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of fractional order derivative on dynamic behavior of the system is investigated. Finally,
all theoretical results are supported by numerical simulations.
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1. Introduction

Micro- and mesocosms are experimental ecosystems of any habitat type, which contain more than one species that can
investigate various ecological endpoints. They provide a bridge between laboratory and field studies, preserving some of
the natural conversion of field studies, with a greater control of conditions and changeables, as well as reproduction, and
are therefore an extremely useful tool to investigate how ecosystems answer to stress. Therefore microcosms have been
used as tools [1-7] for studying population dynamics such as bacteria growth. In study [5], Gause created a microcosm
of a nutritive decoction of bacteria and studied the variations in the populations over a few days. It is observed that
experimental and theoretical results are consistent with each other. Grigoryan et al. [6] have examined the diversity and
sulfide-producing activity of microorganisms in microcosms containing commercial clay products. In study [7], Multi-
species microcosms have been used to investigate effects of ionizing radiation in a model freshwater ecosystem, including
endpoints at both structural and functional levels and ecological interactions. In study [8], substrate supplied to the
microhabitats facilitates bacterial growth, and microbial cells can migrate between neighboring microhabitats due to
random motility, chemotaxis towards substrate and self-attraction.

The mathematical approximation for population growth in some biological situations includes nonlinear differential
equations. It is generally known that a differential equation model is preferred for the overlapping generation of a single
species [9,10]. If there is only single species that does not overlap, then it is appropriate to build a model with the
difference equation [11]. In recent years, there is a significant increase in the use of fractional-order derivatives into
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many disciplines such as mechanics, chemistry, biology, mathematics and physics [12-15]. The fractional derivative gives
an excellent instrument for the description of memory and hereditary properties of various materials and processes. It has
been exposed that, the fractional derivative is more suitable for modeling real world problem than ordinary derivative of
integer order [16-20].

There are many definitions of the fractional derivative and the most common known are Riemann-Liouville and Caputo
derivative. However, Caputo and Riemann-Liouville also have a big problem that, their kernel although nonlocal but is
singular. This weakness has effect when modeling real world problem [21]. Therefore, some researchers have introduced
the concept of non-local derivative. In [22], Khalil presented a new definition of derivative prominently compatible with
the classical derivative. This operator is called conformable derivative and satisfy some conventional properties such as
chain rule and have properties similar to the ordinary Newton’s calculus. Moreover, biological and physical applications
of conformable fractional derivative can be found in [23-25]. According to this definition, the left conformable fractional
derivative starting from a of the function f : [a, c0) — oo of order 0 < o < 1 is defined by

. flt+e(t —a)=)—f(t)
m

—0 €

(1)

(Taf)Xt) =1
and the right conformable fractional derivative of order 0 < « < 1 terminating at b of f is defined by

flt+eb—t)")—f(t)

QIF)E) = — lim c . (2)
Note that if f is differentiable then
(Taf)E) = (6 —a)'f'(t) , (QTF)NE) = —(b—6)'*f(¢). (3)

In dynamical system, bifurcation and chaos have become an important topic and appear naturally in several important
biological models [10,26-31]. In study [10], May has already pointed out that a simple deterministic model can exhibit
chaotic behaviors, and the importance of chaos in ecology. Chaotic behavior can be observed as a result of flip and hopf
bifurcation that occur with the presence of periodic or quasi-periodic solutions and in this case the dynamic behavior
of the system is very sensitive to the initial conditions. As a generalization of the integer-order systems, the fractional-
order nonlinear dynamic systems display numerous dynamic behaviors as in integer-order systems, such as attractor,
bifurcation, and chaos. Studies have shown that fractional order nonlinear systems exhibit more complex dynamic
behavior then the integer-order systems because of its memory effect. Therefore, the study of fractional chaotic systems
has become increasingly interesting and numerous fractional nonlinear systems with chaotic behaviors have been found
in [32-35].

