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An amplitude controllable hyperjerk system is constructed for chaos producing by introducing a nonlinear factor of memristor. In
this case, the amplitude control is realized from a single coefficient in the memristor. (e hyperjerk system has a line of equilibria
and also shows extrememultistability indicated by the initial value-associated bifurcation diagram. FPGA-based circuit realization
is also given for physical verification. Finally, the proposed memristive hyperjerk system is successfully predicted with artificial
neural networks for AI based engineering applications.

1. Introduction

Memristor brings the nonlinear factor with memory func-
tion [1–4]. (e discovery of the memristor gives the pos-
sibility of the circuit with brain-like natural memory. In
2008, HP Company has triggered an upsurge in the research
of memristor, among whichmemristive chaotic system is the
main branch [5–7]. (e amplitude control in the memristive
system has also aroused great interest in chaos producing.
When the coexisting attractors [8, 9] or multistable [10–12]
systems are considered, chaos producing becomes more and
more complicated. Specifically, noise may pose a great in-
fluence on the dynamics of a memristive system by initial
conditions. Li explained the mechanism of amplitude
control in chaotic systems [13], and then the partial am-
plitude control was studied by Li et al. and Gu et al. [14, 15].
(e amplitude control with one parameter is still a challenge
and attractive in chaos application. At the same time, during
the last decade, many researchers have discussed chaotic
systems and their implementations based on FPGA [16–18],

where, to simulate a differential system, a proper numerical
method is chosen. In fact, FPGA implementation [19–23] of
chaotic systems has been a hot topic in recent days. Moti-
vated by the above discussions, in this work, the newly
proposed memristive hyperjerk chaotic system with am-
plitude control is finally implemented by FPGA.

Chaos extends its application for synchronization [24] or
data encryption [25] based on the inherent randomness.
However, people also expect to grasp the whole evolvement
based on the technology of artificial intelligence. In order to
control the dynamics of chaotic systems, some research tried
to predict the data outputting by various classes of opti-
mization. Alatas et al. introduced the chaotic particle swarm
optimization algorithm [26]. Sayed et al. introduced the
chaotic multiverse optimization algorithm [27]. (e chaos-
based whale optimization algorithm is introduced by using
chaotic systems in whale optimization processes [28, 29].
Chaotic systems are also used in the field of genetic algo-
rithms [30–33]. Artificial neural networks (ANN) [34–37],
fuzzy logic [38], and fuzzy neural network [39] methods
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have been used for predicting chaotic systems with artificial
intelligence (AI). Various chaos and AI based engineering
applications such as random number generator [40, 41] and
cryptology [42, 43] are performed by chaos producing and
image analysis with AI techniques.

In this paper, a memristor is introduced into a jerk
structure for chaos producing with amplitude control and a
line of equilibria. (e amplitude of the chaotic attractor is
controlled by a parameter in a flux-controlled memristor. In
section 2, basic dynamics are analyzed including equilibria
stability, bifurcation, and multistability. In section 3, FPGA
implementation is designed to show that the proposed
system is also suitable for hardware realization. (e pro-
posed memristive hyperjerk chaotic system is predicted with
ANN for AI based engineering applications in section 4.
Conclusions are given in the last section.

2. Memristive Hyperjerk Chaotic System and
Basic Analysis

2.1. Model Description. Because the jerk system equation is
simple in form and convenient for circuit implementation,
here the magnetron memristor is introduced into the jerk
system to obtain a memristive jerk system:

_x � y,

_y � z,

_z � w,

_w � −az − bw − y c − dx
2

 ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where y, z, and w are the system state variables, while x is the
internal variable of the memristor. a or b is a bifurcation
parameter, and c or d defines the external characteristic of
the memristor. (e new proposed Jerk system (1) produces
chaos by the memristor nonlinearity. (e integration of the
input variable y of the memristor determines the internal
state variable x. (e excess volume shrinkage of the system
∇V � (z _x/zx) + (z _y/zy) + (z _z/zz) + (z _w/zw) � −b. When
parameter a � 0.8, b � 0.5, c � 1, d � 0.1, system (1) is a
dissipative system and shows chaos.

