and compact construction, the material has a major limitation in charge 

transport properties as compared to elemental semiconductors like silicon and germanium.  

Large volume CZT detector performance is often limited by the poor charge transport 

properties such as low drift-mobility and short lifetime especially for holes. This limitation 

leads to degradation in the energy resolution and detection efficiency. Table 6.1 compares 

electron and hole mobility and mobility-lifetime product in CZT. 

Table 6.1  Charge Transport properties of CZT 

Electron Mobility, e (cm2/V.s) >1000 

Hole Mobility, h (cm2/V.s) ~50 

Electron Mobility Lifetime Product, ee (cm2/V) 10-2 – 10-3 

Hole Mobility Lifetime Product, hh (cm2/V) ~10-5 

 

When a gamma-ray deposits energy in a semiconductor, electron-hole pairs are 

produced and are drifted towards appropriate electrodes due to the applied bias. However, 

many of these carriers get trapped before they reach the electrodes. This is especially true 

for holes, which move more slowly than electrons and are therefore more likely to get 

trapped. As a result, a significant fraction of count does not appear in the photopeak but 

are in the low energy tail. The charge trapping effect is more pronounced in thicker 

detectors as the charges require longer transit time. 

Various approaches can be used to solve the problem of charge trapping. Clearly, 

elimination of all traps is the most direct approach. However, this is practically impossible 
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to achieve. The poor charge transport for the holes inherent in the CZT material can be 

circumvented by using modified electrode structures to operate detectors in a unipolar 

charge-sensing mode [97] – [99]. In this approach, the induced pulse is mostly due to 

electron motion in the detector and the hole contribution to the signal is negligible, thereby 

reducing the effect of hole trapping. Two prevalent approaches for the unipolar charge 

sensing methods are the reduced anode geometry [97], [100] and the coplanar electrode 

design [99]. While the two concepts are essentially similar in principle, the detector 

fabrication and electronic signal processing steps are significantly simpler in case of 

reduced anode geometry especially when an array is configured for an imaging application 

(as in the present case). As a result, small pixel geometry was selected for this current 

study. In this approach, the unipolar signal induction is achieved in a pixellated detector 

array by keeping the pixel size small as compared to the detector thickness. 

Earlier work of Barrett et al [97] has demonstrated that for a segmented detector 

array, signal generation and pulse height spectrum characteristics depend on the ratio of 

the pixel size () to the detector thickness (L). Their analysis shows that for small (/L) 

ratio, the overall contribution of holes to the signal and the effect of hole trapping is 

significantly reduced, and electron transport is primarily the mechanism for signal 

generation, as shown by their theoretical estimations in Figure 6.1. This is mostly because 

in the small pixel regime, the electrostatic coupling between the moving charge and the 

pixel electrode is strong only in the close vicinity of the pixel. Thus, by appropriate biasing 

the electrons can be collected at a pixel electrode and the resulting induced pulse is 

produced only when the electron is close to the pixel. Thus the effect of hole trapping on 

the resulting pulse height spectrum is significantly reduced. Figure 6.2 presents a schematic 
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of the multi-pixel CZT detector which were fabricated in clean-room facilities by 

photolithographic technique as well as contact mask evaporation as described in the 

following sections of this chapter. 

 
 

Figure 6.1 Contribution of electrons and holes to the total collected charge as a function of 

the pixel size. The interaction depth is 20% of the detector width (L) (Barrett et al, [97]). 

 

 

Figure 6.2  Schematic of a small pixel device showing high accumulation of weighting 

potential near pixel electrode. The bottom contact pattern is shown on the right. 
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6.3 CZT SINGLE CRYSTAL  

Single crystal of CZT growth entails transformation of precursor materials from a 

liquid phase to the solid phase ternary CdZnTe compound in order to grow an ordered 

lattice structure. The growth temperature must be well above the melting point of the 

precursor elements as well as the compounds themselves (CdTe, ZnTe, and CZT).  CZT 

crystal is typically grown by melt growth techniques such as Bridgman method and the 

travelling heater method (THM) which involve melting the precursor material, and then 

crystallizing the material by changing pressure, temperature, or a combination of both [50], 

[52] – [54]. For this study, CZT single crystals with stoichiometric ratio of Cd0.9Zn0.1Te 

and grown by tellurium (Te) solvent growth technique using 50% excess Te as a solvent 

by our research group was used. This growth method combines many favorable features of 

the Bridgman method and THM growth methods. Zone refined precursor elements at a 

Cd:Zn:Te ratio of 30:12:58 at% were used along with indium (In, at 15-25 ppm) as a 

dopant. 