Another approach taken into account in modeling biological systems is using differential equations with piecewise
constant arguments. These equations describe hybrid dynamical systems and combine properties of both differential
and difference equations and have applications in widely expanded areas such as biomedicine, chemistry, mechanical
engineering, physics and population dynamics [26,27]. Ozturk et al. [4] modeled a population density of a bacteria
population in a microcosm such as

d
% = rx(t)(1 — ax(t) — Box([t]) — Brx([t — 11)) X

where t > 0 and [t] denotes the integer part of t € [0, co). x(t) represent green algae (Chlorella) and rotifers (Lepadella)
bacteria population in a subculture solution (10 ml) and the initial value of the bacteria population density is nearly
10% (cells/ml) and the equilibrium point is approximately x = 5 x 10° and also the upper bound of the bacteria population
density is 7 x 107. The parameter r is the population growth rate of the bacteria population, «, 8 and B; are coefficients
that each represents the irregular environmental carrying capacity for a logistic population model.

The aim of this study is to investigate dynamical behavior of conformable fractional order form of the model (4) that
is given as follows;

—h
T,X(E) = mx(t)(1 — ax(t) — ﬂoX([%]h) e 1), (5)

where [t] denotes the integer part of t € [0, c0) and h is discretization parameter.

In the literature, there are limited numbers of studies about modeling population dynamics by using conformable
fractional order differential equations [23-25]. In our study, we use conformable fractional order which capture local
memory effect for a population but this event cannot be reflected with ordinary differential equations. Biologically,
memory effect means that the growth rates of populations not only depend on the current conditions, but also depend on
all previous conditions. In view of this, model (5) is a more realistic than the model (4) formed by integer-order differential
equations. In addition, we also deal with relatively new discretization process based on the piecewise constant functions
for conformable fractional order differential equations [25]. The use of piecewise constant functions allows us to convert
differential equation (5) to difference equations. Hence, flip bifurcation, Neimark-Sacker bifurcation and chaotic dynamics
for a bacteria population will be easily examined through this discrete system.
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2. Discretization process

In this section, we will discretize the model (5) based on approximation given in [25]. From the left conformable
fractional derivative, we get

d h h—h
(t - nh)“q%” = ()1 — ax(e) — Box(1 - h) — Brx([T— Ih)) (6)
We can rewrite Eq. (6) as following form,
X(t) rﬁox( h)+rpix(nh —h)—r 1 ar .
X)) (t — nh)i=a X(t) (¢ — nh)— 0

Solving this equation with respect to t € [nh, t), we obtain

X(t) = (1 — Box(nh) — 1x((n — 1)h))x(nh) ' -

(t=nh)d
(1 — Box(nth) — B1x((n — 1)h) — ax(nh))e™ "~ Foxtm=ix((n=DME=EE L o ypy
Let t — (n 4+ 1)h, then we have the following difference equation

*(n + 1)) = (1 — Box(nh) — 1x((n — 1)h))x(nh) (9)

(1= fox(nh) — Bix((n — 1h) — ax(nhy)e™" T FoXmR=FIX=DRVG L oy
Finally, adjusting difference equation notation and replacing x(nh) and x((n — 1)h) by x(n) and x(n — 1) yields
1— - -1
x(n+1) = (1 = Box(n) — Brx(n — 1))x(n) (10)
(1= Box(n) — Brx(n — 1) — ax(m))e A BHEDG gy
If we change of variables to u;(n) = x(n) and uy(n) = x(n — 1), we get the two-dimensional discrete system as follows:

(1 = Bouy(n) — Brua(n))u(n)

(1 — aui(n) — Bous(n) — Biuz(n))e —r(1=Bouq(n)— ﬂ1u2(n))q + auq(n) (11)
u(n+1) = uq(n).

u(n+1) =

3. Stability analysis

Direct calculations show that the system (11) has a positive equilibrium point E* = (u?} and

ut k) = (——, ———)
. . . . e . 72 a+Bo+B1° a+Po+h
corresponding Jacoblan matrix at this equilibrium point is

Sy = e(a+/30+/31 (Ola-i- Bo) — Po By +e(‘1‘*'_/5[:)7r+h;1)q)
1 0
Moreover, the characteristic polynomial of J(E*) is given by:
py =22+ (B2 el Py P ) (12)

The following theorem confirms the stability of positive equilibrium point of the model (11) under some conditions.

Theorem 1. Let By > « + B1 > 2«. The following statements are true.