(e flux-controlled memristor is defined as

i � W(x)y,

W(x) � c − dx
2
,

_x � y.

⎧⎪⎪⎨

⎪⎪⎩
(2)

(e flux-controlled memristor is a function of the in-
ternal variable x related to the voltage y. When c � 1 and
d � 0.1 W(x) �

1 − 0.1x2 � 1 − 0.1(
t

−∞ yds)2 � 1 − 0.1(W0 + 
t

0 yds)2,
where W0 � 

t

−∞ yds − 
t

0 yds. (e memductance associ-
ated with the parameter and the pinched hysteresis loop
against frequency is shown in Figure 1.

When a � 0.8, b � 0.5, c � 1, d � 0.1, and the initial value
is (0.01, 0.01, 0, 0), system (1) produces strange attractors,
and the phase trajectory is shown in Figure 2. Using the
fourth-order Runge–Kutta integrator, the time step is se-
lected to be 0.005, MATLAB is used to solve the equations,

the Lyapunov exponents are L1 � 0.0357, L2 � 0, L3 � 0,

L4 � −0.5357, and Kaplan–Yorke dimension is DKY � 3 −

((L1 + L2 + L3)/L4) � 3.0666 proving that the system is
chaotic.

2.2. Equlibira Analysis. Solving equation (3),

y � 0,

z � 0,

w � 0,

−az − bw − y c − dx
2

  � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

(erefore, system (1) has a line of equilibria (x, 0, 0, 0).
(e characteristic equation is

λ λ3 + bλ2 + aλ + c − dx
2

  � 0, (4)

where a, b, c, and d are constants and x is an arbitrary
variable. When c − dx2 � 0, and the equilibrium points are
stable, x � ±

��
10

√
when c � 1, d � 0.1. In fact, from the

stability criterion of Routh–Hurwitz,

b> 0,

a> 0,

c − dx
2 > 0,

ab + dx
2

− c> 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

and when x ∈ (−
��
10

√
, −

�
6

√
)∪ (

�
6

√
,

��
10

√
], the nonzero ei-

genvalue of the system is either negative or has a negative
real part, and therefore the line of equilibria is stable;
otherwise, the equilibria are unstable.

Specifically, there are four types of stability for the line
equlibrium points, as shown in Table 1. When x is in the
range of (−∞, −

��
10

√
)∪ (

��
10

√
, +∞) (the green area I in

Figure 3), the eigenvalue consists of a zero, a positive real
root, and a pair of conjugate complex numbers with a
negative real part, correspondingly the equilibrium points
are saddle foci of index-1. When
x ∈ [−

��
10

√
, −

�
6

√
)∪ (

�
6

√
,

��
10

√
] (the purple area II in Fig-

ure 3), the eigenvalue is shown in Table 1, the equilibrium
points belong to the stable node foci. When x � ±

�
6

√
(the

blue area III in Figure 3), the eigenvalue has a pair of virtual
roots, and the equilibrium points are stable which turns to be
unstable when a Hopf bifurcation occurs. When x changes in
the interval (−

�
6

√
,

�
6

√
) (yellow area IV in Figure 3), the

equilibrium points are saddle foci of index-2.

2.3. Bifurcation Analysis. When b� 0.5, c� 1, d� 0.1; the
initial value is (0.01, 0.01, 0, 0); and a varies in the range of
[0.78, 0.9], system (1) shows a typical inverse period-doubling
bifurcation. From the Lyapunov exponent spectrum and bi-
furcation diagram in Figure 4, we can see that when the
parameter a is in the range of [0.780, 0.788] and [0.791, 0.805],
the system returns chaos. When a is in the range of [0.790,
0.791], the cycle-3 attractor is generated in a very short
window. When a changes in the region of [0.817, 0.840] and
[0.864, 0.900], cycle-2 and cycle-1 are generated, respectively.
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Figure 1: (e memductance and pinched hysteresis loop.
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Figure 2: Strange attractor projection on various planes of system (1) with (a)� 0.8, (b)� 0.5, c� 1, (d)� 0.1 under the initial condition
IC� (0.01, 0.01, 0, 0).