Grown CZT crystals were cut and polished using a series of sandpapers of different 

grits and ultimately microfiber pads to achieve a mirror finish on all faces of CZT crystal 

wafers.  CZT crystal wafers are then cleaned using an ultrasonicator, etched with 2% 

bromine-methanol solution (Br2-MeOH) for 90 seconds, and rinsed off with de-ionized 

water. Optical characterizations were performed using UV-Vis-NIR spectroscopy 

revealing a direct bandgap energy of ~ 1.56 eV at 300K for the grown and processed 

wafers. IR transmission of the surface of the CZT crystal used in this study revealed an 

average tellurium inclusion/precipitate size of ~8 m. Te inclusions with diameters greater 

than 10 m can act as potential charge trapping centers and significantly degrade the 
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detector’s performance [101], [102]. After crystal characterization, CZT multi-pixel 

nuclear detectors were fabricated on the processed wafers.   

6.4 CZT MULTI PIXEL DETECTOR FABRICATION 

Large area CZT crystal of dimensions 20×20×5 mm3 was cut out from the grown 

ingot, ground, lapped (down to 1 m SiC paper), and polished (down to 0.05 m alumina 

powder in a suspension). Figure 6.3 (a) shows a bare polished 20×20×5 mm3 crystal cut 

from the grown CZT ingot and ready for detector fabrication. Pixelated structure with 

guard rings was used as anode and was fabricated using photolithography on the Te-rich 

face of the crystal. Guard rings are used to reduce the noise caused by surface leakage 

current within a nuclear detector. A guard ring structure involves the use of an anode 

contact electrode, surrounded by a space where only the bare semiconductor surface exists 

(no contact electrode). Since the guard ring is not connected to the anode, all current caused 

by surface conduction are blocked by the guard ring and do not interfere with the resulting 

detection signal from the anode. 

Figure 6.3 (b) shows the schematic of the pixelated detector showing 4 adjacent 

pixels and their dimensions, and Figure 6.3 (c) shows the photograph of the actual 3×3 

pixelated detector used in this study. Each pixel had a dimension of 5×5 mm2 with 1.25 

mm inter-pixel gap and was pitched at 6.25 mm. A 0.05 mm thick guard ring grid was also 

incorporated on the anode side which can be used as a steering grid for better charge 

collection when biased appropriately. Full square back contact (cathode) was made on the 

opposite surface as shown in Figure 6.3 (d). In this work we have connected the guard ring 

grid to the ground in order to minimize the leakage current between the cathode and the 

anode pixels. Gold was used for all the metal contacts. The electrodes were formed by 
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RF/DC sputtering using semitransparent gold (Au) contact (150 – 250 Å). CZT crystals 

has a work function of 5.08 eV and are slightly p-type due to indium doping, while gold 

(Au) has a metal work function of 5.4 eV. With a p-type semiconductor, a metal with higher 

work function compared to that of the semiconductor (Φm > Φs) expected to form an Ohmic 

contact [72]. 