(i) Suppose that 381 < a + Bo. The positive equilibrium point of system (11) is local asymptotically stable if and only if

0<r<Q(Oé+/30+ﬁ1)ln(a+ﬂo—/31). (13)

ahd Bo—a—pi
(ii) Suppose that 381 > a + Bo. The positive equilibrium point of system (11) is local asymptotically stable if and only if

0<r<MetbhotB) b, (14)

aht B1—«

Proof. By the Linearized Stability Theorem in [36] we get that the positive equilibrium point of the system (11) is locally
asymptotically stable if and only if

o Bo

o

e (01+/50+ﬂ1 )q (

)

,31 ____arhd
<1- 2 (e @morrn — 1) < 2. (15)

o

The Eq. (15) can be considered in two cases as follows.
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(a)

ﬁo ___arhl B
— — ( ) Po
; e @A (1 + Lo)

<1-£& (e_m - 1)
o
arhd
(b) 1- £ (e‘<u+ﬁ5+ﬂ1>q — 1) <2

From (a), we will get

<Q(Ol+ﬁo+f31)ln(a+,30—/31) (16)

ohd Bo—a— B
where By > B1 + a. Furthermore, from (b), we obtain

- Q(Ol"i‘ﬂo-i‘ﬂl)ln( B ) (17)
ahd B1—«

where 8; > «. Considering (16) and (17) with the fact that for 38; < @ + By we hold

0<r< Q(a+ﬂo+ﬂl)ln(a+,30—/31)< Q(a+ﬂ0+ﬂ1)ln( B1 )
ahd Bo—oa— B aht B1—a

and for 381 > « + By one can obtain

0 qlo + Bo + B1) Bi qla+ Bo+ B1),  a+ Bo— P
<r< In( ) < In(
ahd p1—a ahd Bo—a—p

This completes our proof.

4. Bifurcation analysis

Bifurcation analysis is a very important issue for a better understanding mechanism of the biological models in both
discrete and continuous time dynamical systems. In this section, we choose the parameter r as a bifurcation parameter
for analyzing the Flip and Neimark-Sacker bifurcation of the system (11) at the equilibrium point E* by using the center
manifold and bifurcation theory in [28-31,37,38]

4.1. Flip bifurcation analysis
In this section, we discuss the existence and direction of flip bifurcation for the system.

Theorem 2. Suppose that the parameters satisfy fo > a + B1 > 20 and 381 < a + Bo. f ey # 0, ap # 0 and

rn=r= gl + fo + ﬂ])ln( g:fg:g:) then the system (11) undergoes Flip bifurcation at the equilibrium point (uj, u3).

. ahd ) o : . o
Moreover, if a; > 0 t’llen the period-2 solution is stable, and if a; < 0 then the period-2 solution is unstable.

q(a + :BO + /31)ln( a+Bo—p1
ahd Bo—a—p1

2
M =-1and A, = L The condition |X{| # 1 leads to o + By # 3p:.

1-a— po
To decide the stability ofﬂ the bifurcated period-2 points, we apply the center manifold reduction. Taking  as an
independent variable into the system (11) and making transformation: u = uy — uj, v =u, — uj ve r =r —ry, then the
system (11) is transformed into:

( a+ Bo+ B 281

0 u flu,r,v)
>_> ﬂ1—,go—06 ) ,31—/30—0‘ (f>+< 0 ) (18)
1 0 0 v 0

fi(u, 7, v) = mysu® + mygt? 4 misv® + miguf + myzuv + migfv + 0 (Cul+ 1]+ |U|)3)

Proof. If ri = ), then the eigenvalues of Jacobian matrix at equilibrium point (uj, u}) are

e = e

where

and the Taylor coefficients m;; are

(o + o) — Bo + Br)e + Bo + Br)l(e + Bo)(2a — In(F5L) o) + In( B0 By)

s = o?(a + fo — P1)? '
myy = 0,

Bo—u 20
. (In(f=foz) + e G R D CR R

(B — Bo—a)
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_ h%a + Bo)a — Bo + B1)

mig = s
q(e? +2apo + 5 — B7)
S Bl — Bo + B1)e + fo + B1)
7 o?(e + fo — P1)?
B1—Bo—« B1—Po—« B1—Po—«
X (o + Bo)e(4 ln(a ot B ))+2ln(a s )ﬁo)-f—ln(a s o +280)B1)
Mg — higi(a — Bo + B1)