Table 1: (e stability of the equilibrium points and corresponding eigenvalues.

x Specific value Eigenvalue Stability
(−∞, −

��
10

√
)∪ (

��
10

√
, +∞) x � ± 5 0, 0.8079, −0.6540 ± 1.1954i Region I saddle foci of index-1

±
��
10

√
x � ±

��
10

√
0, 0, −0.25 ± 0.8588i Region II stable node foci

(−
��
10

√
, −

�
6

√
)∪ (

�
6

√
,

��
10

√
) x � ± 3 0, −0.1331, −0.1834 ± 0.8471i —

±
�
6

√
x � ±

�
6

√
0, −0.5, ± 0.8944i Region III Hopf bifurcation

(−
�
6

√
,

�
6

√
) x � 0 0, −0.8808, 0.1904 ± 1.0484i Region IV saddle foci of index-2
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(ephase trajectories of system (1) under different parameters
of a are shown in Figure 5.

When the initial value is (0.01, 0.01, 0, 0), the parameters
a, c, and d are set to be 0.8, 1, and 0.1, respectively; while b
changes within the range of [0.45, 0.56], system (1) also
shows the inverse period-doubling bifurcation. (e Lya-
punov exponent spectrum and bifurcation diagram of sys-
tem (1) are shown in Figure 6. (e parameter b in the range
of [0.450, 0.492] and [0.495, 0.502] also give the chance for
chaos producing. (e cycle-2 attractor exists when the pa-
rameter b changes in the interval of [0.510, 0.523]. Parameter
b generates cycle-1 attractor in the range of [0.532, 0.560].
Corresponding phase trajectories of system (1) are shown in
Figure 7.

Under the same initial value, and a� 0.8, b� 0.5, d� 0.1,
the Lyapunov exponent spectrum and bifurcation diagram
of system (1) are shown in Figure 8. (e parameter c in the
range of [0.85, 1.1] leads a typical period-doubling bifur-
cation, the system gradually changes from periodic state to
chaotic state, and the trajectories of system (1) are shown in
Figure 9. When the parameter c is in the range of [0.995,

1.011] and [1.016, 1.100], the system is in a chaotic state.
When the value of c is changed in the range of [0.947, 0.980]
and [0.850, 0.946], cycle-2 attractors and cycle-1 attractors
are produced respectively.

2.4. Multistability Observation. (e chaotic system is very
sensitive to the initial value showing extreme multistability,
which can be clearly seen from the Lyapunov exponent
spectrum and bifurcation diagram under the control of
initial condition x0 or y0 in Figures 10 and 11. When the
initial conditions x0 and y0 change within the interval of
[−0.11, 0.11] and [−0.18, 0.15], intermittent chaotic oscil-
lations show up. Figures 12 and 13 show the typical phase
trajectories under different initial values x0 and y0. As
analyzed above, when the parameters are a� 0.8, b� 0.5,
c� 1, d� 0.1 and x0 is in the region
of[−

��
10

√
, −

�
6

√
)∪ (

�
6

√
,

��
10

√
], the system has infinitely

many stable equilibrium points. In this case, we can say
infinitely many point attractors coexist with chaotic
attractors and periodic attractors.
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Furthermore, from the bifurcation diagram of xmax in
Figure 10, system (1) switches its dynamics from period
to chaos at the breakpoint of x0 � 0.02. (is discontin-
uous bifurcation mode is also proved by Figure 12, where
system (1) switches the oscillation from a limit cycle to
chaos. Note that all the bifurcation is realized by the
initial condition, and therefore the hidden bifurcation
occurs in the initial space indicating a new regime of
multistability.