 

 

 

 

 

Figure 6.3 (a) A bare 20×20×5 mm3 CZT crystal polished for detector fabrication; (b) 

Schematic of the pixelated detector showing four adjacent pixels and the various 

dimensions; (c) a photograph of the actual 3x3 pixelated CZT detector fabricated on 

polished crystal shown above; (d) full square back contact (cathode) fabricated on the back 

side of the same crystal. 
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6.5 ELECTRICAL MEASUREMENTS 

Current-voltage (I-V) measurements using metal-semiconductor junction was used 

to determine CZT crystal resistivity. A stable I-V characteristics and a high resistivity are 

required for high performance CZT detector as these will reduce the leakage current 

flowing through the detector under applied biased. I-V measurements were performed at 

room temperature (RT) under dark condition using a Keithley 237 High Voltage Source 

Measure Unit. I-V measurement was carried out by applying the bias on the Te rich face 

with the Cd rich face connected to ground. Figure 6.4 shows the current-voltage 

characteristic of the CZT detector. The detector showed a distinct asymmetry in the current 

behavior in the negative and positive bias regime indicating the presence of active deep 

centers at the surface which can render the Au/CZT interface as non-Ohmic. The leakage 

current at -1000V reverse bias was determined to be less than 5 nA. The electrical 

resistivity was estimated from inverse slope of the linear regression of current-voltage 

curve and using expression 𝜌 = 𝑅 ∙
𝐴

𝐿
, where  = resistivity of the crystal in Ω-cm, R = 

resistance in Ω, A = contact area (cm2), and L = thickness of the CZT crystal in cm. The 

electrical bulk resistivity was estimated to be ~ 1011 Ω-cm. This is high enough resistivity 

to fabricate a functional CZT radiation detector.   

High frequency (100 kHz) Capacitance-voltage (C-V) measurements were carried 

out at room temperature (RT) under dark condition using a Keithley 590 CV Analyzer.  

C-V measurements were carried out to determine the full depletion bias. The capacitance 

at the metal-semiconductor junction of the Schottky device is a function of depletion width, 

and is described by the relationships given by: 
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𝐶 =
𝜀 × 𝜀0 × 𝐴

𝑊
 6.1 

where C is capacitance, W is depletion width, A is the area of the junction, 𝜀 is the 

dielectric constant of semiconducotor material, and 𝜀0 is the permittivity in vacuum.  The 

junction capacitance is inversely proportional to the applied bias as expressed in 

Equation 3.6. Figure 6.5 shows that under applied reverse bias, capacitance first decreases 

but then levels off, displaying that the detector is almost fully depleted, which is ideal for 

higher charge collection efficiency. The semi-insulating nature of the CZT crystal is 

confirmed by this C-V characteristic. 

 

Figure 6.4.  I-V characteristic of CZT detector at room temperature. 
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Figure 6.5.  High frequency (100 kHz) capacitance-voltage (C-V) characteristic of the 

CZT detector  

 

6.6 CHARGE TRANSPORT MEASUREMENTS 

The electron mobility-lifetime product (μeτe) is a common measurement used to 

characterize the charge transport properties of a detector, since it highlights both the 

electron trapping tendency and electron mobility, both of which are important to radiation 

detection. Based on the I-V characteristics, charge transport properties of electrons and 

holes were evaluated by measuring pulse positions at different biases. Upon reversal of the 

polarity of the applied bias, the mobility-lifetime product (µτ) for electrons and holes were 

extracted using Hecht equation [103]:as expressed below. 

 
𝐶𝐶𝐸 =

𝑄𝑠

𝑄𝑜
=  

𝜇𝜏𝑒𝑉

𝑑2
[1 − 𝑒𝑥𝑝 (

−𝑑2

𝜇𝜏𝑒𝑉
)] 6.2 
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where Qs is the total charge detected, Qo is the expected total charge, V is the bias 

voltage, and  d  is the detector thickness. Hecht equation shows charge collection efficiency 

is also a function of the applied bias voltage. For mobility-lifetime product measurement, 

the detector was irradiated with a 241Am alpha particle source on the cathode of the detector. 

After collecting the energy of the photopeaks versus bias voltage, the charge collection 

efficiency at each bias voltage is calculated by dividing the actual energy by the incident 

energy for 241Am alpha particles (5.486 MeV). Then using charge collection efficiencies at 

an applied bias voltage, μτe values were obtained from Hecht equation. (Equation 6.2) as 

shown in Figure 6.6. After the curve fitting, the μτe of the planar CZT detector was 

determined to be 5.910-3 cm2/V. Upon reversal of the polarity of the applied bias, the 

mobility-lifetime product for holes was determined in a similar way. Table 6.2 summarizes 

different electrical properties obtained for CZT detector. 