e+ B - B2

° 3 251
T = ] 1 00 o
0 1

X
) =T (u) Then the map (18) becomes
Y

Let

—_ 0 =

and use the translation (

S =

X _01 (1) 8 X Fi(X, 1, Y)
b1 o J) () o
Y o 0o ——— |\ (X, w,Y)
B1—Po—«
where
_(mz +mag)( + Bo — B1)
a+ Bo — 3p4
B (M3 +mys — myz ) + Bo — ﬂl)xz
o+ fo—3p
(2my3 + myg — my7 — myg)(@ + Bo — B1)
a+ fo—3p
_ (my7 4+ mag ) + Bo — 1) — 2(2my3 + mye) B Yo
(o + Bo — 3B1)(a + Bo — B1)
_ Mms(a + o — B1)? + 2B1(—maz(e + Bo — B1)) + 2mysBa v2
(o + Bo — 3B1)(a + Bo — B1)?
_ 2mus(a + Bo — B1) + 4myzfr — myg(a + fo + 'Bl)XY

a+ Bo — 3B

Fi(X, u,Y) =

Xu

and
(myz + me)a + Bo — B1) ,
a+ Bo— 3p
n (M3 + mys — myz)(a + Bo — ﬂl)xz
a+ Bo — 3B

(2my3 + myg — my7 — myg)a + Bo — ﬂl)x

- n
a+ Bo — 3B

(my7 + mag)(a + Bo — B1) — 2(My3 + Mye)B4

+ Yu
a+ fo—3p
n 2mys(o + Bo — 1) + 4my3f — myz(a + Po + /31)XY
a+ fo—3p

n mis(a + Bo — B1)* — 2Bi(miz(a + Bo — B1) — 2mi3B1) 5

Y-.
(e + Bo — 3B1)(a + Bo — B1)

BEX, w,Y) =

Suppose that
WE(0) = {(X, . Y) € R°|Y = h*(X, u), h*(0, 0) = 0, Dh*(0, 0) = 0}

is the center manifold for the system of (X, Y) = (0, 0) near u = 0.
Assume that

h*(X, k) = AX® + BX 1 + G + O((IX| + |1])?).
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By approximate computation for the center manifold, we have

(M3 +mys — myg )@ + o — 1)
(o + fo — 3B1)(a + Bo + B1)
(2my3 + myg — my7 — myg)(a + Bo — B1)?
(@ + o — 31)
(3 4 mg)a 4 Bo — B1)
"~ (a+Bo— 3B+ Po+ B1)
Now, the map (19) restricted to the center manifold is given by

F:X = =X+ hiX? 4+ hoXpe 4 hap® + haX® + hsX?p + heXp? + hyp® + O((1X] 4 1))

B =

where
hy = _(m13 + mys — myz ) + Bo — B1)
a+ fo—3p
hy = (2my3 + myg — my7 — myg)(a + Bo — B1)
a+ fo—3p
hy = (M43 +mye)(e + Bo — 1)
a+ Bo —3p4
hy = (M3 +mys — ma7)(a + fo — Y(2mis(a + Bo — B1) + 4mis B — miz(a + Bo + B1))
. (a + Bo — 3B1)*(a + Bo + B1)

hs = (@t ﬁo(i —;—,3/?33(_aﬂ—il-)ﬁo n ﬁ])[_(_m16m17 + mys(2myg — my7 — Myg) + My3(4mys — myy

+ mig))a + o) — 2(2miy + 3myz(Myz + Mug) + mi3(—2mys + Mie — 4my7 + myg))

— mis(Mig + 2(my7 + mig)))e + Bo)B1 + (—20m3; + my3(—8mys — 10mys + 15my7 + myg)

+ myz(7Tmig + 2(My7 + mg)) — mis(dmas + 5(miz + mys)))pi
he = — (o — 1) [(2mismis + Migmig — (M7 + mig)* e + Bo)?

(o + Bo — 3B1)*(a + Bo + B1)

— 2myg(4mys + myg — 2my7 — Mg ) + Bo)B1 + (6mismis — 2mig + (M7 + myg)

+ mig(4my7 + mag))B — 4mis i + o + 581) + mys((2mis + my7 + 2mag ) + Bo)’

— 2(4mys + 2myg — 3my7 — 2mys)(e + Bo)B1 + (6m1s — 20mye + 5myz + 2mis)B7)]
hy = (My3 + myg)(a + Bo — B1)*(—(m17 + myg)(e + o — B1) + 2(2my3 + m16),31).