2.5. Amplitude Control. For a dynamical system, there are
various parameters influencing the dynamics, some of which
are bifurcation ones and some define the geometric prop-
erties. In the chaotic system with only one linear or non-
linear term, the coefficient of it may play the role of
amplitude control. Here, after the tertiary magnetron
memristor was introduced into the Jerk system, the new
chaotic system introduces only a nonlinear term with a
parameter for adjusting the amplitude. When a� 0.8, b� 0.5,
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c� 1, let x⟶ (x/
��
d

√
), y⟶ (y/

��
d

√
), z⟶ (z/

��
d

√
),

w⟶ (w/
��
d

√
); the derived equation is the same as system

(1) when d� 1, so the coefficient d in system (1) can control
the amplitude of the state variables x, y, z, w. (e amplitude
adjustment of the chaotic attractor is realized by the internal
parameter d in the memristor. (e parameter d makes the
state variables x, y, z,w scaled by the ratio of

��
d

√
. As shown in

Figure 14, parameter d has basically the same influence on
the amplitude of system state variables x, y, z, and w.

(e average value of the absolute value of the state
variable decreases with the increase of the parameter d, but
when the parameter d changes in the range of [0, 5], the
Lyapunov exponent spectrum remains constant. (e con-
trolled amplitude can be clearly seen from the attractor and
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signal waveforms as shown in Figures 15 and 16.
Figures 14–16 show that the size of the attractor has a
negative proportion with the parameter d.

3. FPGA-Based Implementation

In this part, digital implementation of the memristive
hyperjerk chaotic system is shown. From the variety of digital
platform, we choose FPGA technology as this provides a good
performance and higher design flexibility. FPGA will also
provide a better computing performance with low cost as

when compared to ASIC (Application Specific Integrated
Circuits) Technology. FPGA implementation of memristive
hyperjerk chaotic system has been implemented and power
efficiency analysis is investigated. All four states of a hyperjerk
system are discretized using a suitable numerical method
(Euler’s method) with 32-bit IEEE-754-1985 floating point
format. We have used the hardware-software cosimulation to
implement the memristive hyperjerk oscillator in Kintex-7
board and the output is seen using MATLAB.

FPGA-based hyperjerk chaotic system has been obtained
using Xilinx (Vivado) system generator [44, 45] which is
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integrated with MATLAB software. Xilinx block sets which
are available on the system generator toolbox need to be
configured with zero latency and 32/16-bit fixed point

settings. In order to reduce the bit latency, the output block is
configured to round quantization. By configuring all blocks
and setting, the following phase portraits are obtained.
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Figure 17 represents the phase portrait where the
hyperjerk chaotic system signals x, y, z, and w are repre-
sented with 32 bits using the Forward Euler method by
setting h � 0.01 with parameter values a� 0.8, b� 0.5, c� 1,
d� 0.1 and the initial condition of
(x0 � 0.01, y0 � 0.01, z0 � 0, w0 � 0). It can be seen that the
functional hardware results are very similar to MATLAB
results. Figure 18 represents the phase portraits of system (1)
with a� 0.8, b� 0.5, c� 1, under the initial condition of
(0(0.01/

������
(0.1/d)


), (0.01/

������
(0.1/d)


), 0, 0). D� 0.08 is red

while the initial conditions are (0.0089, 0.0089, 0, 0); d �

0.12 is blue while the initial conditions are

(0.0109, 0.0109, 0, 0); and d � 0.25is green while the initial
conditions are (0.0158, 0.0158, 0, 0).

Figure 19 and Table 2 show power utilization and re-
source utilization of memristive hyperjerk chaotic system
obtained using FPGA with the parameter values,
a � 0.08b � 0.5c � 1.05,d � 0.1 under the initial condition
(0.01, 0.01, 0, 0).

(e power chart of the proposed system gives us in-
formation about the different resources and their power
utilization. From the chart, it is observed that the power
consumption is extremely less when compare with realizing
the system on other digital software.
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5

0W

–5
–4 –2 2 40

Z

(a)

5

0W

–5
–4 –2 2 40

Z

(b)

5

0W

–5
–4 –2 2 40

Z

(c)

5

0W

–5
–4 –2 2 40

Z

(d)

–5

5

0W

–4 –2 2 40

Z

(e)

–5

5

0W

–4 –2 2 40

Z

(f)
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Figure 20 and Table 3 show power utilization and re-
source utilization of memristive hyperjerk chaotic system
which is obtained using FPGA with the parameter values,
a � 0.08, b � 0.5, c � 1.05 under initial condition
(0.01/

������
(0.1/d)


), (0.01/

������
(0.1/d)


), 0, 0) (a) y-z plane, for

d� 0.08 (red), for d � 0.12 (blue), for d � 0.25 (green) (b) x-
w plane, for d � 0.08 (red), for d � 0.12 (blue), for d � 0.25
(green).