Mobility of electron (µe) was calculated using a time-of-flight measurement [104] 

and employing the following relationship between drift velocity (vd) acquired by an 

electron per unit applied electric field (E).   

𝑣𝑑 = 𝜇𝑒𝐸 6.3 

Similar to mobility-lifetime measurement, time of flight measurement was 

conducted by irradiating cathode of the CZT detector with alpha particles from an 241Am 

alpha source. Since electron-hole pairs are generated immediately at the cathode, the 

electrons will have to travel the entire distance of the detector to reach the anode. The 

electric field for each rise time is calculated using the relationship 𝐸 =
𝑉

𝐿
, where V is the 

bias voltage and L is the detector thickness. From the slope of the linear fit of drift velocities 
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versus electric field plot, electron mobility of planar CZT detector was calculated to be 

1192 cm2/Vs. 

Table 6.2. Electrical properties of CZT Detectors 

Parameters CZT (Cd0.9Zn0.1Te)  

Bandgap [eV, 300 K] 1.56 

Resistivity [-cm] ~ 1011 

Leakage Current [nA] ≤5 (at -1000V) 

Electron mobility [cm2/V-s] 1192 

Electron  product [cm2/V] 6  10-3 

Hole  product [cm2/V] 4.610-5 

 

 

Figure 6.6. Peak position versus energy channel number used to obtain the value of 

mobility-lifetime product of electron (τe) by fitting Hecht equation. 

  

 
                  

 

()e = 6 × 10-3 cm2/V 
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6.7 CZT DETECTOR TESTING USING PULSE HEIGHT SPECTROSCOPY  

The gamma spectroscopic measurements were carried out using an analog 

spectrometer comprising of a Cremat CR110 pre-amplifier, an Ortec 671 shaping amplifier 

and a Canberra Multiport II multichannel analyzer. The energy-resolutions of the detectors 

were measured in terms of full width at half maxima (FWHM) of the full energy peak 

obtained for gamma pulse-height spectra using a 137Cs gamma source. An NI PCI-5122 

digitizer card was used to digitize the charge pulses obtained from the detector-preamplifier 

assembly. A Labview based data-acquisition software was used to acquire and store the 

digitized pulses.  PCI-5122 enables to acquire pulses with a sampling rate of 100 MS/s and 

14 bit vertical resolution. A separate program was developed in our lab using Labview and 

MATLAB codes to process and analyze the digitized data. The data analyses involved 

digital semi-Gaussian shaping of the pulses followed by pulse-height determination.  

Figure 6.7 shows a schematic diagram of the detection system used for CZT detector. 

 

Figure 6.7. Schematic diagram of a digital nuclear detection measurement system at USC. 

 

Figure 6.8 shows a 137Cs pulse height spectrum (PHS) obtained using an arbitrarily 

chosen pixel with a bias of -1000 V applied to the cathode. The guard ring was connected 

to the ground during all the measurements. The 662 keV gamma peak was clearly resolved. 
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After performing Gaussian peak fitting, the FWHM of the gamma photopeak at 662 keV 

was calculated to be 1.51%. A 137Cs (662 keV) PHS of a single-pixel CZT planar detector 

with guard ring fabricated from the same CZT ingot is shown in Figure 6.9 for comparison. 

The energy resolution for the 662 keV gamma peak was 2.6%. Comparing the two spectra 

it is evident that energy resolution has improved significantly with multi-pixel detector 

structure.   

 

Figure 6.8 A 137Cs Pulse height spectrum of a random pixel chosen from the 3x3 pixel CZT 

detector array. 

 

 
Figure 6.9. Pulse height spectrum obtained for CZT planar detector with guard ring using 

137Cs gamma radiation source. [105] 
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Figure 6.10 shows 137Cs pulse height spectra for four adjacent pixels from the 3×3 CZT 

multi-pixel detector. All the spectra exhibited clearly resolved gamma peaks and similar 

spectral features. The spatial variation of energy resolution at 662 keV or variation in peak-

to-valley (P-V) ratio from pixel to pixel PHS data under gamma radiation are yet to be 

investigated.   