(o + Bo — 3B1)(a + Bo + B1)

As given by the flip bifurcation theorem in [39], the emergence of flip bifurcation for map (20) requires

_ 2(2my3 + myg — my7 — myg)a + Bo — B1) 20
(0,0 o+ fo— 3B

[ 9F 9°%F 3%F ]
o1 = —

e t e Xon

1o t1F
=17 \ax2) T3

Thus, the proof is completed.

and

2(mq3 — mys)(My3 + mys — ma7 ) + Bo — B1)?

(0.0) B (@ + Bo — 3B1 ) + Bo + B1)

4.2. Neimark-Sacker bifurcation analysis

_ #0.

As stated by the Neimark-Sacker bifurcation theorem in [39], the existence of the Neimark-Sacker bifurcation for
the system requires some conditions that are eigenvalue assignment, transversality and nonresonance conditions. The
following theorem is obtained for analyzing these conditions and it also give the direction of Neimark-Sacker bifurcation.

Theorem 3. Assume that the farameters satisfy Bo > o+ B1 >2a and 381 > o+ Bo. If B1 o+ Bo, 281 #a+ Bo, k #0

qla + Bo + B1

andr =71} = 7qln(ﬂf‘—la) then the system (11) undergoes Neimark-Sacker bifurcation at the equilibrium point
o
(u3, u3). In addition to, if k < O then an attracting invariant cycle will appear for r > r3, if k > 0 then a repelling invariant

cycle will appear for 0 <1 < 13.
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datpot B,

Proof. Suppose that rj = hi (322

(u1(r3), u(r)) is obtained by

a+ Bo — B

). The characteristic equation of the model (11) at the equilibrium point

A+ A+1=0. (21)
B
The eigenvalues of Eq. (21) are
— Bo — -3
halr) = B1—Bo—« ii\/(a-i‘ﬂo B + Po+ B1) atib.

284 2p4

We get |)L1’2(r§“)| = 1 and the transversality condition gives to the inequality

d |)\1,2(r)|
dr

_ hi(a — B1)e? + Bg + Bo(2e — B1) — afy — BY) 40
r=ry qBi(a + Bo + /31)\/2(052 + B5 + 2Bo(a — B1) — 2a By — B7)

Moreover, if 81 # o + o and 281 # «a + fo then we have A],(r;) # 1 (n=1,2,3,4).
Let u = u; — uj and v = u; — uj, then the system (11) is transformed into

B1—Bo—«
O~ )04

where

fu,v) = s13U% + s14uv + 5150% + s16U° + 517U°v + S18Uv° + S190° + 0 ((Jul + [v])*?) (23)

and the Taylor coefficients s;; are

(a + Bo)la — B1)(a + Bo + B1)(e® + Bola — In( lglﬂla )B1))

S13 =

azﬂlz
(o = Br)le + o + B1)(2e@ + fo) — In(5EL Nt + 20)B1)
S14 = a2,31 s
(@ = Bi)e + Bo + Br)ler — In(522)B1)
S15 = o2 ,
_(a+ Bo)B1 — @) + fo + B1)’
S16 = 2(13’313
x [zaz(a - Bo? — 201 + 2n(—LYpo(r + Bo)pr) + In(= P Vpo(20 + (2 + In( P! ))ﬂo)ﬂ%] ,
B1—«a B —«a B1—a
O (Br — a)a + Bo + 1)
17 = 20{3512
x [2a(@ + fo)3Bole — B1) + a(3a — B1)) — 2In( ﬁlﬂ_‘ et + Bo)ler + 36020 — 1)y
+ (PP g2 + 360020,
B1—a
_(Br—a)a+fo+Bi)
S18 = 2035,
x [eaz(a + o) = 2a(2a + 30} — 202 + 3020 — i)+ P+ 3ﬂo)ﬂf} ,
(B1 — @) + Bo + B1)2(20? — 2 + 2ain( 52 )1 + I )2 + In( 522 ))83)
S19 = 203 .
Let
T =

VBB —Bo—a)at+Bot+pB) Pi—Po—«
z %
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and use the translation <llj> =T ();) Then the map (22) becomes

- ()Y() - (g _ab> (’5) N (F(Xd y))