From Table 3, we can find the different resources such as
flip-flops, lookup tables, input-output, digital signal pro-
cessing, and the global buffer. (e total number of available
flip flops in the design is 407600, but here the system had
utilized only 0.06% of the available resources, likewise, for
other resources too, it had utilized only less numbers; thus, it
consumes less power.

(e Register-Transfer Level (RTL) schematic of the
memristive hyperjerk chaotic system is shown in Figure 21.
(is RTL design is achieved by interfacing the Xilinx system
generator with the Vivado design tool. Each block in the
Simulink will get implemented and synthesized using
Vivado and generates a schematic diagram. Figure 21 shows
the RTL design of the state w of system (1). Kintex 7 is the
hardware chosen to implement the system.

4. System Prediction with Artificial
Neural Network

ANN is a mathematical model representing neurons in the
brain and their network relationships [35]. In ANN archi-
tecture design, the number of layers, the number of neurons
in the layers, the learning algorithm, and activation func-
tions are parameters that can be changed to achieve the
desired result. A basic neuron model is given in Figure 22.
Inputs are denoted by x, outputs are denoted by y, weights
are denoted by w, bias is denoted by b, and f denotes ac-
tivation function.(e neuron output is given in Table 4 [42].
Each input information is multiplied by weight and added by
bias. (e output (y) is obtained by processing the total value
on the activation function.

yj � f 
n

xnwn + b⎛⎝ ⎞⎠. (6)

Chaotic data can be predicted with artificial neural
networks. Compared with the fuzzy logic method [38] or the
fuzzy neural network [39], NARX network model can give

d = 0.08
d = 0.12
d = 0.25

5

0

–5

Z

–6 –4 –2 20

Y

4 6

(a)

d = 0.08
d = 0.12
d = 0.25

6

4

2

W 0

–2

–4

–6
–5 0

X

5

(b)

Figure 15: Phase trajectories of system (1) with (a)� 0.8; (b)� 0.5; (c)� 1 under the initial condition ((0.01/
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), 0,
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Figure 16: Signals x(t) and z(t) with different amplitudes controlled by (d).
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the prediction in a relatively simple way [46]. NARX is a
feedforward network model with two layers. A general di-
agram of the NARX model is given in Figure 23 [46]. In the
first layer (Layer 1), data from inputs and outputs enter the
network by passing through the delay line (TDL-Tapped
Delay Time). (us, the past values of the time series are also
applied to the input. In the NARX model, the network
architecture relates both the present value of the time series
and the current and past values of the exogenous input [46].

(e mathematical expression of the input and output re-
lationship of the NARX model is given in equation (7)
[46, 47].where u is the input, y is the output,m and n are the
number of input and output variables, f1 and f2 are the
activation functions, IW is the input weight, LW is the
output weight, b1 is the Layer-1 bias (input bias), b2 is the
Layer-2 bias (output bias), and t is the time step. In Fig-
ure 23, Layer-1 refers to the hidden layer, and Layer-2 refers
to the output layer. Equation (8) gives the dynamics of the
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Figure 17: Strange attractor projections on various planes of system (1) with (a)� 0.8, (b)� 0.5, (c)� 1, (d)� 0.1under the initial condition
(0.01, 0.01, 0, 0).
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NARX network for the number of q neurons. In equation
(8), i indicates the index of neurons and j indicates the index
of n inputs [46]:

y(t) � f[[u(t), u(t − Δt), . . . , u(t − mΔt),

y(t − Δt), . . . , y(t − nΔt)],
(7)
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Figure 19: Power consumed for the FPGA implementation of memristive hyperjerk chaotic system (1).

Table 2: Resource utilization for the FPGA implementation of memristive hyperjerk chaotic system.