 

Figure 6.10. Pulse height spectrum obtained using a 137Cs source from four adjacent 

pixels from a representative portion of the crystal. 

 

6.8 CONCLUSION  

Cd0.9Zn0.1Te (CZT) based pixelated detector was fabricated and characterized for 

gamma ray detection. Large area CZT single crystals have been grown using a tellurium 

solvent method. A 3×3 guarded pixilated detector has been fabricated on a ~20×20×5 mm3 

crystal cut out from the grown ingot. A guard ring grid was used to reduce inter-pixel/inter-
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electrode leakage. Current-voltage (I-V) measurements revealed a leakage current of ≤5 

nA at an operating bias voltage of 1000 V and a resistivity of ~1011 cm. The mobility-

lifetime product in this crystal was calculated to be 6 × 10-3 cm2/V using alpha ray 

spectroscopic method. Using time of flight measurements, electron mobility was 

determined to be ~ 1192 cm2V-1s-1. Gamma spectroscopy using a 137Cs source on the 

pixelated structure showed fully resolved 662 keV gamma peaks for all the pixels, with 

percentage resolution (FWHM) as high as 1.51 %, which exhibited an improved resolution 

compared to single pixel CZT detector with guard ring.  
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CHAPTER 7  

 

CONCLUSION, DISSEMINATION OF WORK, AND SUGGESTIONS 

FOR FUTURE WORK 

 

 

7.1 CONCLUSION OF DISSERTATION WORK 

In this dissertation two types of radiation detectors based on wide bandgap 

semiconductors were investigated: (i) Schottky barrier 4H-SiC detector for alpha particles 

and low energy x-ray radiation detection, and (ii) multi-pixelated CZT high-energy x-ray 

and gamma radiation detector. These detectors address the limitation of currently available 

detection systems in terms of detection efficiency, stability of response, speed of operation, 

and physical size due to requirement of cryogenic cooling. The SiC and CZT radiation 

detectors offer essential tools for monitoring and accounting of radioactive materials in 

nuclear power plants, nuclear waste management, national security, international nuclear 

nonproliferation treaty verification, nondestructive testing, medical imaging, and high 

energy astronomy. 4H-SiC devices exhibit extremely low leakage currents, high thermal 

conductivity, and high radiation hardness allowing detector operation well above room 

temperature and in high radiation background found in nuclear fuel processing 

environment in nuclear power plants and in upper atmosphere and outer space. 

Schottky barrier alpha particle detectors were fabricated on 20 m thick n-type 4H-

SiC epitaxial layers. The epitaxial layers were grown by a hot wall chemical vapor 

deposition (CVD) process on n-type 4H-SiC (0001) substrates with 4o off-cut towards the 
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[112̅0] direction. A micropipe density <1 cm-2 was observed for the SiC epilayer wafer. 

Schottky barriers were fabricated by depositing circular nickel contacts of ~10 mm2 area. 

These epilayer 4H-SiC detectors exhibited high Schottky barrier height and an excellent 

current rectification with low leakage current of ~1 nA at a reverse bias of -170 V. Room 

temperature current-voltage measurements revealed Schottky barrier heights of >1.14 eV 

and ideality factor of ~1.19. Capacitance-Voltage measurements revealed a doping 

concentration of 2.9 x 1014 cm-3. 

Deep level transient spectroscopy (DLTS) was carried out to investigate defect 

levels and capture cross sections. From DLTS measurements, 5 defect levels (shallow and 

deep) were detected and identified as Ti(h) at Ec - (0.14 ± 0.01) eV, Ti(c) at Ec - (0.18 ± 

0.01) eV, Z1/2 at Ec - (0.62 ± 0.02) eV, EH6 at Ec - (1.42 ± 0.04) eV, EH7 at Ec - (1.52 ± 

0.03) eV respectively. The origin of the Ti related defects are the substitutional impurities 

at hexagonal and cubic Si lattice sites, Z1/2 defects are caused by interstitials and carbon 

vacancies, resolved levels of EH6/7 (EH6 and EH7) are related to carbon vacancies and 

carbon-silicon di-vacancies. 