F(X,Y) = g13X* 4 guaXY + g1sY? + g16X> + 817X°Y + g1sXY> + g10Y> + 0 (X[ + 1YY,

and the Taylor coefficients g; are

(@4 o — B+ o+ PN T P T BB — o — el + fle — n(GE)P)
g13 = 3
2025
g1 = sl — @+ o)t + e oo+ (1 + I DBy + (e ool — 2
,31 B1—«a B1—«a
x ol + Bo))B: — ae(1+ In( ﬁl"% " e + Bo)a + 3B0)B3 + (—2a” + 2a(—1+ In( b - )Bo
- -

+ 32 PR+ in " P e+ 2008,

_ (/31—a)(a-i‘ﬁo—zﬂl)(a-i‘ﬂo-i‘ﬁl) 2 B
TN CEa e ey R A R

+ (<20 (g Pppt + i 21 P,
g (e e+ fo = 30— i) t ot By

16 = 80365
X [20%(c + Bo)? — 2a(1 + 2In( =L )pole + o) + In(=L—VBo(2 + (2 + In( =L )oY,
B1—« B1—« Bi1—a

_(a = B1)+ Bo + B1)* V@ + Bo + B1)BB1 — o — @)

g17 = 5
8a3p;
x 16 + o)t = e + o + (1 + 2n( P )B0)81 — 3+ o (40 — 2Aer + an( ; )
1— 1—
o= P2 BB + (o oo+ 2P+ 6otz + 3P
B B1 B1 B1
= 3 Pz n Pt 2 P aa® 20t + i Py
+ 32 + Inf /31’3 L )gEll,
(B1 — o)+ Bo+ B1)? B

8035 [Goc*(ex + fo)” — Gerler + o) (2er + (1 + 2In( 57—

x (60 — 2a(2 + (2 gy — P2 4 Pt + 20+ P800
Bi Bi Bi B

B1— B1—« B1—
5 _a))+3a(3+4ln( B, — o Vo~ 3N )2 In( 5 =~V — (@ + Bo)

Bi B1 B B

x (8a? (—2+3zn(ﬁ1 _a))+2¢x(12—|—ln(ﬂ1 _a)(37+41n(/3 _a)))ﬂo+91n(ﬂ] -

B B Bi Bi
X (2+ln(ﬁ ))ﬁo)ﬂl —4(2a (2+31n(ﬂ1 _a)) —20t(—3+1ﬂ(ﬂ1 _a))(l Jrln(ﬂ1 —
— 3In( ,31ﬁ—1 )2+ In( ﬂl’g_l )BIBS + 4in( = b J a4+ In(z—= A G )3+ P —
(a + Bo — 2B @ — 1) + o + B1)°

83 B3 /(@ + o+ B1)3B1 — Po — @)
x [20%(a + Bo)* — 2a(e + Bo)*(2c + (1 + 2In( 3
1

g18 = ” )Bo)B1 — 3(a + o)’

+ In(

819 =

'3_1 o Bo)pr — (e + Bo) (6 — 2a

(24)
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Fig. 1. Stable equilibrium point of the system (11) for parameter values @ = 0.14 x 1077, 8y = 1.0005 x 1075, B; = 0.9855 x 1077, ¢ = 0.5, h = 0.15
and r = 3.

x10

Fig. 2. Flip bifurcation diagram of the system (11) for the parameter values o = 0.14 x 10~7, By = 1.0005 x 1076, g; = 0.9855 x 1077, ¢ = 0.5 and
h =0.15.
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Now the coefficient k, which determines the direction of the invariant curve, can be computed

_ 72
‘= _Re[a 20) X

1 _
Y 511520j| 3 &111° — |&02|* + Re (A&21) (25)
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Fig. 3. Time series plot of model (11) with respect to Fig. 2: (a) period-two orbit for r = 3.19, (b) period-four orbit for r = 3.91, (c) period-eight
orbit for r = 3.97, (d) chaotic for r = 4.3.

where

1 .
&0 = 3 [(Fixx — Fiyy + 2Foxy) + i (Faxx — Fayy — 2Fixy)],

1 )
n = 2 [(Fixx + Fiyy) +1i (Faxx + Foyy)],

1 )
§o2 = 3 [(Fixx — Fiyy — 2Faxy) + i (Foxx — Fayy + 2F1xy)],

1 .
& = 16 [(Fixxx + Fixyy + Faxxy + Fayyy) + 1 (Faxxx + Faxyy — Fixxy — Favwy) ]