Resource Utilization Available Utilization %
FF 256 407600 0.06
LUT 488 203800 0.24
I/O 129 500 25.80
DSP 20 840 2.38
BUFG 1 32 3.13
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Figure 20: Power consumed for the FPGA implementation of memristive hyperjerk chaotic system (1).

Table 3: Resource utilization for the FPGA implementation of memristive hyperjerk chaotic system.

Resource Utilization Available Utilization %
FF 256 407600 0.06
LUT 495 203800 0.24
I/O 129 500 25.80
DSP 20 840 2.38
BUFG 1 32 3.13

12 Complexity



Figure 21: (e RTL schematic of memristive hyperjerk chaotic system implemented in Kintex-7 using hardware-software cosimulation.
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Figure 22: A basic neuron model [37].

Table 4: (e performance of the network in different learning algorithms and different hidden layer neuron numbers.

Learning algorithm Number of hidden layer neurons Test performance value (mse)
Levenberg–Marquardt 5 4.7493e-08
Levenberg–Marquardt 10 1.1208e-08
Levenberg–Marquardt 15 3.3662e-09
Levenberg–Marquardt 20 9.1743e-10
Bayesian regularization 5 5.3542e-09
Bayesian regularization 10 3.2432e-08
Bayesian regularization 15 6.9930e-08
Bayesian regularization 20 2.8120e-08
Scaled conjugate gradient 5 4.1850e-04
Scaled conjugate gradient 10 1.4536e-04
Scaled conjugate gradient 15 5.1096e-05
Scaled conjugate gradient 20 4.6894e-05
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(e designed NARX model given in Figure 24 is used to
estimate the system (1) with ANN. (e network model has 4
inputs (x, y, z, w) and 4 outputs (x∧, y∧, z∧, w∧). (e data
obtained from the simulation result under the initial conditions
(0.01, 0.01, 0, 0) of system (1) are used as the data set. 24500 of the
data set are used for training (70% of the data set), 5250 of the

data set used for validation (15% of the data set), and 5250 of the
data set used for testing (15% of the data set). Training, testing,
and verification data are taken at random. 15000 pieces of data
that were not given to the network before were used for testing.
Hyperbolic tangent is used as the activation function in the
hidden layer, and a pureline function is used as the activation
function in the output layer.(ree different learning algorithms,
Levenberg-Marquardt, Bayesian Regularization, and Scaled
Conjugate Gradient are used for network training. (e per-
formance of the network is compared using three different
training algorithms by taking the number of hidden layer
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Figure 26: Phase portraits of target data (in green) and artificial neural network output (in blue).
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neurons at different values. (e performance (mse-mean
squared error) of the network in different learning algorithms
and different numbers of hidden layer neuron is given in Table 4.
As can be seen fromTable 4, the best result was achievedwith the
Levenberg–Marquardt learning algorithm and 20 neurons in the
hidden layer. Performance (mse values) and error histogram
graphs of the tested network are given in Figure 24. In the test
simulation process, the mse value was obtained as 9.1743e-10,
Figure 25(a). As a result, according to this mse value, the trained
network can predict the chaotic system (1) very well.

As can be seen from the phase portraits in Figure 26,
designed ANN has predicted system (1) very successfully.
(e green attractors and blue attractors represent the target
data and the predicted data from the artificial neural net-
work, respectively.

5. Conclusion

When a memristor is introduced into a jerk structure, a new
memristive hyperjerk chaotic system with amplitude control
is designed. (e coefficient of the internal variable shows its
function for amplitude control. In this work, it is proven that
the jerk structure can host a nonlinear memristor for chaos
rescaling. By revising, a resistor in the physical circuit can
realize the total amplitude control leaving much margin for
chaos application. Like some of the other memristive chaotic
systems [48–50], the newly proposed chaotic system shows
extreme multistability. (e implementation of FPGA proves
the consistence of theoretical analysis and numerical sim-
ulation. Also, the proposed memristive hyperjerk chaotic
system is predicted with ANN for AI based engineering
applications. Further work associated with this system like
chaos-based communication or image encryption is ex-
pected in the near future.
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