A 0.1 µCi 241Am radiation source was used to evaluate the detection performance 

of the fabricated detectors, and the alpha pulse height spectroscopy revealed a high energy 

resolution of ~0.38% FWHM energy resolution for 5.486 MeV alpha particles. Low 

microscopic and electrically active defect density and low effective doping concentration 

of 2.9 × 1014 cm-3 in the epilayers helped to achieve a high resolution even with a broad 

source. A diffusion length of ~13.6 m for holes has been determined in these detectors 

following a calculation based on a drift-diffusion model. A noise analysis in terms of 
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equivalent noise charge revealed that the white series noise due to the detector capacitance 

has substantial effect on their spectroscopic performance. 

An edge termination technique using passivating Si3N4 layer is developed and 

implemented on 4H-SiC radiation detectors. The effectiveness of edge termination was 

studied in terms of detector leakage current and alpha radiation detection performance. 

Results were compared with those of non-edge terminated detectors. Following edge 

termination with Si3N4, detectors exhibited a higher barrier height with improved rectifying 

characteristics and a leakage current of pA range, which was two orders of magnitude lower 

compared to detectors without edge termination. Alpha spectroscopy measurements 

conducted prior and subsequent to edge termination revealed a substantial improvement 

(~30%) in terms of energy resolution. The edge terminating layers collimated alpha 

particles incident on the detector window allowing more alpha particles to be deposited in 

the active region of the device. Furthermore, Schottky barrier detector with edge 

termination exhibited a significant improvement in electrical and defect characteristics, 

resulting in improved detector performance. DLTS results showed a reduction in the defect 

densities of Z1/2 and no detectable presence of EH6/7 defect levels in the Si3N4 edge 

terminated detector compared with a non-edge terminated detector from the same parent 

wafer. We suggest the Ci and Sii atoms in participation induced stress/strain from lattice 

mismatch at the Si3N4/SiC interface layer may be responsible for the reduction of the Z1/2, 

and EH6/7 defect levels; however, further investigation is going on for correlation. 

Cd0.9Zn0.1Te (CZT) with high atomic number Z ~ 50, adequate gamma-ray energy 

absorption coefficient, low leakage currents at operating bias voltages, wide band gap at 

room temperature and high material density have become the most popular semiconductor 
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for compact high energy x- and gamma-ray detectors. Typical application of CZT detectors 

can be found in the field of homeland security, medical imaging, infrared focal plane array, 

environmental monitoring etc. In this study multi-pixelated CZT detector was fabricated 

and characterized for gamma ray detection. Small pixel geometry was selected for this 

current study to achieve unipolar (electron only) signal induction in order to circumvent 

limitation arise from the poor hole charge transport inherent in the CZT material.  

A 3×3 guarded pixilated detector with guard ring has been fabricated on a 

~20×20×5 mm3 crystal cut out from the grown ingot. A guard ring grid was used to reduce 

inter-pixel/inter-electrode leakage. Current-voltage (I-V) measurements revealed a leakage 

current of ≤ 5 nA at an operating bias voltage of 1000 V and a resistivity of ~1011 cm. 

The mobility-lifetime product in this crystal was calculated to be 6 × 10-3 cm2/V using 

alpha ray spectroscopic method. Using time of flight measurements, electron mobility was 

determined to be ~1192 cm2V-1s-1. Gamma spectroscopy using a 137Cs source on the 

pixelated structure showed fully resolved 662 keV gamma peaks for all the pixels, with 

percentage resolution (FWHM) as high as 1.51 %, which exhibited an improved resolution 

compared to single pixel CZT detector with guard ring. 