Thus the proof of Theorem 3 is completed.
5. Numerical simulations

In this section, we present some numerical simulations to demonstrate the accuracy of the theoretical results obtained
in Section 4. Therefore, the parameter r is chosen as a bifurcation parameter and the other parameters of model are fixed.
The bifurcation parameters are considered as in the following cases:

Case(i) varying r in range 2 < r < 6 and fixing « = 0.14 x 1077, B = 1.0005 x 1075, B; = 0.9855 x 1077,
q = 0.5 and h = 0.15. From Theorem 2, the critical flip bifurcation value is obtained as r{ ~ 3.18656. In this situation,
a1 = —1.57475 # 0 and oy = 5.93602 x 10~1> £ 0. Now we can say that Flip bifurcation appears around the fixed point
E* = (8.98432 x 107%, 8.98432 x 107%) for the model (11). Moreover, since , > 0 the period-2 orbits bifurcate from E*
are stable (Figs. 2 and 3a). We note that for the above parameter values the eigenvalues of the Jacobian matrix are A; = 1
and A, = 0.215186. In addition we calculate the maximum Lyapunov exponents corresponding Fig. 2 and plot in Fig. 4
where some Lyapunov exponents are bigger than 0, some are smaller than 0. Therefore there exist chaotic regions and
period orbits in the parametric space.

Case(ii) varying r in range 1 < r < 4 and fixing « = 0.14 x 1077, By = 1.0005 x 107, 8; = 2.9855x 107, g = 0.5 and
h = 0.15. From Theorem 3, the critical Neimark—Sacke|r bifurc|ation value can be calculated as r3 ~ 1.73375. For r =13,
d|A12(r)

r

transversality and nonresonance condition leads to = 0.398326i # 0 and p(r;) = —0.660191 # 0, 1,
r=ry

respectively. Now Neimark-Sacker bifurcation comes out from the fixed point (2.5 x 10°, 2.5x 10°) at r; = 1.73375 for the
model (11) (Fig. 6). In this situation, the norm of eigenvalues of the Jacobian matrix is |11 3| = [0.330095 £ 0.943948i| = 1
and the coefficients &; are &y = —5.31745 x 1077 + 8.44131 x 1077}, &1 = 1.10931 x 1079, &p = —5.31745 x

1077 — 8.44130 x 107 7i and &; = 1.33632 x 10712 — 4.69503 x 10~ '3i. From [39], the critical real part is obtained as
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Fig. 4. Maximum Lyapunov exponents of the system (11) corresponding to Fig. 2.
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Fig. 5. Time series plot of model (11) with respect to Fig. 6: (a) asymptotically stable for r = 1.6, (b) quasi-periodic solution for r = 1.73375, (c)
quasi-periodic solution for r = 1.8, (d) chaotic for r = 3.4.

k = —9.98695 x 1073, Therefore, a supercritical Neimark-Sacker bifurcation occurs at r5 (Fig. 6). In order to see the
chaotic dynamics, we calculate the maximum Lyapunov exponents corresponding Fig. 6 and plot in Fig. 7. The sign of the
maximum Lyapunov exponent confirms the existence of the strange attractor.

6. Results and discussion

In this work, we have considered a conformable fractional order differential equations with piecewise constant
arguments model (5) for modeling bacteria population model in a microcosm. We apply a discretization process to the
model (5) and obtain two dimensional discrete dynamical system (11). Thus, the fractional order parameter q is included
as a new parameter into the system of difference equations. By using the Schur Cohn criterion the necessary and sufficient
stability conditions of the model according the parameter r is obtained and given in Theorem 1. The parameter values are
taken in [4] in terms of consistency with the biological facts as @ = 0.14x 10~7, By = 1.0005 x 107%, 8; = 0.9855 x 1075,
g = 0.5 and h = 0.15 and initial condition for bacteria population is nearly 10~ (cells/ml). Theorem 1 gives two
stability regions according the bacteria population growth rate (r). The first stability region obtained from Theorem1(i)
is r < 3.18656 = rf. If bacteria population growth rate is chosen r = 3, then the bacteria population increase and
eventually reaches to stable equilibrium point 8.98432 x 10° that is homogeneous bacteria distributions (Fig. 1). Let
B1 = 2.9855x x 1075. In this situation stability region is obtained as r < 1.73375 = rj from Theorem 1(ii).
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Fig. 6. Neimark-Sacker bifurcation diagram of the system (11) for & = 0.14 x 1077, B = 1.0005 x 1075, g; = 2.9855 x 107%, ¢ = 0.5 and h = 0.15.
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Fig. 8. Phase portraits for different values of q for the system (11).