7.2 DISSEMINATION OF WORK 

i. C. Oner, T. A. Chowdhury, E. Santi, and K. C. Mandal, “Deep Level Transient 

Spectroscopy and Pulse Height Measurements on High Resolution n-Type 4H-SiC 

Epitaxial Schottky Barrier Radiation Detectors,” Invited Talk, Invited Paper, 2017 

IEEE Nuclear Science Symposium & Medical Imaging Conference, and the 24rd 

International Symposium on Room-Temperature Semiconductor X-ray and 
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Gamma-ray Detectors, Oct. 21 –28, Atlanta, GA, IEEE Conf. Record, R-11, 5 

pages, 2018. 

ii. C. Oner, T. A. Chowdhury, and K. C. Mandal, “Crystal Growth and 

Characterization of Cd0.9Zn0.1Te for Gamma-Ray Detectors: Thermally Stimulated 

Current (TSC), Electron Beam Induced Current (EBIC), and Pulse Height 

Spectroscopy (PHS),” 2017 IEEE Nuclear Science Symposium & Medical Imaging 

Conference, and the 24rd International Symposium on Room-Temperature 

Semiconductor X-ray and Gamma-ray Detectors, Oct. 21 – 28, Atlanta, GA, IEEE 

Conf. Record, RO7-003, 4 pages, 2018. 

iii. C. Oner, J. W. Kleppinger, T. A. Chowdhury, M. Sajjad, E. Santi, and K. C. 

Mandal, “High Barrier Schottky Contacts on n-Type 4H-SiC Epitaxial Layers and 

High Performance Radiation Detectors,” To be submitted: J. Appl. Physics, 2018.   

iv. C. Oner, K. V. Nguyen, R. O. Pak, T. A. Chowdhury, and K. C. Mandal, 

“Investigation of Metal Contacts on High-Resistivity Large-Area Amorphous 

Selenium Alloy Films," 2015 IEEE Nuclear Science Symposium & Medical 

Imaging Conference, 22nd International Symposium on Room-Temperature 

Semiconductor X-ray and Gamma-ray Detectors, Oct. 31 – November 07, San 

Diego, CA, IEEE Conf. Record, R3A-41, 6 pages, 2016.  

v. C. Oner, T. A. Chowdhury, R. O. Pak, and K. C. Mandal, “Improved radiation 

detectors on 4H-SiC epilayers by edge termination," Hard X-Ray, Gamma-Ray, 

and Neutron Detector Physics XVIII, Proc. SPIE, 9968, 99680M-1-6, 2016.  

vi. C. Oner, K. V. Nguyen, R. O. Pak, M. A. Mannan, and K. C. Mandal, “Investigation 

of thermally evaporated high resistive B-doped amorphous selenium alloy films 
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and metal contact studies," Hard X-Ray, Gamma-Ray, and Neutron Detector 

Physics XVII, Proc. SPIE, 9593, 9593I-1-11, 2015. 

vii. T. A. Chowdhury, C. Oner, and K.C. Mandal, “Synthesis and Characterization of 

Amorphous Selenium Alloys Radiation Detectors,” 2017 IEEE Nuclear Science 

Symposium & Medical Imaging Conference, and the 24rd International Symposium 

on Room-Temperature Semiconductor X-ray and Gamma-ray Detectors, Oct. 21 – 

28, Atlanta, GA, IEEE Conf. Record, RO7-004, 5 pages, 2017. 

viii. K. C. Mandal, T. A. Chowdhury, C. Oner, and F. H. Ruddy, “Design and Response 

Testing of Boron-Diffused Silicon Carbide Neutron Detectors for Dosimetry and 

Monitoring Applications,” Reactor Dosimetry: 16th International Symposium, 

ASTM STP, 1608, 353-360, 2018. 

ix. M. A. Mannan, K. V. Nguyen, R. O. Pak, C. Oner, and K. C. Mandal, “Deep Levels 

in n-type 4H-Silicon Carbide Epitaxial Layers Investigated by Deep-Level 

Transient Spectroscopy and Isochronal Annealing Studies," IEEE Trans. Nucl. Sci., 

vol. 63, no.2 pp. 1083-1090, 2016. 

x. K. V. Nguyen, R. O. Pak, C. Oner, F. Zhao, and K. C. Mandal, “Investigation of 12 

µm 4H-SiC epilayers for radiation detection and noise analysis of front-end readout 

electronics," 2015 IEEE Nuclear Science Symposium & Medical Imaging 

Conference 22nd International Symposium on Room-Temperature Semiconductor 

X-ray and Gamma-ray Detectors, Oct 31 – Nov 07, San Diego, CA, IEEE Conf. 

Record, R5B-1, 5 pages, 2016. 

xi. R. O. Pak, K. V. Nguyen, C. Oner, T. A. Chowdhury, and K. C. Mandal, 

“Characterization of Cd0.9Zn0.1Te single crystals for radiation detectors," 2015 
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IEEE Nuclear Science Symposium & Medical Imaging Conference, 22nd 

International Symposium on Room-Temperature Semiconductor X-ray and 

Gamma-ray Detectors, Oct 31 – Nov 07, San Diego, CA, IEEE Conf. Record, R5B-

1, 5 pages, 2016. 

xii. M. A. Mannan, K. V. Nguyen, R. O. Pak, C. Oner and K. C. Mandal, “Surface 

passivation and isochronal annealing studies on n-type 4H-SiC epitaxial layer," 

Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVII, Proc. SPIE, 9593, 

95931H-1-11, 2015. 

xiii. K. V. Nguyen, R. O. Pak, C. Oner, M. A. Mannan, and K. C. Mandal, “High-barrier 

Schottky contact on n-type 4H-SiC epitaxial layer and studies of defect levels by 

deep level transient spectroscopy (DLTS),” Hard X-Ray, Gamma-Ray, and 

Neutron Detector Physics XVII, Proc. SPIE, 9593, 95930I-1-8, 2015. 

xiv. R. O. Pak, K. V. Nguyen, C. Oner, M. A. Mannan, and K. C. Mandal, “Defect 

characterization of Cd0.9Zn0.1Te crystals using electron beam induced currrent 

(EBIC) imaging and thermally stimulated current (TSC) measurements,” Hard X-

Ray, Gamma-Ray, and Neutron Detector Physics XVII, Proc. SPIE, 9593, 95931J-

1-8, 2015. 

7.3 SUGGESTIONS FOR FUTURE WORK  

 Schottky barrier contact structures with nickel (Ni) have been fabricated on 20 µm 

thick 4H-SiC epitaxial layer. Different contact structures with varying work 

functions of the metals and higher thickness of the epitaxial layers could be studied 

to optimize detector performance with reduced leakage current and improved 

energy resolution.  
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 In 4H-SiC epitaxial layer, the electron mobility is significantly higher than hole 

mobility. To compensate poor hole transport properties, specialized detector 

structures such as multi-pixel with small pixel size, Frisch grid, co-planar, and drift 

detectors could be fabricated and performance evaluation could be compared to the 

planar detectors studied in this dissertation.  

 Future efforts on 4H-SiC epilayer detectors could be carried out to lowering 

detector capacitance without reducing the active size of the detectors. In-detailed 

electronic noise analysis may reveal the possibility of achieving better performance 

with enhanced energy resolution by lowering the detector capacitance. This will 

reveal the white series noise due to the total input capacitance which may have 

substantial effects on detector performance. 

 Improvement on 4H-SiC energy resolution and reduced leakage current is achieved 

by Si3N4 passivation in this work. SiO2 and Si-O-N passivation could be studied to 

optimize detector performance further. 

 For both 4H-SiC detector performance studies, defect delineating KOH etching 

may reveal the nature and type of various crystallographic defects and the results 

may be correlated to observe the impact of shallow and deep lying point and/or 

extended defects in the active region. 

 Deep-level transient spectroscopy in the current mode (I-DLTS) could be applied 

to the CZT detectors for defect analysis. I-DLTS is an extremely sensitive technique 

for determining nature of defects present in the active region using current pulses. 

By using this technique, further information about the deep-lying defects can be 
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evaluated and quantified, which will assist in reducing shallow and deep defect 

levels in the grown CZT crystals. 

 It has been studied two configurations for CZT gamma ray detectors, planar 

geometry and multiple small pixels. However, other types of detector geometries 

can be investigated such as co-planar, virtual Frisch grid, guard-ring, and drift 

detectors.
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