By using the center manifold theorem and the bifurcation theory we show that the discrete system (11) undergoes both
a Flip bifurcation and a Neimark-Sacker bifurcation around the positive equilibrium point. If bacteria population growth
rate passes a threshold value rj = 3.18656, the system undergoes a Flip bifurcation and after this chaotic dynamics
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occurs for a bacteria population that is inhomogeneous spatial population distributions (Figs. 2, 3, 4). From these figures,
we observe the existence many attractors (e.g., steady state, period-2 orbit, period-4 orbit, period-8 orbit, chaos etc.) with
the variation parameter r. Therefore the model is sensitive to initial conditions and therefore model (11) is multistable
system. In addition, for rJ = 1.73375 a stable limit cycle is formed around the equilibrium point as a result of Neimark-
Sacker bifurcation (Figs. 5, 6, 7). From these figures, we also observe the existence quasi-periodic solution and chaos for
the model (11) with the variation parameter r. This is another indication that the system is multistable. Multistable system
is also seen in study [40,41].

On the other hand, the effect of the change of fractional order derivative parameter q on system (11) is illustrated in
Fig. 8. This figure shows that the stable behavior of the system is destabilizing when decreasing the parameter q. Fig. 8
demonstrate phase portraits of the model and clearly depicts how a smooth invariant circle bifurcates from the stable
equilibrium point (2.5 x 10°,2.5 x 10°). The equilibrium point of the model is stable for ¢ < 0.8199 (Fig. 8a-b), that
is loses its stability ¢ = 0.8199 through the Neimark-Sacker bifurcation (Fig. 8c), and that an invariant circle appears
when the parameter g exceeds 0.8199. After this, its radius becomes larger with the decrease of parameter g and chaotic
attractor is formed around the equilibrium point (Fig. 8d).

Our model (5) is a more general model than model (4) in that it includes local fractional order derivative g and
discretization parameter h. We note that if we choose ¢ = 1 and h = 1 in model (5), the model is reduced to model
(4). However, since model (5) is a local fractional order, it includes local memory effects for a bacteria population that
cannot be reflected by integer order model (4). Therefore, the model exhibits richer dynamic behaviors than the model
(4) according to the different states of the local fractional order parameter q. In our model, Neimark-Sacker bifurcation
occurs around the positive equilibrium point for ¢ = 0.8199 (Fig. 8). It is not possible to observed this situation in model
(4) because it does not include local fractional order parameter q. This is an expected result when we compare fractional
order dynamical systems with integer order counterpart.

7. Conclusion

In this study, we consider a bacteria population model consisting of conformable fractional order differential equation
with piecewise constant arguments. Since the model (5) is a local fractional order, it contains the local memory effect.
This shows the advantage of our model compared to model (4) formed by ordinary differential equations. We also use
piecewise constant arguments including control parameter h which represents the delay effect in the population. Thus,
discretization parameter h take control the length of the subintervals [nh, (n + 1)h) that give us to controlling dynamical
behavior of the discrete model (11). It is observed that the discrete model has quite rich dynamic behaviors such as period-
2, period-4, period-8, quasi-periodic solutions and chaos according to the change of parameter r which demonstrates
bacteria population growth rate. Periodic solutions lead to flip bifurcation and quasi periodic solutions cause to Neimark-
Sacker bifurcation, that resulting in chaotic behavior. Due to the increase of the parameter r, quasi-periodic solutions
first lead to damped oscillatory solutions, followed by stable limit cycles and then chaotic behaviors. These dynamic
behaviors explain some biological phenomena such as homogeneous and inhomogeneous spatial population distributions
for the bacteria population and provide a recipe for controlling the bacteria population. In addition, changing of fractional
parameter ¢ in the system show that local memory effect causes significant structural changes such as Neimark-Sacker
bifurcation and chaos in dynamical behavior of the model.
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